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Abstract—We consider online distributed optimization in a
networked system, where multiple devices assisted by a server
collaboratively minimize the accumulation of a sequence of global
loss functions that can vary over time. To reduce the amount
of communication, the devices send quantized and compressed
local decisions to the server, resulting in noisy global decisions.
Therefore, there exists a tradeoff between the optimization
performance and the communication overhead. Existing works
separately optimize computation and communication. In contrast,
we jointly consider computation and communication over time,
by encouraging temporal similarity in the decision sequence to
control the communication overhead. We propose an efficient
algorithm, termed Online Distributed Optimization with Tem-
poral Similarity (ODOTS), where the local decisions are both
computation- and communication-aware. Furthermore, ODOTS
uses a novel tunable virtual queue, which completely removes
the commonly assumed Slater’s condition through a modified
Lyapunov drift analysis. ODOTS delivers provable performance
bounds on both the optimization objective and constraint viola-
tion. As an example application, we apply ODOTS to enable
communication-efficient federated learning. Our experimental
results based on real-world image classification demonstrate that
ODOTS obtains higher classification accuracy and lower commu-
nication overhead compared with the current best alternatives for
both convex and non-convex loss functions.

I. INTRODUCTION

Distributed optimization has become an essential tool for
modern machine learning applications, which require ample
storage, computation, and data. It avoids overburdening any
single server and is robust to failures by coordinating multiple
local devices to process the machine learning tasks. It can
also alleviate privacy concerns by keeping the data local.
However, the migration of optimization from the central
server to local devices can incur a surge of communication
overhead between them [1], [2]. This calls for communication-
efficient distributed optimization [3]. Most existing works on
communication-efficient distributed learning consider compu-
tation and communication separately [4]-[17], i.e., commu-
nication designs such as quantization and compression come
after the machine-learning model parameters are already de-
termined, for example, by standard gradient descent. However,
since communication efficiency is strongly dependent on the
information being transmitted [18], one can further improve
the learning performance by proactively designing the model
parameters for both learning accuracy and communication

This work has been funded in part by Ericsson Canada and by
the Natural Sciences and Engineering Research Council (NSERC) of
Canada. The authors have provided public access to their code or data at
https://github.com/juncheng-wang/INFOCOM2023-ODOTS.

efficiency. In other words, joint consideration of computation
and communication would take into fuller account the mutual
impact between them.

Furthermore, most existing works focus on offline opti-
mization, which does not allow time-varying loss functions
or account for any long-term constraints. However, in many
practical machine learning applications, e.g., network traffic
classification [19], dynamic user profiling [20], and real-time
video analysis [21], random data samples arrive in a streaming
fashion, and consequently the loss functions vary over time.
These applications require online optimization, where we
compute a sequence of optimization decisions that are adaptive
to the unpredictable system dynamics over time [22], [23].

This motivates us to pose the following key question: How
to design an online distributed optimization algorithm that
jointly considers computation and communication over time?
In particular, we are interested in a design that takes into
account the interdependence of the optimization decisions over
time to reduce the communication overhead, while providing
performance guarantees on both the optimization and commu-
nication performance metrics.

To answer the above key question, we must address several
challenges: 1) Since the communication overhead depends
on the local decisions transmitted from the devices to the
server, when updating the local decisions, we must consider
both their optimization performance and communication cost.
2) Lossy quantization substantially reduces the communi-
cation overhead but at the same time generates errors in
the optimization decisions, and these errors propagate in the
iterative computation process over time. 3) Due to the tight
coupling between computation and communication, we must
properly balance their joint impact on both the optimization
performance and the convergence speed. 4) Both computation
and communication needs to be properly formulated and
designed to account for the unpredictable fluctuations in the
environment over time.

In this context, the contributions of this paper are as follows:
• We formulate an online distributed optimization problem

where the server computes a sequence of global opti-
mization decisions to minimize the accumulated global
loss, by aggregating the quantized and compressed local
decisions communicated from the devices. To reduce
the communication overhead, we encourage temporal
similarity in the computed sequence of local decisions
at the devices by enforcing an average long-term deci-
sion dis-similarity constraint. Thus, we consider both the



optimization and communication performance metrics. To
the best of our knowledge, this form of online distributed
optimization with joint computation and communication
consideration has not been studied in the literature.

• We propose an efficient algorithm to solve this problem,
termed Online Distributed Optimization with Temporal
Similarity (ODOTS). The local decisions yielded by
ODOTS are adaptive to the unpredictable fluctuations of
the loss functions while accounting for the decision dis-
similarity constraint violation to limit the communication
overhead. ODOTS achieves this via a novel tunable
virtual queue that requires a modified Lyapunov drift
analysis technique. Notably, this removes the requirement
for Slater’s condition, which is commonly assumed in ex-
isting virtual-queue-based online optimization algorithms.

• We analyze the tight coupling between computation
and communication, and their joint impact on the
optimization performance and convergence speed of
ODOTS. Our analysis shows that for all sequences
of time-varying weights on the devices, ODOTS
achieves O(max{T

1+μ
2 , T

3+ν
4 }) performance gap to

the centralized per-slot optimal decision sequence and
O(max{T

3+μ
4 , T

7+ν
8 }) violation of the long-term deci-

sion dis-similarity constraint over T time slots, where
μ represents the growth rate of the centralized per-slot
optimizer and the quantization error, and ν measures the
accumulated variation of the time-varying weights.

• As an example application, we apply ODOTS to enable
communication-efficient federated learning. We study the
impact of system parameters on the performance of
ODOTS, by experimenting with real-world image classifi-
cation datasets. Our experimental results demonstrate that
for both convex and non-convex loss functions, ODOTS
obtains higher test accuracy with lower communication
overhead, compared with the current best alternatives
under different scenarios.

II. RELATED WORK

A. Communication Efficiency in Distributed Optimization

Distributed optimization has been widely studied (see [24]
and references therein). For example, offline distributed dual
averaging and mirror descent algorithms were proposed in [25]
and [26]. These two algorithms were respectively extended in
[27] and [28] to the online setting. However, these works do
not explicitly consider the communication efficiency.

Distributed approximate Newton-typed algorithm and alter-
nating direction method of multipliers algorithm were pro-
posed in [29] and [30] to reduce the number of iterations
for efficient communication. Distributed gradient descent with
event-trigger communication was considered in [31]. A gen-
eral communication-efficient distributed dual coordinate ascent
framework was proposed in [32], which used local computa-
tion in a primal-dual setting for reduced communication. How-
ever, the above works all assume error-free communication,
and they ignore the opportunity to reduce the communication
overhead via information similarity.

B. Communication-Efficient Distributed Learning

The original federated averaging algorithm increases the
number of local updates to reduce the communication over-
head [4]. An adaptive model aggregation approach was pro-
posed in [5] under communication resource constraints. Quan-
tization schemes have been adopted in distributed learning to
reduce the number of transmitted bits by mapping the model
parameters to a small set of discrete values. For example, 1-
bit and multi-bit quantization methods were developed in [6]
and [7]. Some other variations include error compensation [8],
variance reduction [9], and ternary quantization [10]. Sparsi-
fication schemes select a portion of the model parameters for
communication. For example, threshold-based and top-k selec-
tion schemes were proposed in [11] and [12]. Quantization and
sparsification have also been applied simultaneously in [13].
However, the above works do not utilize the model similarity
for more efficient communication.

Model similarity was utilized in [14] to further reduce
the number of transmitted bits via conditional entropy cod-
ing. By using the autoencoder technique originally proposed
for image compression, model compression was trained in
[15]. Scalable sparsified model compression in combination
with error-correction techniques was proposed in [16]. An
innovation-based quantization scheme was proposed in [17].
However, the above works have the following fundamental
limitations: 1) Their separate consideration of model training
and compression overlooks the opportunity to select model
parameters that can improve the communication efficiency;
2) Their offline optimization does not fully account for the
unpredictable system variations during the learning process.

There is a recent branch of federated learning that uti-
lizes analog communication, where model aggregation can
be conducted over the air to reduce latency and communica-
tion overhead. For example, the aggregation error caused by
noisy channel and model quantization was minimized through
power allocation at each iteration in [33]. Online model
updating under long-term power constraints was considered in
[34]. However, over-the-air model aggregation requires strict
symbol-level synchronization among the devices and a large
number of subchannels to separately communicate each of the
model parameters. It is outside the scope of this work, which
is designed for the common digital communication system.

C. Online Convex Optimization and Lyapunov Optimization

Due to the dynamic nature of the iterative computation
and communication over time, a part of our solution resem-
bles online convex optimization (OCO) [23], especially dis-
tributed constrained OCO with consensus [35]-[39]. However,
the OCO framework mainly concerns delayed information
feedback with error-free communication, which is inherently
different from the joint online computation and communication
framework in this work.

Since our work considers online optimization with a long-
term constraint, it is also related to Lyapunov optimization
[40], which minimizes a weighted sum of the loss and con-
straint functions at each time. However, directly minimizing



the loss function can be difficult; e.g., in distributed learning, it
means directly solving for the optimal global model. Further-
more, ODOTS is a gradient-descent-typed algorithm, which
substantially differs from Lyapunov optimization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Online Distributed Optimization Objective

Consider a networked system consists of N local devices
and a server. The system operates in a time-slotted fashion
with time indexed by t. Let fn

t (x) : Rd → R be the local
loss function of device n at time t, which may change over
time. We are interested in an online distributed optimization
problem with a global loss function ft(x) : Rd → R at each
time t. It is defined as the weighted average of the local loss
functions {fn

t (x)}, given by

ft(x) ,
N∑

n=1

wn
t fn

t (x) (1)

where wn
t ≥ 0 is the weight of device n, and satisfies∑N

n=1 wn
t = 1. Note that we also allow wn

t to vary over time.
The goal of online distributed optimization is to compute at
the server a sequence of global decisions {xt} that minimizes
the accumulated global loss over a finite time horizon T , i.e.,

min
{xt}

T∑

t=1

ft(xt). (2)

As an example, in distributed learning, random training data
may arrive at the devices over time as a continuous stream. At
each time t, each device n collects its local dataset denoted by
Dn

t . The i-th data sample in Dn
t is represented by (un,i

t , vn,i
t ),

where un,i
t is a data feature vector and vn,i

t is its true label.
Let l(x;un,i

t , vn,i
t ) : Rd → R be a training loss function to

indicate how the learning model x ∈ Rd performs on each
data sample (un,i

t , vn,i
t ), e.g., it can be defined as the cross-

entropy loss for logistic regression (see Section VI-B). In this
case, the local loss function fn

t (x) is the averaged losses of
the data samples in Dn

t , given by

fn
t (x) =

1
|Dn

t |

|Dn
t |∑

i=1

l(x;un,i
t , vn,i

t ) (3)

where |Dn
t | is the cardinality of Dn

t . When we set the local
weight as wn

t = |Dn
t |

∑N
m=1 |Dm

t |
for each device n, the global loss

ft(x) in (1) is equivalent to the averaged losses incurred by the
global dataset

⋃N
n=1{D

n
t }. Note that due to the fluctuations

of the available computation resources, each device n may
process different amounts of data samples over time, leading
to a sequence of time-varying weights {wn

t }.

B. Local Decision Quantization and Compression

For distributed minimization of the accumulated global loss,
each device n generates a sequence of its local decisions {xn

t }.
The server aggregates the local decisions into a sequence of
global decisions. Transmitting the local decisions {xn

t } from
the N devices to the server can cause a large amount of

communication overhead. This can be challenging and time-
consuming, e.g., for neural network training in the wireless
environment, which can include millions of model parameters
in each xn

t . In practical systems, communicating the local
decisions from the devices to the server has been observed
to be a significant performance bottleneck [1]-[3].

For efficient communication, the local decisions are usually
quantized before transmission to the server. At each time t,
after obtaining the local decision xn

t , each device n generates
a quantized local decision x̂n

t , by projecting each element of
xn

t to its closest point in a uniformly distributed grid with
s = 2b quantization levels, where b is the quantization bit
length.1 In particular, the i-th element xn,i

t of xn
t is quantized

as x̂n,i
t , given by

x̂n,i
t = xmax ∙ sign(xn,i

t ) ∙ map(xn,i
t ; xmax, s) (4)

where xmax is the maximum decision value, sign(x) ∈ {−1, 1}
returns the sign of x with sign(0) = 1, and

map(x; xmax, s) =

⌊
|x|

xmax
∙ (s − 1) +

1
2

⌋

(5)

with bac being the floor function. Note that xmax can be easily
enforced to the decision parameters by setting a set of short-
term constraints on xn

t , given by

X , {x : −xmax1 � x � xmax1} (6)

with 1 being a vector of all 1’s.
Communicating the quantized local decisions requires ef-

ficient encoding to convert x̂n
t into bit streams. There are

two common encoding approaches to compress x̂n
t : 1) simple

encoding that does not utilize any correlation in the sequence
of decisions, such as Elias coding [41] and entropy coding
[42]; and 2) more complicated encoding approach that utilizes
the decision similarity, such as Wyner-Ziv coding [43] and
conditional entropy coding [44], [45]. For example, consider
the ideal conditional entropy coding. Let H(x̂n

t ) be the
marginal entropy of x̂n

t . It measures the number of bits to
communicate x̂n

t using entropy coding. Let H(x̂n
t |x̂

n
t−1) be

the conditional entropy of x̂n
t given x̂n

t−1, which represents the
number of bits to communicate x̂n

t using conditional entropy
coding, when x̂n

t−1 is known at the destination. Due to the
correlation between x̂n

t−1 and x̂n
t , their mutual information

H(x̂n
t )−H(x̂n

t |x̂
n
t−1) can be high. Therefore, conditional en-

tropy coding can substantially reduce the communication over-
head compared with independent entropy coding [44], [45].

The quantized and compressed local decisions are losslessly
conveyed to the server through standard channel coding tech-
niques. However, due to lossy quantization, the server can only
compute a noisy global decision x̂t+1, given by

x̂t+1 =
N∑

n=1

wn
t x̂n

t = xt+1 + nt+1 (7)

1Other techniques may be combined to further reduce the communication
overhead. For example, each device n can first perform sparsification and
then quantization to generate x̂n

t . It will cause additional errors to the global
decision x̂t+1 (7). However, these errors can be included in nt+1 and do not
impact our performance analysis later.



where xt+1 =
∑N

n=1 wn
t xn

t is the noiseless global decision
and nt+1 = x̂t+1 − xt+1 is the global quantization error. The
server then broadcasts x̂t+1 to all N devices, and each device
uses x̂t+1 and its local loss function at time t + 1 to compute
the next local decision xn

t+1.
For ease of exposition, we assume the server uses standard

channel coding techniques, such that x̂t+1 can be received
by all devices in an error-free fashion. However, lossy trans-
mission of x̂n

t+1 can be easily combined with our proposed
algorithm and its performance analysis.

C. ODOTS Problem Formulation

Our goal is to jointly consider the global loss minimization
and the local decision communication overhead over time.
However, it is challenging to directly model a temporal-
similarity encoding scheme during decision updating, since it
depends on the joint probability density of x̂n

t and x̂n
t−1. We

observe that for different encoding schemes, an importance
measure of the coding length is the difference between the
information sources, e.g., x̂n

t − x̂n
t−1, as it approximates the

amount of new information to be encoded. Further note that the
quantized local decision x̂n

t is generated only after computing
the local decision xn

t . That is to say we can only optimize xn
t

instead of x̂n
t during the decision updating process. Therefore,

we resort to limiting the amount of decision dis-similarity
‖xn

t − x̂n
t−1‖

2 to control the communication overhead, where
‖ ∙ ‖ represents the Euclidean norm.

We aim at computing a sequence of local decisions {xn
t ∈

X} to minimize the accumulated loss yielded by the noisy
global decision sequence {x̂t}, while ensuring that the average
long-term decision dis-similarity constraint is satisfied. This
leads to the following online distributed optimization problem:

P1 : min
{xn

t ∈X}

T∑

t=1

ft(x̂t)

s.t.
1
N

T∑

t=1

N∑

n=1

gn
t (xn

t ) ≤ 0 (8)

where x̂t is the noisy global decision in (7) and gn
t (x) is the

constraint function defined as

gn
t (x) , ‖x − x̂n

t−1‖
2 − ε (9)

with ε being the allowed average decision dis-similarity.
Note that P1 is an online optimization problem due to

the time-varying loss and constraint functions. In P1, the
global loss ft(x̂t) is determined by the quantized local de-
cisions {x̂n

t }. The decision dis-similarity constraint gn
t (xn

t )
also depends on the quantized local decision x̂n

t−1. Solving
P1 requires simultaneous consideration of computation and
communication over time.

Furthermore, compared with the standard error-free opti-
mization problem (2), the additional long-term constraint in
(8) of P1 requires a more complicated constrained online
distributed optimization algorithm, especially since the local
loss functions {fn

t (x)}, weights {wn
t }, and quantized deci-

sions {x̂n
t } all can vary over time. It is therefore difficult

to obtain the globally optimal solution to P1, which would
require centralized computation with a priori information of
{fn

t (x)}, {wn
t }, and {x̂n

t } over T time slots.
A commonly used centralized per-slot optimal solution

benchmark {xctr
t } for P1 is given by [39], [46]-[49]2

xctr
t ∈ arg min{ft(x)|gn

t (x) ≤ 0, ∀n}. (10)

Note that xctr
t is computed without considering any errors, and

it requires global information. Furthermore, as explained in
Section II-C, directly minimizing ft(x) as in (10) can be dif-
ficult, especially for machine learning tasks. In this work, we
aim to develop a constrained online distributed optimization
algorithm to compute an online distributed solution sequence
{xn

t } to P1 with sublinear performance gap to {xctr
t }, i.e.,∑T

t=1(ft(x̂t) − ft(xctr
t )) = o(T ), and sublinear constraint

violation, i.e., 1
N

∑T
t=1

∑N
n=1 gn

t (xn
t ) = o(T ). Sublinearity

in performance gap and constraint violation is important; it
implies that the online distributed solution approaches to {xctr

t }
in terms of its time-averaged performance and the long-term
constraint is asymptotically satisfied.

IV. ONLINE DISTRIBUTED OPTIMIZATION

WITH TEMPORAL SIMILARITY

In this section, we present details of the ODOTS algorithm
at the devices and the server. The local decisions yielded by
ODOTS are both computation- and communication-aware, and
are in closed forms that can be computed efficiently.

A. Tunable Virtual Queue

We first introduce a novel tunable virtual queue Qn
t at each

device n to account for the long-term constraint (8) in P1,
with the following updating rule:

Qn
t+1 =

[
(1 − γ2)Qn

t + γηgn
t (xn

t )
]
+

(11)

where γ ∈ (0, 1) is a tuning factor on the virtual queue,
η > 0 is a weighting factor on the constraint function, and
[a]+ = max{a, 0} is a projection operator.3 The role of Qn

t is
similar to a Lagrangian multiplier for P1 or a backlog queue
for the constraint violation. The concept of virtual queue was
also used in [40] and [46]-[49] for Lyapunov optimization and
centralized constrained OCO. However, unique to our virtual
queue updating rule (11), there is an additional −γ2Qn

t term
to prevent Qn

t+1 from becoming too large, and the constraint
violation gn

t (xn
t ) is scaled by γη to control how fast the virtual

queue varies over time.
This new tunable virtual queue updating rule (11) will

be shown later in Section V-B to provide a simple upper
bound on Qn

t , which does not require the Slater’s condition
that is commonly assumed for the virtual-queue-based online

2The solution benchmark used in [35]-[38] is fixed over time.
3As will be shown later in Section V-E, η as a constant does not change the

growth rate of the performance gap or the constraint violation. However, η
can be useful in some numerical experiments as a hyper parameter, especially
when the values of the loss and constraint functions differ too much.



Algorithm 1 ODOTS: Device n’s algorithm

1: Initialize x̂1 = 0 and Qn
1 = 0. For each t, do:

2: Update local decision xn
t by solving P2n via (12).

3: Update local virtual queue Qn
t+1 via (11).

4: Update quantized local decision x̂n
t via (4).

5: Transmit x̂n
t via conditional entropy coding.

optimization algorithms [40], [46]-[49].4 However, without
the Slater’s condition, we can no longer directly transfer
the virtual queue upper bound to the constraint violation
bound. To overcome this technical difficulty, as shown later
in Section V-B, we will bound the constraint violation using
a new modified Lyapunov drift analysis technique.

B. Decomposition of P1

We convert P1 into a set of local optimization problems,
one for each device n at each time t, given by

P2n : min
x∈X

〈∇fn
t (x̂t),x − x̂t〉 + α‖x − x̂t‖

2 + ηQn
t gn

t (x)

where α > 0 is a step-size parameter that controls the gradient
descent step and 〈a,b〉 represents the inner product of vectors
a and b. Note that P2n is a per-device per-slot optimization
problem using the current local loss function fn

t (x), tunable
virtual queue length Qn

t , and the previous quantized local deci-
sion x̂n

t−1. It is under short-term constraints only. Furthermore,
the local gradient ∇fn

t (x̂t) is evaluated using the noisy global
decision x̂t and the regularization ‖x− x̂t‖2 is also on x̂t to
enable local gradient descent based on x̂t. Compared with the
original P1, the long-term decision dis-similarity constraint has
been converted into controlling gn

t (xn
t ) to maintain the queue

stability as shown in the third term of the objective in P2n.
The intuition of solving P2n is to minimize an upper bound
on a modified drift plus penalty plus violation term (see (22)
in Section V-B) to trade off loss minimization and constraint
violation over time.

Note that the constraint function gn
t (x) is convex and the

feasible set X is affine with respect to (w.r.t.) x. Furthermore,
the first two terms in the objective of P2n are affine and convex
w.r.t. x, respectively. Therefore, P2n is a convex optimization
problem and therefore can be solved efficiently.

C. ODOTS Algorithm

In the following, we provide a closed-form solution to P2n.
It is easy to see that the gradient of the objective function of
P2n is

∇fn
t (x̂t) + 2α(x − x̂t) + 2ηQn

t (x − x̂n
t−1).

Then, the optimal solution to P2n can be obtained by setting
this gradient to zero and then projecting it onto X . The
resulting local decision update is in a closed form, given by

xn
t =
[ α

α + ηQn
t

(
x̂t +

ηQn
t

α
x̂n

t−1 −
1
2α

∇fn
t (x̂t)

)]xmax1

−xmax1
(12)

4The Slater’s condition precludes dealing with equality constraints and can
be restrictive to many practical applications. For example, it does not hold if
we set ε = 0 in the constraint function (9).

Algorithm 2 ODOTS: Server’s algorithm

1: Initialize and broadcast α, γ, and η. For each t, do:
2: Receive quantized local decisions {x̂n

t }.
3: Update noisy global decision x̂t+1 via (7).
4: Broadcast x̂t+1 to all devices.

where [a]cb = min{c, max{a,b}} is an entry-wise projection
operator.

Note that the local decision update (12) is scaled by a
factor α

α+ηQn
t

that depends on the ratio of the tunable virtual
queue length Qn

t and the gradient descent step size α. The
values of Qn

t and α tune the relative weights on the global
decision x̂t and the previous quantized local decision x̂n

t−1

on the new local decision update. When Qn
t is small, i.e.,

the scale on the decision update α
α+ηQn

t
is close to 1 and the

weight ηQn
t

α on x̂t−1 is close to 0, (12) becomes the standard
projected local gradient descent based on the noisy global
decision xn

t = [(x̂t− 1
2α∇fn

t (x̂t))]
xmax1
−xmax1

to minimize the loss.
Otherwise, when Qn

t is relatively large compared with α, i.e.,
α

α+ηQn
t

is close to 0 and ηQn
t

α is large, the gradient descent is
stalled and (12) is close to x̂n

t−1, which reduces the commu-
nication overhead due to the resulting high interdependence
between x̂n

t and x̂n
t−1. Therefore, the local decision update by

ODOTS is both computation- and communication aware, i.e.,
automatically balancing the improvement in optimization and
the cost in communication over time.

We summarize the devices’ algorithm and the server’s
algorithm in Algorithms 1 and 2. The choices of algorithm
parameters α, γ, and η will be discussed in Section V-E, after
we derive the bounds on the performance gap and constraint
violation for ODOTS.

V. PERFORMANCE BOUNDS OF ODOTS

In this section, we further show that ODOTS provides strong
performance guarantees in both the optimization objective and
the temporal decision dis-similarity constraint. In particular,
the unique design of ODOTS requires new analysis techniques
to account for the impact of the noisy decision update and the
tunable virtual queue.

A. Preliminaries

We make the following standard assumptions in the perfor-
mance analysis of ODOTS.

Assumption 1. The local loss function fn
t (x) is convex, i.e.,

fn
t (y) ≥ fn

t (x) + 〈∇fn
t (x),y − x〉, ∀x,y ∈ Rd, ∀n, ∀t. (13)

Assumption 2. The local loss function fn
t (x) has bounded

gradient ∇fn
t (x): ∃D > 0, s.t.,

‖fn
t (x)‖ ≤ D, ∀x ∈ Rd, ∀n, ∀t. (14)

Assumptions 1 and 2 are common in existing studies on online
distributed optimization. Nevertheless, later in Section VI-C,
we empirically show that ODOTS also works well for general
non-convex loss functions.



The following lemma shows that P1 satisfies the following
properties: 1) The feasible set X is bounded; 2) The quanti-
zation error nt is bounded; 3) The constraint function gn

t (x)
is bounded. The proof is omitted due to the page limit.

Lemma 1. Our formulated P1 satisfies the following:

‖x − y‖ ≤ R, ∀x,y ∈ X , (15)

‖nt‖ ≤ δ, ∀t, (16)

|gn
t (x)| ≤ G, ∀x ∈ X , ∀n, ∀t. (17)

where R=2
√

dxmax, δ= R
4(s−1) , and G=max{ε, R2+δ2−ε}.

B. Bounds on the Tunable Virtual Queue and Modified Lya-
punov Drift

We first provide an upper bound on the tunable virtual queue.

Lemma 2. The tunable virtual queue generated by ODOTS is
upper bounded as follows:

Qn
t ≤

ηG

γ
, ∀n, ∀t. (18)

Proof: We prove by induction. We have Qn
1 = 0 ≤ ηG

γ by

initialization. Suppose Qn
τ ≤ ηG

γ for some τ ≥ 1. We have

Qn
τ+1

(a)

≤ |(1−γ2)Qn
τ + γηgn

τ (xn
τ )|

(b)

≤ (1−γ2)Qn
τ + γη|gn

τ (xn
τ )|

(c)

≤ (1−γ2)
ηG

γ
+ γηG =

ηG

γ

where (a) follows directly from (11); (b) is because of Qn
t ≥

0, ∀t, γ ∈ (0, 1), and the triangle inequality; and (c) follows
from induction and the bound on gn

t (x) in (17).
Although our tunable virtual queue updating rule (11) yields

a simple upper bound on Qn
t in (18), unfortunately it also

breaks the key connection between the virtual queue bound
and the constraint violation bound used by [40], [46]-[49] in
their performance analysis. To proceed with our analysis, we
define a modified Lyapunov drift for each device n as

Θn
t =

1
2γ

(Qn
t+1 − U)2 −

1
2γ

(Qn
t − U)2. (19)

where U ≥ 0 is a virtual regularization factor on the quadratic
Lyapunov function. Note that U is introduced only to enable
our performance bound analysis, and ODOTS does not require
the value of U to run. Using the result in Lemma 2, we provide
an upper bound on Θn

t , which regains the connection between
the tunable virtual queue and the constraint violation.

Lemma 3. The modified Lyapunov drift is upper bounded by

Θn
t ≤ηQn

t gn
t (xn

t )−Uηgn
t (xn

t )+2γη2G2+
γ

2
U2, ∀n, ∀t. (20)

Proof: From the tunable virtual queue updating rule (11)
and the fact that |[a]+ − [b]+| ≤ |a − b|, we have

(Qn
t+1 − U)2 ≤

(
(1 − γ2)Qn

t + γηgn
t (xn

t ) − U
)2

= (Qn
t − U)2 + γ2

(
ηgn

t (xn
t ) − γQn

t

)2
+ 2γηQn

t gn
t (xn

t )

− 2γηUgn
t (xn

t ) − 2γ2(Qn
t − U)Qn

t . (21)

We now bound the terms on the right-hand side (RHS)
of (21). From the bound on gn

t (x) in (17) and the bound
on Qn

t in (18), we have |ηgn
t (xn

t ) − γQn
t | ≤ η|gn

t (xn
t )| +

γQn
t ≤ 2ηG. For the last term on the RHS of (21), we

have −2(Qn
t − U)Qn

t = U2 − (Qn
t )2 − (Qn

t − U)2 ≤ U2.
Substituting the above two inequalities into (21) and dividing
both sides of the resulting inequality by 2γ, we prove (20).

From the upper bound on Θn
t in (20) and noting that

2γη2G2 + γ
2 U2 in (20) is a constant, we can see that solving

P2n for each device n is equivalent to minimizing an upper
bound on the following modified drift plus penalty plus
violation term at each time t:

Θn
t + 〈∇fn

t (x̂t),x − x̂t)〉 + α‖x − x̂t‖
2 + Uηgn

t (x). (22)

This is similar to the Lyapunov optimization approach [40]
that minimizes a drift plus penalty term at each time. How-
ever, the penalty term in standard Lyapunov optimization is
the loss function itself. As explained in Section II-C, for
machine learning tasks in distributed learning, this means
finding the optimal model within a single time slot and
is impossible in general. Instead, we use the penalty term
〈∇fn

t (x̂t),x − x̂t)〉 + α‖x − x̂t‖2 to enable local gradient
descent for the global loss minimization. Note that when the
virtual penalty factor U on the quadratic Lyapunov function
is nonzero, (22) also includes a violation term Uηgn

t (x). This
is introduced to help bound the constraint violation, since the
upper bound (18) on our tunable virtual queue is not directly
transferable to the constraint violation bound anymore.

C. Bound on the Performance Gap

Using the results in Lemmas 1-3, the following lemma pro-
vides an upper bound on the weighted sum of the per-slot local
loss and constraint violation fn

t (x̂t)+Uηgn
t (xn

t ) by ODOTS.

Lemma 4. The weighted sum of the per-slot local loss and
constraint violation yielded by ODOTS is upper bounded by

fn
t (x̂t) + Uηgn

t (xn
t ) ≤ fn

t (xctr
t ) +

D2

4α
+ 2γη2G

2
+

γ

2
U2

− Θn
t +α

(
φt+ψn

t +‖nt‖
2+2R(‖nt‖ + πt)

)
, ∀n, ∀t (23)

where φt , ‖xctr
t − xt‖2 − ‖xctr

t+1 − xt+1‖2, ψn
t , ‖xctr

t −
xt+1‖2 − ‖xctr

t − xn
t ‖

2, and πt , ‖xctr
t − xctr

t+1‖.

Proof: We require the following lemma, which is copied
from Lemma 2.8 in [23].

Lemma 5. ([23, Lemma 2.8]) Let Z ∈ Rz be a nonempty
convex set. Let h(z) : Rz → R be a 2%-strongly convex func-
tion over Z w.r.t. any norm ‖ ∙ ‖′. Let w = arg minz∈Z h(z).
Then, for any u ∈ Z , we have h(w) ≤ h(u) − %‖u − w‖′2.

The objective function of P2n is 2α-strongly convex over
X w.r.t. ‖ ∙ ‖ due to the regularization term α‖x− x̂t‖2. Since
xn

t is the optimal solution to P2n, from Lemma 5, we have

〈∇fn
t (x̂t),x

n
t − x̂t)〉 + α‖xn

t − x̂t‖
2 + ηQn

t gn
t (xn

t )

≤ 〈∇fn
t (x̂t),x

ctr
t − x̂t)〉 + ηQn

t gn
t (xctr

t )

+ α(‖xctr
t − x̂t‖

2 − ‖xctr
t − xn

t ‖
2). (24)



We now bound the last term on the RHS of (24). We have

‖xctr
t − x̂t‖

2 − ‖xctr
t − xn

t ‖
2

= ‖xctr
t − xt + xt − x̂t‖

2 − ‖xctr
t − xctr

t+1 + xctr
t+1 − xt+1‖

2

+ (‖xctr
t − xt+1‖

2 − ‖xctr
t − xn

t ‖
2)

(a)

≤ ‖xctr
t − xt‖

2 + ‖xt − x̂t‖
2 + 2‖xctr

t − xt‖‖xt − x̂t‖

− ‖xctr
t − xctr

t+1‖
2 − ‖xctr

t+1 − xt+1‖
2

+ 2‖xctr
t+1 − xt+1‖‖x

ctr
t − xctr

t+1‖ + ψn
t

(b)

≤ (‖xctr
t − xt‖

2 − ‖xctr
t+1 − xt+1‖

2) + ‖nt‖
2

+ 2‖xctr
t − xt‖‖nt‖ + 2‖xctr

t+1 − xt+1‖πt + ψn
t

(c)

≤ φt + ‖nt‖
2 + 2R‖nt‖ + 2Rπt + ψn

t . (25)

where (a) follows from ‖a+b‖2 ≤ ‖a‖2 + ‖b‖2 +2‖a‖‖b‖,
−‖a + b‖2 ≤ −‖a‖2 − ‖b‖2 + 2‖a‖‖b‖, and the definition
of ψn

t ; (b) is because of the definitions of nt and πt; and (c)
follows from the bound of X in (15) and the definition of φt.

Substituting (25) into (24), and noting that Qn
t gn

t (xctr
t ) ≤ 0

and 〈∇fn
t (x̂t),xctr

t − x̂t〉 ≤ fn
t (xctr

t ) − fn
t (x̂t), we have

fn
t (x̂t) ≤ fn

t (xctr
t ) − 〈∇fn

t (x̂t),x
n
t − x̂t)〉 − α‖xn

t − x̂t‖
2

− ηQn
t gn

t (xn
t )+α

(
φt+ψn

t +‖nt‖
2+2R(‖nt‖+πt)

)
. (26)

Completing the square and noting that ∇fn
t (x) is bounded

in (14), we can show that −〈∇fn
t (x̂t),xn

t − x̂t)〉 − α‖xn
t −

x̂t‖2 ≤ D2

4α . Substituting (20) and the above inequality into
(26), we have (23).

Based on the result in Lemma 4, we provide an upper bound
on the performance gap to the centralized per-slot optimal
solution sequence {xctr

t } for ODOTS in the following theorem.

Theorem 6. The performance gap to {xctr
t } by DOTS is upper

bounded by

T∑

t=1

(ft(x̂t) − ft(x
ctr
t )) ≤

D2T

4α
+2γη2G2T +

η2G2ΩT

2γ3

+ α
(
R2+Λ2,T +2R(ΛT +ΠT )

)
(27)

where ΠT ,
∑T

t=1 πt, ΩT ,
∑T

t=1

∑N
n=1(w

n
t+1−wn

t ), ΛT ,∑T
t=1 ‖nt‖, and Λ2,T ,

∑T
t=1 ‖nt‖2.

Proof: Multiplying both sides of (23) by wn
t , setting U = 0,

and summing the resulting inequality over n and t, we have

T∑

t=1

(
ft(x̂t)−ft(x

ctr
t )
) (a)

≤
D2T

4α
+ 2γη2G2T −

T∑

t=1

N∑

n=1

wn
t Θn

t

+ α

T∑

t=1

(
φt+

N∑

n=1

wn
t ψn

t

)
+α
(
Λ2,T +2R(ΛT +ΠT )

)
(28)

where (a) follows from the definitions of Λ2,T , ΛT , and ΠT .
We now bound the terms on the RHS of (28). From Qn

1 = 0,
the bound on Qn

t in (18), and the definition of ΩT , we have

−
T∑

t=1

N∑

n=1

wn
t Θn

t =
1
2γ

T∑

t=1

N∑

n=1

(
wn

t (Qn
t )2 − wn

t+1(Q
n
t+1)

2
)

+
1
2γ

T∑

t=1

N∑

n=1

(wn
t+1 − wn

t )(Qn
t+1)

2 ≤
η2G2ΩT

2γ3
. (29)

From the separate convexity of the Euclidean norm, we have

N∑

n=1

wn
t ψn

t =
N∑

n=1

wn
t

(∥∥
∥

N∑

m=1

wm
t (xctr

t − xm
t )
∥
∥
∥

2

−‖xctr
t − xn

t ‖
2
)

≤
N∑

n=1

wn
t

( N∑

m=1

(
wm

t ‖xctr
t −xm

t ‖2
)
− ‖xctr

t −xn
t ‖

2
)

=0. (30)

Substituting (29) and (30) into (28), and noting that∑T
t=1 φt ≤ ‖xctr

1 − x1‖2 ≤ R2, we prove (27).

D. Bound on the Constraint Violation

We now proceed to provide an upper bound on the con-
straint violation for ODOTS. The virtual-queue-based online
optimization algorithms [40], [46]-[49] bound the constraint
violation via the virtual queue bound, which requires Slater’s
condition (or its relaxed version in [48]). Instead, we resort to
bound the constraint violation by properly setting the virtual
penalty factor U in the modified Lyapunov drift Θn

t (19).

Theorem 7. The constraint violation yielded by ODOTS is
upper bounded by

1
N

T∑

t=1

N∑

n=1

gn
t (xn

t ) ≤
(2γ2T +2

γη2

)1
2
(D2T

4α
+2γη2G2T

+D(R+δ)T +α
(
R2(1+ΞT )+Λ2,T +2R(ΛT +ΠT )

))12
(31)

where ΞT ,
∑T

t=1

∑N
n=1

(
wn

t − 1
N

)
.

Proof: Summing (23) over n and t, and dividing both sides
of the resulting inequality by N , we have

Uη

N

T∑

t=1

N∑

n=1

gn
t (xn

t ) ≤
1
N

T∑

t=1

N∑

n=1

(
fn

t (xctr
t ) − fn

t (x̂t)
)

+
D2T

4α
+2γη2G2T +

γT

2
U2 −

1
N

T∑

t=1

N∑

n=1

Θn
t

+ α

T∑

t=1

(
φt+

N∑

n=1

ψn
t

N

)
+α
(
Λ2,T +2R(ΛT +ΠT )

)
. (32)

We now bound the terms on the RHS of (32). From the
convexity of fn

t (x) in (13), and the bounds on ∇fn
t (x), X ,

‖nt‖ in (14), (15), (16), we have

fn
t (xctr

t ) − fn
t (x̂t) ≤ 〈∇fn

t (xctr
t ),xctr

t − xt − nt〉

≤ ‖∇fn
t (xctr

t )‖(‖xctr
t − xt‖ + ‖nt‖) ≤ D(R + δ). (33)

Similar to the proof of (30), we can show that

T∑

t=1

N∑

n=1

ψn
t

N
≤

T∑

t=1

N∑

n=1

(
wn

t −
1
N

)
‖xctr

t −xn
t ‖

2 ≤ R2ΞT . (34)

Also, noting that Qn
1 = 0 by initialization, we have

−
T∑

t=1

Θn
t =

1
2γ

T∑

t=1

(
(Qn

t −U)2−(Qn
t+1−U)2

)
≤

U2

2γ
. (35)



Substituting
∑T

t=1 φt ≤ R2 and (33)-(35) into (32) with
U = γη

γ2T+1 [ 1
N

∑T
t=1

∑N
n=1 gn

t (xn
t )]+, and noting that a ≤

[a]+, we have

γη2

2γ2T +2

[ 1
N

T∑

t=1

N∑

n=1

gn
t (xn

t )
]2

+
≤

D2T

4α
+2γη2G

2
T

+D(R+δ)T +α
(
R2(1 + ΞT )+Λ2,T +2R(ΛT +ΠT )

)
.

Taking the square root on both side of the above inequality,
we prove (31).

E. Discussion on the Performance Bounds

We now discuss the sufficient conditions for ODOTS to
yield sublinear performance gap and constraint violation. We
define parameters μ ∈ [0, 1] and ν ∈ [0, 1] to represent
the time variability of the underlying system, such that
max{ΠT , ΞT , Λ2,T , ΛT } = O(Tμ) and ΩT = O(T ν). Note
that ΞT and ΩT are the accumulated variation measures of
the time-varying weights {wn

t } on the devices (see Theo-
rems 6 and 7 for definition). An important special case is
wn

t = 1
N , ∀n, ∀t, i.e., the devices have time-invariant equal

weights. From Theorems 6 and 7, we can derive the follow-
ing corollary regarding the performance gap and constraint
violation bounds, depending on whether wn

t is time-varying.
The proof is omitted for brevity.

Corollary 8. Time-varying weight: Let α = T
1−μ

2 ,
γ = T

ν−1
4 , and η = O(1) in ODOTS. We have∑T

t=1(ft(x̂t) − ft(xctr
t )) = O(max{T

1+μ
2 , T

3+ν
4 }) and

1
N

∑T
t=1

∑N
n=1 gn

t (xn
t ) = O(max{T

3+μ
4 , T

7+ν
8 }).

Time-invariant equal weight: Suppose wn
t = 1

N , ∀n, ∀t such
that ΞT = 0 and ΩT = 0. Let α = T

1−μ
2 , γ = T− 1

2 , and
η = O(1) in ODOTS. We have

∑T
t=1(ft(x̂t) − ft(xctr

t )) =
O(T

1+μ
2 ) and 1

N

∑T
t=1

∑N
n=1 gn

t (xn
t ) = O(T

3
4 ).

In particular, if μ < 1 and ν < 1, i.e., the system variations
are sublinear in T , both the performance gap and constraint
violation are sublinear in T . We remark here that sublinear
system variations is a standard necessary (but generally insuf-
ficient) condition for sublinear performance bounds in online
optimization with unpredictable dynamics [39], [46]-[49].

VI. APPLICATION TO FEDERATED LEARNING

As an example to study the performance of ODOTS in
practical systems, we apply it to federated learning (FL) [4],
where multiple local devices cooperate to train a machine-
learning model with the assistance of a server. We present
numerical results to demonstrate the performance advantage of
ODOTS over state-of-the-art alternatives, based on real-world
image classification datasets for both convex and non-convex
loss functions.

A. Simulation Setup

We consider a FL system with N = 10 devices and a
server. We evaluate our results on the popular MNIST dataset
[50]. Its training dataset D consists of 6 × 104 data samples
and its test dataset E has 1 × 104 data samples. Each data

sample (u, v) represents an image with 28 × 28 pixels and
V = 10 possible labels, i.e., u ∈ R784 and v ∈ {1, . . . , V }.
We study the scenario where each local dataset Dn

t at device
n only contains data samples of label n, such that the data
is non-i.i.d. We assume device n randomly selects |Dn

t | = 20
data samples at each time t, such that the devices share the
same weight wn

t = 1
N . We have also conducted experiments

on time-varying weights and different datasets, which show a
similar trend as the simulation results in this paper. Due to
the page limit, we do not include them. This is to emulate the
online FL scenario where data samples arrive at the devices
over time.

We compare ODOTS with the following schemes.

• Error-free FL: We alternates local model update xn
t =

xt − 1
2α∇fn

t (xt) and global model update xt+1 =
∑N

n=1 wn
t xn

t at each time t. It represents the idealized
standard FL algorithm where the communication is error
free [4].

• Primal-dual GD: The primal-dual gradient descent (GD)
algorithm in [39] is the current best solution for dis-
tributed constrained online convex optimization with
consensus. We implement it to solve P1, except using
the same current information on the loss and constraint
functions as ODOTS.

• QFL-CE: We adopt the quantized federated learning
(QFL) scheme in [7] by perform local model update (i.e.,
(12) with Qn

t = 0) and quantization (i.e., (4)) at each
time t. We implement the same conditional entropy (CE)
coding as ODOTS for QFL.5 The server then updates
its noisy global model (i.e., (7)). This is a state-of-the-
art approach where model training and compression are
separately designed.

B. Convex Loss: Logistic Regression

We consider the cross-entropy loss for multinomial lo-
gistic regression, given by l(x;u, v) = −

∑V
j=1 1{v = j}

log exp(〈x[j],u〉)∑V
k=1 exp(〈x[k],u〉)

, where x = [x[1]T , . . . ,x[V ]T ]T with

x[j] ∈ R784 being the model for label j. The entire
model x is thus of dimension d = 7840. Our computa-
tion performance metrics are the time-averaged test accuracy

Ā(T )= 1
|E|T

∑T
t=1

∑|E|
i=11

{

argmaxj

{
exp(〈x̂t[j],u

i〉)∑V
k=1exp(〈x̂t[k],ui〉)

}

=vi

}

,

and the time-averaged training loss f̄(T ) = 1
T

∑T
t=1

∑N
n=1

wn
t

|Dn
t |

∑|Dn
t |

i=1 l(x̂t;u
n,i
t , vn,i

t ). Our communication performance
metrics are the total number of transmitted bits using the
conditional entropy coding B(T ) =

∑T
t=1

∑N
n=1 H(x̂n

t |x̂
n
t−1)

and the time-averaged decision dis-similarity ḡ(T ) =
1

TN

∑T
t=1

∑N
n=1 ‖x

n
t − x̂n

t−1‖
2.6

Fig. 1 shows Ā(T ), f̄(T ), B(T ), and ḡ(T ) versus T . We
set the decision dis-similarity limit ε = 1e−6. We set the
quantization bit length b = 5 for ODOTS and b = 4 for

5The Elias coding used in [7] does not use any model similarity, and thus
incurs more communication overhead compared with the CE coding.

6We use the histogram method to estimate the joint probability distribution
of x̂n

t and x̂n
t−1 and then compute the conditional entropy H(x̂n

t |x̂
n
t−1).
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Fig. 1: Test accuracy Ā(T ), training loss f̄(T ), transmitted
bits B(T ), and decision dis-similarity ḡ(T ) vs. time T .

Primal-dual GD and QFL-CE. We set the maximum decision
limit xmax = 1 × 10−3, step-size α = 1 × 105, tuning factor
γ = 0.5, and weighting factor η = 5×105 in ODOTS. We use
the same parameter values for the other schemes if any is used.
We note that despite the higher quantization bit length b in
ODOTS, due to its inherent communication efficiency, its total
number of transmitted bits remains lower than both Primal-
dual GD and QFL-CE. We observe that the test accuracy
yielded by ODOTS is over 25% higher than Primal-dual
GD. This is because Primal-dual GD performs dual gradient
descent to control the constraint violation, which can deterio-
rate its performance when the gradient directions of loss and
constraint functions deviate much from each other. Compared
with QFL-CE, ODOTS achieves higher test accuracy and
incurs abound 30% less communication overhead, thanks to
its joint consideration of computation and communication over
time. Also, we observe that ODOTS converges slightly slower
than QFL-CE at the early training stage, this is because the
value of the tunable virtual queue Qn

t in (11) is relatively large
at the beginning to reduce the transmitted bits.

In Fig. 2, we compare the final test accuracy A(T ) between
ODOTS and QFL-CE under different total transmitted bits
B(T ). We vary the quantization bit length b in QFL-CE to
trade off its computation and communication performance. For
ODOTS, we also vary ε for any given b value. The final test
accuracies yielded by QFL-CE and ODOTS both decrease as
b decreases due to the increased quantization errors. However,
for any operating point on the QFL-CE curve, we can always
find a combination of b and ε for ODOTS that achieves higher
test accuracy while incurring less communication overhead.
Furthermore, their difference in test accuracy grows dramati-
cally as the number of transmitted bits decreases. This suggests
that ODOTS is particularly advantageous in systems with a
tight communication budget.
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Fig. 2: Final test accuracy A(T ) vs. transmitted bits B(T ) for
convex logistic regression.
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Fig. 3: Final test accuracy A(T ) vs. transmitted bits B(T ) for
non-convex convolutional neural network training.

C. Non-Convex Loss: Convolutional Neural Network Training

The performance analysis of ODOTS in Section V requires
convex loss functions. To further evaluate the performance of
ODOTS for non-convex loss functions, we consider training a
convolutional neural network for MNIST classification, with
784 pixels as input, a convolutional layer with 10 filters each
of size 9 × 9, a ReLU hidden layer with 100 neurons, and
a softmax output layer with 10 neurons. The total number
of model parameters is d = 101, 810. We set xmax = 1,
α = 2, γ = 0.5, and η = 0.01 in ODOTS. Similar to
Fig. 2, Fig. 3 compares the performance of ODOTS and QFL-
CE in this scenario. Note that the number of transmitted bits
is substantially higher due to the larger number of model
parameters, compared with the convex logistic regression
scenario. We again observe similar trends as in Fig. 2, with
ODOTS substantially outperforming QFL-CE especially when
the number of transmitted bits is moderate to low.

VII. CONCLUSIONS

We consider online distributed optimization in networked
systems, under a long-term decision dis-similarity constraint to
control the communication overhead. We propose an efficient
ODOTS algorithm to balance the improvement in optimization
and the cost of communication over time via a novel tunable
virtual queue. Through a modified Lyapunov drift analysis,
we show that ODOTS achieves sublinear performance gap
from the centralized per-slot optimizer and sublinear constraint
violation simultaneously. When applying ODOTS to federated
learning, our experimental results demonstrate that ODOTS
can have substantial performance advantage over state-of-the-
art approaches, in terms of both improved test accuracy and
reduced communication overhead. ODOTS is advantageous
especially in systems with a tight communication budget.
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