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Abstract—We study the scheduling decision for an application
consisting of dependent tasks, in a generic cloud computing sys-
tem comprising a network of heterogeneous local processors and
a remote cloud server. We formulate an optimization problem to
find the offloading decision that minimizes the overall application
execution cost, subject to an application completion deadline.
Since this problem is NP-hard, we propose a heuristic algorithm
termed Individual Time Allocation with Greedy Scheduling
(ITAGS) to obtain an efficient solution. ITAGS first uses a binary-
relaxed version of the original problem to allocate a completion
deadline to each individual task, and then greedily optimizes the
scheduling of each task subject to its time allowance. Through
trace-based simulation using real applications, as well as various
randomly generated task trees, we study the performance of
ITAGS, highlighting the effect of the application deadline, com-
munication delay, number of processors, and number of tasks.
We further demonstrate the substantial performance advantage
of ITAGS over existing alternatives.

I. INTRODUCTION

Computational offloading refers to the migration of

computationally-intensive portions of an application, typically

from a resource-limited mobile device, to powerful servers

at the cloud [1], [2]. An application can be partitioned into

a number of tasks, and task scheduling decisions can be

made such that the overall offloading leads to reduced energy

consumption [3], [4], makespan [5], [6], [7], or combination

of both [1], [8], [9]. This allows flexibility in offloading

tasks in finer granularity than entire applications. Nevertheless,

offloading to the remote cloud can incur significant delays, par-

ticularly if a large amount of data needs to be communicated

between the cloud and the mobile device. Hence, cloudlets and

edge servers that are in closer proximity to the mobile device

provide an attractive alternative to offload tasks that require

low latency [10], [11]. Tasks can also be offloaded to peer

devices such as nearby mobiles [12], [13], [14]. Therefore,

the future landscape of computing is expected to be highly

networked, with diverse sources of computation services.

In this paper, we consider the offloading of a single

application comprising multiple tasks, over a generic cloud

computing system consisting of a network of heterogeneous

local processors and a remote cloud. The local processors

can represent the processing cores in a single mobile device,

local peer devices, and/or nearby cloudlets, depending on their
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computational speed and communication distance from the

user device. There is a time and a cost associated with task

execution, which depend on both the task and the processor

where the task is scheduled.

While many prior studies in the literature consider the

offloading of independent tasks [6], [8], [10], [12], [15],

[16], [17], the computational tasks of an application often

depend on each other for data input or timing precedence.

Hence, in this work, we consider inter-dependent tasks with

possible data communication between them. Each task may

have predecessor tasks that must be completed before the task

can start. Furthermore, if data need to be transferred between

tasks on different processors, a communication delay, as well

as communication cost, is incurred.

The objective of this work is to identify a task scheduling

decision that minimizes the total cost of running an appli-

cation, subject to an application completion deadline. Our

cost model is general, which for example may include energy

consumption or usage charges for task processing and commu-

nication. We observe that the precedence constraints and data

transfer requirement between tasks can drastically complicate

their scheduling decision [3], [4], [5], [7]. Furthermore, the

need to account for both the cost and the run-time of the

application adds to the challenge [1], [9], [18], [19], [20].

Prior studies have assumed simplified processor models to

facilitate tractable analysis, such as non-concurrent local and

remote processors [1], infinite-capacity local processors [9],

[18], [19], and negligible delay between local processors [21],

[20]. We use a more realistic processor model in this study.

Our problem can be shown to be NP-hard, and, as such, there

is no polynomial run-time guarantee for finding an optimal

solution.

The contributions of this work are as follows:

• We formulate a problem of cost minimization in schedul-

ing an application with dependent tasks and a comple-

tion deadline, over a generic cloud computing system

with heterogeneous processors and communication delay.

Since the problem is non-convex, we first relax its binary

constraints to obtain a convex problem and a lower bound

to the optimal objective of the original problem.

• We observe that a scheduling solution obtained by di-

rectly discretizing the binary-relaxed solution does not

provide satisfactory performance. Therefore, we propose

a new heuristic algorithm, termed Individual Time Allo-



cation with Greedy Scheduling (ITAGS), which utilizes

the binary-relaxed solution to allocate a completion dead-

line to each individual task and then greedily optimizes

the scheduling of each task subject to its time allowance.

• Through trace-based simulation with real-world applica-

tions from [22], as well as various randomly generated

task trees, we study the impact of the application dead-

line and other system settings on the performance of

ITAGS. We further compare ITAGS with the dynamic

programming approach from [9], [18], other alternatives

including the above discretization heuristic, and the cost

lower bound, demonstrating its superior effectiveness.

The rest of the paper is organized as follows. In Section

II, we present the related work. Section III describes the

system model and the problem formulation. In Section IV,

we present the motivation and details of ITAGS. Section V

presents the simulation results, and concluding remarks are

given in Section VI.

II. RELATED WORK

The offloading of dependent tasks is complicated by the

need to satisfy precedence constraints and data transfer re-

quirement. Earlier works on offloading dependent tasks of-

ten focus on a single performance metric, either energy or

makespan. In [3] and [4], the authors aim to identify the

task scheduling decision to reduce energy consumption. Both

assume that the tasks on a mobile device and the cloud do

not run simultaneously, which can be justified since no gain

on energy can be achieved by parallel execution [4]. However,

exploiting parallelism between the mobile device and the cloud

can greatly improve the makespan of the application. For ex-

ample, load-balancing heuristics [5] and genetic algorithms [7]

have been proposed for makespan reduction with dependent

tasks. However, in [5] the tasks dependency is assumed to be

sequential, while in [7] no data communication is considered

between tasks.

Cost minimization and application deadline are jointly con-

sidered in [1] and [9]. In [1], the authors aim to maximize

the energy savings at a mobile device with task offloading,

subject to an application deadline. Their formulation is based

on the simplifying assumption that tasks on the mobile device

and cloud cannot run simultaneously, and task computation

and data communication cannot occur simultaneously. In [9], a

dynamic programming algorithm is proposed for deterministic

and stochastic application deadlines. Both [1] and [9] assume

that the mobile device has infinite capacity and can execute

any number of tasks simultaneously without impacting the

processing time of each task. This assumption is unrealistic

since user devices are usually resource limited. In our work,

the computing system consists of finite-capacity devices. We

allow data communication and task execution to take place

simultaneously, as well as parallel execution between the

local device and the cloud. Additionally, [1] and [9] only

consider offloading from a mobile device to a remote cloud.

In contrast, our modeling of the processor network is general,

potentially consisting of a wide variety of mobile processors,

edge computers, cloudlets, and remote cloud.

The problem of offloading dependent tasks to multiple types

of processors have been considered in [18], [19], and [20].

In [18], a fully polynomial time approximation scheme is

proposed to minimize the overall latency under a resource

cost constraint while offloading dependent tasks to multiple

devices. However, the devices are again assumed to possess

infinite capacity in terms of the number of tasks that can be

processed simultaneously without reduction in the processing

speed for each task. The authors of [19] consider a similar

model of offloading to a cluster of mobile devices and pro-

pose generic task scheduling heuristics with the objective of

maximizing the overall useful computation by the cluster. In

[21], the problem of scheduling an application consisting of

dependent tasks is considered, and a heuristic algorithm is

suggested. However, the local processor cores are assumed to

exist on a single mobile device, and an objective of only energy

consumption by the mobile device is considered. Similarly,

in [20], we investigate the objective of cost minimization

subject to an application deadline, for heterogeneous local

and remote processors. However, the delay between the local

processors is assumed to be negligible. In this work, we

account for the delay between all processors in order to

arrive at a general model that encompasses scenarios such

as offloading to peer devices and cloudlets in addition to the

cloud. The local processors have finite capacity, and there are

time and cost associated with both task execution and data

communication between any two locations. This leads to a

unique problem formulation that has not been considered in

the existing literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Local Processors and Remote Cloud

We consider a system with a finite number of local pro-

cessors. These processors may be installed in mobile edge

computing hosts, cloudlet devices, or peer mobile devices.

These processors may have different speeds but are assumed

to be unary, i.e., each processor executes one task at a time,

while the other tasks assigned to the processor wait in a queue.

We emphasize that, with respect to the cost and delay in task

processing, this assumption is without loss of generality.1

We further assume a remote cloud center that provides an

essentially infinite number of processors, possibly through

leasing of virtual machines. Consequently, the remote cloud

can be viewed as an additional processor having infinite

capacity in terms of the number of tasks it can process

simultaneously. Let the set of all processors, including the

remote cloud, be P and its size be M . Let dij be the delay per

unit data transfer between processors i and j. For simplicity

of illustration, we assume dij = dji and dij = 0 if i = j. An

example of such a system is depicted in Figure 1.

1It is easy to see that there is no benefit in processor-sharing with respect
to the sum queueing-and-execution delay of the tasks.
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Fig. 1: Example network of local processors and cloud.

B. Task Dependency Graph

Consider a single application that must be completed before

a deadline L. The application is partitioned into tasks, whose

dependency is modeled as a directed acyclic graph (DAG)

G = 〈V, E〉 where V is the set of tasks and E is the set

of edges. The edge (i, k) on the graph specifies that there is

some required data transfer, eik, from task i to task k and

hence, k cannot start before i finishes. Furthermore, if they

are scheduled at different processors j and v respectively, the

communication delay is eikdjv and the communication cost is

ceikdjv , where c is the communication cost per unit time. It is

clear that the delay values are often smaller while offloading

to nearby local processors in comparison with the delay to

offload to the remote cloud.

If task i is executed on processor j, the execution time is tij
and the execution cost is pjtij , where pj is the processing price

per unit time on processor j. In practice, the processing times

and data transfer requirement may be obtained by applying

a program profiler as shown in experimental studies such as

MAUI [1] and Thinkair [2]. In this work, we proceed assuming

that such information in already given.

We assume that an application is initiated at a particular

local processor and must end at the same local processor.

To model this requirement, for a given DAG representing an

application, we insert two dummy nodes, i.e., tasks having zero

execution time and zero communication cost. One dummy task

is inserted at the start to trigger the application at the local

device, and another task is inserted at the very end to receive

all the results back at the local device. This insertion is without

loss of generality since it preserves the application. Hence, the

total number of tasks can be considered to be

N ′ = |V|+ 2. (1)

C. Problem Formulation

The task scheduling decision contains both the mapping

between tasks and processors and the order of the tasks

allocated to each processor. We define the scheduling decision

variables as follows:

xijr :=

{

1 if task i is on processor j in position r,

0 if otherwise,

for all i = 1, . . . N ′, j = 1, . . .M and r = 1, . . . N ′. Each task

is to be scheduled to exactly one of the existing positions on

the processors. Hence,

M
∑

j=1

N ′

∑

r=1

xijr = 1, ∀i = 1, . . . , N ′. (2)

Furthermore, each position on each processor can be assigned

to at most one task, which is given by

N ′

∑

i=1

xijr ≤ 1, ∀r = 1, . . . , N ′, j = 1, . . . ,M. (3)

The positions in each processor are filled by the tasks

sequentially, i.e., until one position on a processor is occupied,

tasks cannot be assigned to subsequent positions. This is

imposed by the following constraint:
N ′

∑

i=1

xijr −
N ′

∑

i=1

xij(r−1) ≤ 0,

∀r = 2, . . . , N ′, j = 1, . . . ,M.

(4)

The two dummy tasks inserted are required to be scheduled

on a local processor, so we have
N ′

∑

r=1

x11r = 1,

N ′

∑

r=1

xN ′1r = 1. (5)

Furthermore, our task scheduling decision is required to

meet the application deadline, which imposes constraints on

the finishing times of the tasks. Let Fi be the finish time of

task i, for i = 1, . . . N ′. Then

FN ′ ≤ L (6)

ensures that the last task, and consequently the overall appli-

cation, is completed by the deadline. In addition,

F1 = 0 (7)

sets the finish time of the first task to zero as it is a dummy

task and has zero execution time.

The relationship between the finish times of tasks on the

same local processor j and the decision variables is given by

Fi − Fk + C(2− xijr − xkj(r−1)) ≥ tij ,

∀i, k = 1, . . . N ′, r = 2, . . . , N ′, j = 1, . . . ,M, (8)

where we assign a large positive number to C. This ensures

that the finish time of a task on processor j is at least equal to

the sum of the finish time of the preceding task and the pro-

cessing time of the present task. Note that 2−xijr−xkj(r−1)

is zero if and only if tasks k and i are placed consecutively

on processor j.

Finally, since the tasks of the application are dependent, the

finish time of a task must be greater than that of each of its

predecessors by the amount of its predecessor’s execution time

and communication time from its predecessor. Thus, we have

Fi − Fk ≥
N ′

∑

r=1

M
∑

j=1

tijxijr +

M
∑

j=1

N ′

∑

t=1

N ′

∑

r=1

M
∑

v=1

ekidvjxijrxkvt,

∀i = 1, . . . N ′, (k, i) ∈ E . (9)

The first term on the right hand side of (9) is the total execution

time, and the second term is the total data communication time,



which occurs when task i is executed on processor j and its

predecessor k is executed on another processor v.

We define the total cost of application execution as the

sum of the total execution cost and the total communication

cost. Our goal is to identify the schedule that minimizes this

total cost, subject to the application deadline, L. This can be

formulated as an optimization problem as follows:

minimize
{xijr}

N ′

∑

r=1

M
∑

j=1

N ′

∑

i=1

pjtijxijr

+

N ′

∑

i=1

N ′

∑

k=1

M
∑

j=1

M
∑

v=1

N ′

∑

r=1

N ′

∑

t=1

ceikdjvxijrxkvt, (10)

subject to (2)− (9),

xijr ∈ {0, 1}, ∀i = 1, . . . N ′,

r = 1, . . . , N ′, j = 1, . . . ,M. (11)

This problem is NP-hard since it contains the Generalized

Assignment Problem (GAP) as a special case, and GAP is

NP-hard. Hence, we do not expect to find an optimal solution

in polynomial time. Consequently, we propose the ITAGS

algorithm and study its effectiveness in solving this problem.

IV. INDIVIDUAL TIME ALLOCATION WITH GREEDY

SCHEDULING (ITAGS)

The ITAGS algorithm is built on the concept of appropri-

ately allocating the application deadline among the individual

tasks. To provide a guideline on the suitable amount of individ-

ual time allocation, we first consider a binary-relaxed version

of the original problem in the next subsection. We follow that

by discussing how one might design, as an inferior alternative

to ITAGS, a feasible binary solution via direct discretization.

We then present the details of ITAGS, concluding with a

discussion of its feasibility and computational complexity.

A. Binary Relaxation and Individual Time Allowance

Optimization problem (10) is a mixed integer program, and

it is non-convex due to its non-convex objective and constraints

(9). However, we note that the communication delay and cost

terms in (9) and (10) can be modified as follows:

M
∑

j=1

N ′

∑

t=1

N ′

∑

r=1

M
∑

v=1

ekidvjxijrxkvt (12)

=

M
∑

j=1

M
∑

v=1

ekidvj





N ′

∑

r=1

xijr









N ′

∑

t=1

xkvt





=

M
∑

j=1

M
∑

v=1

ekidvj max









N ′

∑

r=1

xijr



+





N ′

∑

t=1

xkvt



− 1, 0



 ,

(13)

where the last equality holds because {xijr} are binary. This

converts the non-convex (12) to a convex form in (13).

Therefore, we perform the following two-step binary relax-

ation on the original problem:

• Replace the communication terms in (10) and (9) by (13);

• Replace the binary constraints in (11) with linear con-

straints by simply restrict the decision variables to be

non-negative.

This leads to the following convex problem over decision

variables {xijr}:

minimize
{xijr}

N ′

∑

r=1

M
∑

j=1

N ′

∑

i=1

pjtijxijr

+
M
∑

j=1

M
∑

v=1

ekidvj max









N ′

∑

r=1

xijr



+





N ′

∑

t=1

xkvt



− 1, 0





(14)

subject to (2)− (8),

Fi − Fk ≥
N ′

∑

r=1

M
∑

j=1

tijxijr

+

M
∑

j=1

M
∑

v=1

ekidvj max









N ′

∑

r=1

xijr



+





N ′

∑

t=1

xkvt



− 1, 0



 ,

∀i = 1, . . . N ′, (k, i) ∈ E . (15)

xijr ≥ 0, ∀i = 1, . . . N ′,

r = 1, . . . , N ′, j = 1, . . . ,M. (16)

An optimal solution to problem (14) can be efficiently com-

puted using convex programming solvers such as CVX. Note

that replacing (11) with (16) is equivalent to allowing a single

task to be distributed and executed partially across several

processors and positions. This is unrealistic, but solving this

relaxed problem is useful for two purposes. First, since the

relaxed problem has a larger feasible set, it serves as a lower

bound to the optimum of the original problem, which can be

used for numerical performance benchmarking. Second, the

relaxed solution can be leveraged to recover a binary solution

to the original problem. In particular, as a part of the ITAGS

algorithm, it supplies the individual time allowance for each

task as explained in Section IV-C.

B. Alternative Discretization Heuristic

Before presenting the details of ITAGS, we first consider a

conventional approach to recover a binary solution from the

above relaxed solution, by discretizing the fractional solution

xijr to binary values. We will show later that such an ap-

proach, although non-trivial, does not provide satisfactory per-

formance. Therefore, it will be used mainly for performance

benchmarking against ITAGS.

We note that discretizing the fractional xijr solutions is

challenging. Directly rounding them to binary values will vio-

late some constraints of the original problem. In particular, the

constraints on relative positions of tasks on a processor need

to be taken into consideration, to ensure that the scheduled

tasks are in proper order to satisfy the dependency require-

ment. Consequently, we consider the following algorithm, term

discretization heuristic, which 1) disregards the task positions

in the relaxed solution, 2) schedules each task to a processor



based on the fractional solution, and 3) calculates the resultant

task starting times to obtain their relative position values for

the final binary solution.

1) Reduction to Task-on-Processor: In this step, we assign

xijr values to their corresponding task-on-processor variables

yij as follows:

yij =
N ′

∑

r=1

xijr, ∀i = 1, . . . N ′, j = 1, . . . ,M. (17)

Thus, the yij variables contain just the fractional solution

for each task i on each processor j, which disregards the

position information in xijr. It should be noted that yij obey

the scheduling constraint:
∑M

j=1 yij = 1, ∀i = 1, . . . N ′.

2) Discretization: We next discretize the fractional yij
solutions to decide the processor assignment decision si for

every task i by picking the processor that has the maximum

yij value. The intuition behind this is that a yij value can be

viewed as the probability of scheduling task i on processor j,

and thus we take the decision with the highest probability:

si = argmax
j

yij , ∀i = 1, . . . N ′. (18)

Thus, the decision for every task i is

yij :=

{

1 if j = si,

0 if j 6= si.

3) Mapping to Positions: Although we have determined the

processor on which each task needs to be scheduled, we still

need to decide the positions of tasks on each processor, or

the starting times for each task. Towards this end, we sort the

tasks in the order of increasing Fi values from the solution to

the relaxed problem (14). This sorting will ensure that the

precedence constraints in (9) are obeyed between any two

consecutive tasks. Thus, scheduling the tasks to their assigned

processors in this order will give us their corresponding

positions and starting time values.

4) Feasibility Check: For the above task schedule, we check

if the total delay meets the application deadline L. If so,

the corresponding cost is the resulting solution, or else the

algorithm fails to produce a feasible schedule. In the latter

case, we will use the same fallback procedure as ITAGS

described below, to offload all tasks to the cloud.

C. ITAGS Algorithm

The task scheduling decision is required to meet the overall

application completion deadline. A purely greedy algorithm

might schedule each task to the processor where it achieves

the minimum cost such that the overall application deadline

is still met. However, such an algorithm prioritizes the tasks

that are scheduled in the beginning as these tasks would be

able to take away a larger chunk of the overall deadline

allowance and make cost-effective decisions for themselves.

On the other hand, the tasks that are scheduled later in the

greedy process would have a relatively smaller portion of

the overall deadline allowance available, resulting in possible

infeasibility and performance degradation.

Thus, the guiding principle behind the design of ITAGS is

that the overly greedy aspect of the above approach should

be countered, by assigning individual deadlines to the tasks

to ensure uniform priority for all tasks regardless of their

scheduling order. ITAGS consists of three major steps: 1) Set

individual time allowance for each task; 2) Schedule each

task to a processor based on a greedy approach subject to

its individual deadline; and 3) Check feasibility by testing if

the last task meets the overall application deadline.

1) Individual Time Allocation: In Step 1, we identify the

time allowance to be given to each task. This is achieved

by performing binary relaxation on the original problem as

detailed in Section IV-A, and solving the relaxed problem to

obtain the finish time Fi for each task i. These finish times

are treated as individual task deadlines in the next step.

2) Task Scheduling: Once the individual deadlines are set

in Step 1, Step 2 of ITAGS aims at assigning a processor si
for each task i. This task scheduling process has a principled

greedy nature as the algorithm takes one task at a time and

schedules it to the processor where the task 1) can complete

its execution before its individual deadline and 2) incurs

minimum additional cost.

ITAGS schedules the tasks starting from the top of the DAG

and works its way down to the bottom. Specifically, the tasks

are scheduled in the increasing order of individual deadline

Fi. We note that this ensures that a task is scheduled only

after its predecessors have been scheduled since (15) ensures

that the Fi value of task i exceeds that of its predecessors. The

topmost task is the first dummy task, and it is always scheduled

to the local processor where the application is initiated. Then,

as ITAGS moves down the list of unscheduled tasks, for each

task i, we decide its start time STi and processor si.

First, for each potential processor j, we compute the accu-

mulated execution delay Dij and cost Cij , due to the execution

of i on processor j, as follows:

Dij = max
(k,i)∈E

(STk + tksk + Tki) (19)

Cij = pjtij + c
∑

(k,i)∈E

Tki (20)

where Tki = dskjeki is the communication delay from

processor sk to processor j with respect to the data from task k

to task i. In (19), the sum inside max calculates the time when

a parent task k completes execution and its data transfer to task

i has arrived at processor j. Therefore, Dij is the earliest start

time of task i on processor j, by taking into account all parents

of task i. Note that if both tasks k and i are scheduled onto

the same processor, i.e., sk=j, then the communication delay

per unit data dskj = 0 and consequently Tki = 0.

However, knowing Dij is not sufficient to decide whether

task i should be place on processor j, since Dij does not

take into account the waiting time for a task on processor j

if the processor is local and is already executing another task.

Therefore, we keep a tab on the end of busy time on each

local processor j, denoted by SLj , and we update it every



time a task is scheduled onto the processor. In other words,

every time that some task k is assigned to processor j, we set

SLj = STk + tkj . (21)

This takes into account the amount of time that a task will

have to wait for processor j if it is assigned to this processor.

Note that for the remote cloud M , SLM is always zero as

we assume that the cloud has infinite capacity in terms of the

number of tasks it can process simultaneously, resulting in

zero waiting time for any task scheduled to the cloud.

As a result, the start time of a task i assigned to processor

j is the maximum of the accumulated execution delay Dij

and current end of busy time SLj . Thus, in order for task i to

complete execution by its individual deadline Fi, the following

condition must be satisfied:

max{Dij , SLj}+ tij ≤ Fi. (22)

We then choose processor si to schedule task i as follows:

si =

{

argminj∈Ji
Cij if Ji 6= ∅

argminj Dij if Ji = ∅
(23)

where Ji is the set of all processors for which (22) is satisfied

for task i. From (23) we see that if the individual deadline

Fi is too tight and cannot be met by any processor, ITAGS

gracefully falls back to a greedy-time algorithm, i.e., one that

tries to minimize makespan.

3) Feasibility Check: The process outlined in Step 2 is

repeated until the last dummy task. This dummy task is to be

scheduled to the local processor that initiated the application

in order to obtain the results at the initiating device. If this

last task does not meet the overall application deadline L,

infeasibility occurs and the algorithm fails to produce a feasi-

ble schedule. Alternatively, if every task has been scheduled

successfully to some processor, then a feasible decision is

obtained. These two possibilities result in termination of the

algorithm and constitutes Step 3.

The details of ITAGS are given in Algorithm 1.

D. Feasibility and Complexity Analysis

For our NP-hard optimization problem (10), neither the

discretization heuristic nor ITAGS provides a feasibility guar-

antee. Consequently, for practical cases, we may consider a

fallback option that simply offloads all tasks belonging to the

application to the remote cloud, if a feasible solution is not

found by the algorithm. Such a fallback option is applicable

under the assumption that the cloud has fast processors and

high-speed access, so that offloading to the cloud can meet the

overall application deadline, albeit with an added cost.

The computational complexity of the discretization heuris-

tic is O(2|V| + |E|). On the other hand, the computational

complexity for the ITAGS algorithm excluding the time to

compute the lower bound solution is O(|P|(|V|+ |E|)), which

is polynomial with respect to the size of the application.

The time to compute the lower bound is dependent on the

algorithms used by the software to arrive at the solution. As-

suming that a primal barrier algorithm and a υ-self concordant

Algorithm 1 ITAGS algorithm (after Step 1)

Input: DAG G = 〈V, E〉, P , L, and solution to problem (14).

Output: Scheduling decision variables {xijr}
SLj ← 0 for all j ∈ P
STi ← 0 for all i ∈ V
s1 = 1 {Schedule first dummy task to initiating processor}
while there exist tasks not scheduled do

Choose unscheduled task i with minimum Fi

for all j ∈ P do

Calculate Dij from (19)

Calculate Cij from (20)

end for

if i = N ′ then

sN ′ = 1 {Schedule last dummy task to initiating

processor}
else

Find si from (23)

end if

STi ← max{Disi , SLsi} {Setting actual starting time}
if si < M then

SLsi ← STi+ tisi {Updating the end of busy time for

local processors}
end if

end while

if DN ′sN′
> L then

No feasible decision produced.

return

end if

xijr ← 0 for all i, j and r

Sort the tasks scheduled to each single processor in increas-

ing order of STi and obtain their positions ri.

for all i ∈ V do

xisiri = 1
end for

barrier function with µ as the barrier parameter is used, the

number of iterations in the algorithm to arrive at the solution

is O(
√
υlog(υµ

ǫ
)) for a convex program [23].

V. TRACE-DRIVEN AND RANDOMIZED SIMULATIONS

We investigate the performance of ITAGS with extensive

simulation over multiple offloading scenarios and applications,

using both real-world application and randomly generated task

trees with practical parameter values.

A. Comparison Targets

We compare ITAGS with the following alternatives:

• Discretization heuristic in Section IV-B.

• Purely local: Scheduling all tasks on the local device, i.e.,

user’s own device/processor.

• Purely remote: Scheduling all tasks on the remote cloud.

• Greedy algorithm: Picking tasks starting from the top of

the DAG and scheduling each task onto the processor

where it has the least accumulated cost such that the

overall application deadline is still met.



• Kao’s dynamic programming: The dynamic programming

method proposed in [9], [18]. Since the local device in

[9], [18] can execute any number of tasks simultaneously

without increasing the required processing time of each

task, it is essentially assumed to have an infinite number

of identical unary-capacity processors. Furthermore, there

is zero delay between the local device and the remote

cloud. Thus, we study the performance of this dynamic

programming algorithm by allowing only a finite number

of identical local processors and practical delay between

these processors. In other words, we run their algorithm

to obtain a scheduling decision and apply this decision

to our system by queuing the tasks appropriately and

calculating the cost and deadline accounting for inter-

processor delay.

All of the above algorithms are provided with the same

fallback option as ITAGS. The lower bound solution, described

in Section IV-A, is also observed for benchmarking purposes.

It is calculated using the SDPT3 solver of CVX.

B. Trace-Driven Simulation Results

The delayed constrained cost minimization problem under

consideration and the ITAGS algorithm have general ap-

plication to different network topologies. Because of page

limitation, here we present only the following two scenarios

that often arise in practice:

• Scenario 1: identical local processors (including the ini-

tiating processor) and a remote cloud

• Scenario 2: three-tier architecture (peer device, cloudlet

and remote cloud) given in Figure 2.

Note that we apply Kao’s dynamic programming scheme only

to Scenario 1, as the system model considered in [9], [18]

cannot be extended to the three-tier system in Scenario 2. We

always label the local processor initiating the application as

processor 1.

We use the application DAG structures presented in [22]

for Gaussian elimination and the FFT algorithm, as well as

addition information provided in [22] with respect to the

computation and communication times, to test our proposed

algorithms for the aforementioned scenarios. We consider the

Gaussian elimination application with a matrix size of 5. We

generate random values for the processing time of a single

loop uniformly from the interval (0.5, 5) ms and allocate

processing times ti1 for each task i accordingly based on

the number of loops required for the execution of the task in

the Gaussian elimination algorithm. Similarly, the input/output

data is drawn uniformly from the interval (10, 100) KB. For

the FFT algorithm, we generate the processing times ti1 for

each task i uniformly in (0.5, 20) ms and input/output data

amount is drawn uniformly from the interval (10, 100) KB.

Further, we enforce that the computation times for the tasks

in each level are equal and the communication times between

the tasks at two particular levels are equal as given in [22].

The rest of the parameter values are kept the same as those

of the Gaussian elimination application.

802.11  ac

LTE-A

LTE-A

LTE-A

802.11 n

802.11 n

Peer device/

Local processor

Cloudlet

Remote cloud

Own Mobile 

Device/

Processor

Fig. 2: Simulation topology

We use energy consumption as the measurement of cost.

We set c = 0.935 watt [24]. The local processor initiating the

application has p1 = 0.944 watt [24], and a single additional

local processor, representing the peer device, has p2 = 1.5
watts and ti2 = 0.75ti1 for task i. For Scenario 1 specifically,

we consider 3 additional local processors which may all be

on the same initiating device or on different devices. We

assume that all these local processors have pj = 0.944 watt

and tij = ti1, for each task i and processor j = 2, 3, 4. For

Scenario 2, we consider a cloudlet consisting of two processors

p3 = p4 = 4 watts and ti3 = ti4 = 0.5ti1 for each task i. We

consider a more powerful and consequently more expensive

remote cloud, consisting of an infinite number of processors,

with p3 = 10 watts and tiM = 0.12ti1 for each task i.

For communication between processors, we consider practical

communication delay based on the links as given in Figure

2, with 6.15 ns/byte for 802.11ac, 17.77 ns/byte for 802.11n,

and 80 ns/byte for Long Term Evolution Advanced (LTE-A).

Figures 3 and 4 depict the cost versus application deadline

for the Gaussian elimination and FFT applications. We see

from these figures that ITAGS performs consistently better

than the other alternatives. From Figures 3a and 3b, we

see that the dynamic programming approach in [9], [18]

performs poorly when subjected to practical constraints such

as finite capacity processors and inter-processor delay. Naive

algorithms such as purely local, purely remote, and greedy do

not give satisfactory cost, particularly for non-trivial values

of application deadline. The discretization heuristic generally

performs better than the naive alternatives but is out-performed

by ITAGS. We also see that with increasing values of applica-

tion deadline, the cost decreases due to the cost-time tradeoff.

For large values of application deadline, the decisions tend

towards being purely local as the local device is the cheapest

and the slowest in our settings.

C. Simulation with Randomly Generated Task Trees

In order to further assess the behavior of ITAGS over richer

parameter settings, we conduct further simulation based on

randomly generated task trees in terms of the DAG struc-

ture, task execution times on the processors, and input/output

data between tasks. For each parameter setting, we observe

the average performance of various algorithms over multiple
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Fig. 3: Cost vs. application deadline for Gaussian elimination and FFT in Scenario 1
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Fig. 4: Cost vs. application deadline for Gaussian elimination and FFT in Scenario 2

realizations of the randomly generated task trees. From our

observations in the previous section, the discretization heuristic

mostly outperforms the other naive alternatives. Hence, we

present comparison only with the discretization heuristic, but

also use the lower bound solution for benchmarking.

In Figure 5, we study the effect of various parameters on

the performance of ITAGS. We again use energy consumption

as the measurement of cost. We consider a general topology

with local processors and a remote cloud. We assume the local

processor initiating the application, labeled as processor 1, has

p1 = 0.944 watt [24] and any additional local processors,

representing faster cloudlets or peer devices, has pj = 1.5
watts and tij = 0.75ti1 for each task i and processor

j = 2, . . . , (M − 1). We consider a more powerful and

consequently more expensive remote cloud with p3 = 10 watts

and tiM = 0.25ti1 for each task i. Here, ti1 = number of cycles

1.2GHz

where the processor speed is 1.2GHz and the number of

cycles is drawn from a uniform distribution in the interval

(100, 200) mega cycles. We set by default M = 3, N = 5,

and c = 0.935 watt [24] but vary each of them in different

plots. The input/output data amount is drawn uniformly from

the interval (1, 3) MB. The communication delay is taken as 10
ns/byte between the local processors and 50 ns/byte between

a local processor and the remote cloud.

We see that ITAGS substantially outperforms the discretiza-

TABLE I: Run-time (sec)

N Disc. Heu. ITAGS Disc. Heu. ITAGS

M=3 M=4

5 5.0612 5.0620 8.6019 8.6029

7 10.0160 10.0167 17.0474 17.0484

10 22.9529 22.9538 41.5981 41.5991

15 79.7471 79.7484 178.5292 178.5308

tion heuristic, and by inference the other alternatives, over a

wide range of parameter values in the number of processors,

the communication price, and the application size. Further-

more, as the application deadline increases, ITAGS converges

to the lower bound, and hence also converges to the optimum,

much faster than the alternatives.

D. Run-Time Comparison

In Table I, we show the run-time of ITAGS under the

settings of Figure 5a, averaged over all L values. We observe

that the run-time of ITAGS is nearly identical to that of the

discretization heuristic. Therefore, the substantial performance

benefit of ITAGS is achieved with negligible run-time penalty.

Furthermore, ITAGS scales well with respect to the application

size.
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VI. CONCLUSION

We study the scheduling of dependent tasks on heteroge-

neous processors with communication delay and an application

completion deadline. The proposed cost minimization formula-

tion is generic, allowing different cost structures and processor

topologies. To overcome the obstacles of task dependency and

deadline constraint, we have developed the ITAGS approach,

where the scheduling of each task is assisted by an individual

time allowance obtained from a binary-relaxed version of

the original optimization problem. Through trace-driven and

randomized simulations, we show that ITAGS substantially

outperforms a wide range of known algorithms. Furthermore,

as the deadline constraint is relaxed, it converges to optimality

much faster than other alternatives.
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