
Communication Augmented Latest Possible
Scheduling for Cloud Computing with Delay

Constraint and Task Dependency
Sowndarya Sundar and Ben Liang

Department of Electrical and Computer Engineering
University of Toronto, Ontario, Canada
{ssundar, liang}@ece.utoronto.ca

Abstract—We consider a system consisting of a remote cloud
and a network of heterogeneous local processors. We aim to
identify the optimal scheduling decision for a mobile application
comprising of dependent tasks, such that the total cost is
minimized subject to an application deadline. The total cost
for application execution accounts for the execution of tasks
and the communication of input/output data between the mobile
device and the remote cloud. We propose the Communication
Augmented Latest Possible Scheduling (CALPS) algorithm to
obtain an approximate solution for this NP-hard problem in
polynomial time. Through simulation, we study the effect of com-
munication delay and application deadline on the application cost
and feasibility. Furthermore, we compare the CALPS algorithm
with the optimal solution, a lower bound, and an existing state-
of-the-art algorithm to demonstrate the advantage of CALPS in
performance and computational complexity.

I. INTRODUCTION

Cloud computing can augment the capabilities of resource-
poor mobile devices with the help of resourceful servers. It
allows reduction of energy consumption at the mobile device
by offloading resource-hungry applications to the cloud, which
helps improve the mobile device’s battery lifetime. Existing
research work has resulted in several computational offloading
systems such as energy-aware migration decisions at run-time
[1], multiple virtual machine images [2], or trusted cloudlets
[3].

There are several mobile applications that can benefit from
offloading and have been recognized in literature, such as
image and language processing [1], sharing GPS/Internet data
[4], and crowd computing [5]. Each mobile application can
be modelled as a number of tasks, and each task is executed
either locally at the mobile device or remotely at the cloud.
This results in greater flexibility on selectively offloading tasks
in finer granularity [6], [7]. By performing task scheduling, we
can identify the best possible offloading decision (e.g., one
that minimizes cost/energy) for the entire application, subject
to latency constraints on the execution of the application [1],
[6], [8].

This work has been funded in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada under grant STPGP 447497-13.

In this paper, we aim to determine the task scheduling
decision that minimizes the total cost of running a mobile
application subject to an overall application completion dead-
line. We consider a single mobile application consisting of
dependent tasks that have possible data communication and
precedence constraints. We wish to schedule these tasks onto a
network of a finite number of heterogeneous local processors
and a remote cloud. Each local processor can process just
one task at a time whereas the remote cloud is viewed as
an additional processor having infinite capacity, while there
exist a time and cost associated with task execution and data
communication.

The aforementioned objective of minimizing cost under an
application deadline helps us obtain a suitable trade-off rather
than aiming to minimize just the energy/cost [9] or just the
completion time [10]. Furthermore, the finite-capacity consid-
eration of the local processors on the mobile device renders
the problem more practical in comparison to the system model
examined in existing research work, in which mobile devices
are assumed to be capable of simultaneously processing any
number of tasks [1], [6], [8]. Nevertheless, in order to meet
the application deadline, the scheduling decision must take
into account the waiting times of the tasks, in addition to the
dependencies and possible communication delay between the
tasks. The decision-making process is thus complicated by the
aforementioned requirements.

We formulate the proposed problem as a constrained opti-
mization problem over binary scheduling decision variables.
As this problem is NP-hard in nature, we cannot guarantee an
optimal solution in polynomial time. Therefore, we propose a
novel and efficient heuristic algorithm, named Communication
Augmented Latest Possible Scheduling (CALPS). Through
simulation, we study the impact of the communication delay
and the application deadline on the cost and feasibility per-
formance. Furthermore, we relax the formulated optimization
problem to a convex form in order to obtain a lower bound
to the optimal solution. We compare the CALPS algorithm
with the optimal solution, the lower bound, and an existing
state-of-the-art algorithm that assumes an infinite number of
processors at the mobile device [8], demonstrating that CALPS

is computationally efficient and is effective in cost reduction
under a deadline constraint.

The rest of the paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and the problem formulation. In Section IV, we present
the two proposed solution approaches. Section V presents the
simulation results, and we conclude the paper in section VI.

II. RELATED WORK

A closely related problem is to achieve minimal mobile
energy consumption given a delay constraint. This has been
approached from different angles in the literature. In [11], the
energy-optimal execution policy for the whole application is
obtained by solving two constrained optimization problems,
i.e., how to optimally configure the clock frequency to com-
plete CPU cycles for mobile execution, and how to optimally
schedule the data transmission for cloud execution. In [6], this
problem is investigated under a Markovian stochastic channel
subject to a deadline. However, only a specific case of linear
task topology is considered, as opposed to generally dependent
tasks, and only an approximate solution is obtained to reduce
complexity.

There are several techniques that have been employed to
find the scheduling decision for a general application consist-
ing of dependent tasks, such as integer linear programming
[1] and graph partitioning [6]. However, [6] does not con-
sider an application deadline and [1] has high computational
complexity and does not provide a polynomial-time guarantee.
Additionally, both [1] and [6] assume that the mobile device
and the cloud cannot be active simultaneously, i.e, the mobile
device must be idle while the cloud is busy and vice-versa. In
[8], dynamic programming is utilized to identify this decision
but under an unrealistic assumption that the mobile device
can simultaneously execute any number of tasks without
impacting the processing time of each task. The problem in
[12] considers dependent tasks and heterogeneous processors,
but it does not take into account data communication between
tasks and it only addresses the problem of minimizing the
makespan of the application.

In this work, we address the problem of minimizing the
overall cost with an application deadline, for an application
consisting of dependent tasks and a network of heterogeneous
local processors and a remote cloud. To the best of our knowl-
edge, this problem has not been addressed in the literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Local Processors and the Cloud

We consider a system with M local processors and one
remote cloud. We denote the set of processors, including the
cloud, by P . The total number of processors is

M ′ = M + 1. (1)

We assume that the communication time between local proces-
sors is negligible. In many practical scenarios, these processors
belong to the same local device. However, our study is
more generally applicable, possibly to scenarios where nearby

TABLE I
NOTATIONS

Notation Description

tij execution time for task i on processor j

pj processing cost per unit time on processor j

pc communication cost per unit delay

eik amount of data to be communicated from task i to task k

d delay per unit data between local processors and cloud

L application deadline

devices pool their processors in a shared cloudlet [3]. Each
local processor is capable of executing only one task at a
time, while the remote cloud is capable of executing an infinite
number of tasks simultaneously.

B. Task Dependency Graph

Consider a single application that is partitioned into tasks
and must be completed before a deadline L. The dependencies
between the tasks is modeled as a Directed Acyclic Graph
(DAG) G = 〈V, E〉 where V is the set of tasks and E is
the set of edges. The edge (i, k) on the graph specifies that
there is some required data transfer, eik, from task i to task
k and hence, i cannot start before k finishes. Furthermore, if
they are scheduled at different locations (one locally and the
other at the cloud), the communication delay is eikd and the
communication cost is pceikd, where d is the delay per unit
data and pc is the communication cost per unit time. When
task i is executed on processor j, the execution time is tij , and
the execution cost is pjtij , where pj is the processing price
per unit time on processor j.

We assume that an application is initiated at a local pro-
cessor and must end at a local processor. To model this
requirement, for a given DAG representing an application, we
insert two dummy nodes, i.e., tasks having zero execution time
and zero communication cost. One dummy task is inserted
at the start to trigger the application at the local device and
another task is inserted at the very end to receive all the results
back at the local device. This insertion is without loss of
generality since it preserves the application. Hence, the total
number of tasks can be considered to be

N ′ = |V|+ 2. (2)

C. Task Scheduling

As every local processor can process only a single task at a
time, the task scheduling decision must also contain the order
of the tasks allocated to the processor, which should satisfy
the precedence constraints and the application deadline. We
define the scheduling decision variables as follows:

xijr :=

{
1 if task i is on processor j in position r,

0 if otherwise,
(3)

∀ i = 1, . . . N ′, j = 1, . . .M ′ and r = 1, . . . N ′.
Each task is to be scheduled to exactly one of the existing

positions on the processors. Hence,

M ′∑
j=1

N ′∑
r=1

xijr = 1, ∀i = 1, . . . , N ′. (4)

Furthermore, each position on each processor can be assigned
to atmost one task, which is given by

N ′∑
i=1

xijr ≤ 1, ∀r = 1, . . . , N ′, j = 1, . . . ,M ′. (5)

The positions in each processor are filled by the tasks sequen-
tially, i.e., until one position on a processor is occupied, tasks
cannot be assigned to subsequent positions. This is imposed
by the following constraint:

N ′∑
i=1

xijr −
N ′∑
i=1

xij(r−1) ≤ 0,

∀r = 2, . . . , N ′, j = 1, . . . ,M ′.

(6)

The two dummy tasks inserted are required to be scheduled
on a local processor, so we have

N ′∑
r=1

x11r = 1,

N ′∑
r=1

xN ′1r = 1. (7)

Furthermore, our task scheduling decision is required to
meet the application deadline, which imposes constraints on
the finishing times of the tasks. If ∀i = 1, . . . N ′, Fi is the
finish time of task i, then

FN ′ ≤ L (8)

ensures that the last dummy task, and consequently the overall
application, is completed by the deadline. In addition,

F1 = 0 (9)

sets the finish time of the first dummy task to zero as it has
zero execution time.

The relationship between the finish times of the tasks and
the decision variables is given by

Fi − Fk + C(2− xijr − xkj(r−1)) ≥ tij ,

∀i, k = 1, . . . N ′, r = 2, . . . , N ′, j = 1, . . . ,M
(10)

where we assign C to be a large positive number. This ensures
that the finish time of a task in sequence on a local processor
is at least equal to the sum of the finish time of the preceding
task and the processing time of the present task. Note that
2 − xijr − xkj(r−1) is zero if and only if tasks k and i are
placed consecutively on processor j.

The tasks of the application are dependent in nature. This
implies that the finish time of a task must be greater than
its predecessor by the amount of its execution time and
communication time from its predecessor. Thus, we have

Fi − Fk ≥
N ′∑
r=1

M ′∑
j=1

tijxijr

+ ekid

N ′∑
t=1

N ′∑
r=1

M∑
j=1

(xijrxkM ′t + xiM ′rxkjt),

∀i = 1, . . . N ′, (k, i) ∈ E .

(11)

The first term of (11) is the execution time, and the second
term is the communication time, which occurs when task i is
executed on one of the M local processors and k is executed
on the cloud or vice-versa.

D. Minimizing the Cost of Application Execution

The total cost of execution of the application is the sum of
the total execution cost and the total communication cost. Our
goal is to identify the schedule that minimizes this total cost,
subject to the deterministic application deadline, L. This can
be formulated as an optimization problem as follows:

minimize
{xijr}

N ′∑
r=1

M ′∑
j=1

N ′∑
i=1

pjtijxijr+

pcd

N ′∑
k=1

N ′∑
i=1

eki

 N ′∑
t=1

N ′∑
r=1

M∑
j=1

(xijrxkM ′t + xiM ′rxkjt)

 ,

(12)
subject to (4)− (11), (13)
xijr ∈ {0, 1}, i = 1, . . . N ′, r = 1, . . . , N ′, j = 1, . . . ,M ′.

(14)

Constraint (14) forces the decision variables to take on binary
values.

IV. PROPOSED APPROACHES

The proposed problem is NP-hard in nature as the Gener-
alized Assignment Problem (GAP), which is a special case
of this problem, is NP-hard. Hence, there is no guarantee
of obtaining the optimal solution in polynomial time. As
a reasonable alternative, we propose the CALPS algorithm,
which is an efficient heuristic. Furthermore, for benchmarking,
we also present a lower bound to the optimal solution by
continuity relaxation.

A. CALPS Algorithm

This algorithm consists of the following major steps.
• Step 1: Allocate deadlines to the individual tasks derived

from the overall application deadline.
• Step 2: Pick an unscheduled task i whose predecessors

have already been scheduled. Assign it to the processor
j wherein it completes its execution before its individual
deadline and produces minimum additional cost.

• Step 3: Repeat Step 2 untill all tasks are scheduled or
infeasibility is revealed.

Step 1 of this algorithm sets, for each task i, the values
LSTi and LFTi, which refer to the latest starting time and
the latest finish time of task i respectively. These values are
computed as follows:

LSTi :=

{
L if i = N ′

min
k:(i,k)∈E

(LSTk −min
j∈P

tij − wdeik) if otherwise,
(15)

LFTi :=

{
L if i = N ′

LSTi + min
j∈P

tij if otherwise,
(16)

where w is a parameter used to tune the importance of
communication delay for individual tasks.

Once the individual deadlines are set in Step 1, Step 2 of the
algorithm aims at scheduling a processor si to each task i. For
each task, the algorithm calculates its accumulated execution
delay dij and cost cij , due to the execution of i on processor
j, according to the following equations:

dij = max
(k,i)∈E

(STk + tksk + Dki) (17)

cij = pjtij + pc
∑

(k,i)∈E

Dki (18)

where

Dki :=

{
deki if task k and i are in different locations
0 if otherwise

and STk is the actual starting time of task k.
The accumulated delay in (17) does not take into account

the waiting time for a task on a processor if the processor is
already running another task. We, thus, keep a tab on the total
busy time or schedule length SLj for each processor j. Thus,
in order for a task to complete execution by its deadline, the
following condition must be satisfied:

max{dij ,SLj}+ tij ≤ LFTi. (19)
We then schedule task i to processor si as follows:

si = argmin
j
{cij given (19) is satisfied}. (20)

If there is no processor for which (19) is satisfied, infea-
sibility occurs and the algorithm fails to produce a schedule
corresponding to the given application deadline. Alternatively,
if all the tasks have been scheduled to some processor in
accordance with the deadlines, then a feasible decision is
obtained. These two possibilities result in termination of the
algorithm as indicated in Step 3.

An important component of the algorithm is the scaling
factor w which mainly allows us to consider possible commu-
nication delay between tasks by accounting for the weighted
delay while setting task deadlines. Additionally, this ensures
that the initial tasks do not take away a large chunk of the
overall deadline and helps maintain nearly uniform priority
for all tasks by countering the greedy aspect of the algorithm.

The details of CALPS are given in Algorithm 1.

B. Lower Bound to the Optimum

Since the proposed formulation in Section III is NP-hard, we
cannot obtain an optimal solution in reasonable time for large
systems in order to evaluate the performance of the CALPS
algorithm. Thus, it helps to obtain a lower bound to the optimal
solution.

The formulated optimization problem is a mixed integer
program and it is non-convex in nature due to (12), (11),
and (14). However, using the following continuity relaxation
technique, we can obtain a convex problem on variables
{xijr}:
• Replace the integer constraints in (14) with linear con-

straints and simply restrict the decision variables to be
positive.

Algorithm 1 CALPS algorithm
Input: DAG G = 〈V, E〉, P , L.
Output: Decision variables {xijr} defined in (3)

for all unmarked task i ∈ V whose predecessors are all
marked do

LSTi ← from (15)
LFTi ← from (16)
Mark task i

end for
SLj ← 0 for all j ∈ P
STi ← 0 for all i ∈ V
while there exist tasks not scheduled do

Choose unscheduled task i with minimum LSTi

for all j ∈ P do
Calculate dij from (17)
Calculate cij from (18)

end for
Find si from (20)
if si = ∅ then

No feasible decision produced.
return

end if
STi ← max{dij ,SLi} {Setting actual starting time}
if si ≤M then

SLsi ← STi + tisi {Updating schedule length for local
processors}

end if
xijr ← 0 for all i, j and r
Sort the tasks scheduled to each single processor in

increasing order of STi and obtain their positions ri.
for all i ∈ V do

xisiri = 1
end for

end while

• Replace the xijrxiM ′t and xiM ′rxijt terms in (12) and
(11) by max(xijr+xiM ′t-1,0) and max(xiM ′r + xijt-1,0)
respectively, which are equivalent for binary variables.

Thus, equations (11), (12), and (14) of the problem are
replaced with (22), (21), and (23) below, respectively. In
particular, replacing (14) with (23) implies that we now allow
a single task to be distributed and executed partially across
several processors and positions.

minimize
{xijr}

N ′∑
r=1

M ′∑
j=1

N ′∑
i=1

pjtijxijr

+ pcd

N ′∑
k=1

N ′∑
i=1

eki[

N ′∑
t=1

N ′∑
r=1

M∑
j=1

max(xijr + xiM ′t − 1, 0)

+ max(xiM ′r + xijt − 1, 0)].
(21)

Fi − Fk ≥
N ′∑
r=1

M ′∑
j=1

tijxijr

+ ekid

N ′∑
t=1

N ′∑
r=1

M∑
j=1

[max(xijr + xiM ′t − 1, 0)

+ max(xiM ′r + xijt − 1, 0)], ∀i = 1, . . . N ′, (k, i) ∈ E .
(22)

xijr ≥ 0, i = 1, . . . N ′, r = 1, . . . , N ′, j = 1, . . . ,M ′.
(23)

After continuity relaxation, one may discretize the resultant
fractional solution to obtain binary values for {xijr}. The
following procedure is based on the discretization approach
commonly adopted in the literature:

1) Pick an unscheduled task i whose predecessors are al-
ready scheduled.

2) Find [j′, r′] = argmaxxijr.
3) Check if this value of xij′r′ satisfies all the constraints.

a) If so, mark i as scheduled and go to Step 1.
b) If not, set xij′r′ = 0. If xijr = 0 ∀j and r, no feasible

solution is obtained, else go to Step 2.
However, our numerical experiments based on a wide range

of parameter settings indicate that this common relaxation-
discretization approach generally performs poorly. In fact, due
to the many restrictive constraints on {xijr}, including (5), (6),
and (10), this approach often cannot give a feasible binary
solution for {xijr}. Therefore, we conclude that continuity
relaxation for this problem only serves to provide a lower
bound to the optimal objective, for numerical performance
benchmarking.

V. SIMULATION RESULTS

In order to assess our proposed CALPS algorithm, we run
simulation for different scenarios and investigate its cost and
feasibility performance. In our simulation, the DAGs are ran-
domly generated in terms of the graph structure, task execution
times on the processors, and input/output data between tasks.
For each parameter setting, we run several of these randomly
generated iterations and plot the average. For each sample
point, we run the CALPS algorithm for 25 different values
of scaling factor w ranging from 0 to 6, and we pick the one
that gives the lowest cost.

Figure 1 depicts the cost performance of the CALPS algo-
rithm, the lower bound, and the optimal solution, for |V| = 5
and |E| = 8. We consider energy as the cost in our formulation,
so that the values that we use in our simulation correspond to
the practical values involved if the objective is to minimize the
total energy consumption. We assume two local processors,
with p1 = 0.944 watt [13], p2 = 0.4 watt, and ti2 = 2ti1
for all tasks i, and a remote cloud with p3 = 10 watt and
ti3 = 0.12ti1 for all tasks i. Here, ti1 = number of cycles

1.2GHz wherein
the processor speed is 1.2GHz and the number of cycles is
drawn from a uniform distribution in the interval (100, 200)
mega cycles. The DAG structures are randomly generated and
dummy nodes are inserted. The edge weights are then drawn

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Application Deadline

C
os

t

Lower bound:d=0
Lower bound:d=10
Lower bound:d=50
Optimal:d=0
Optimal:d=10
Optimal:d=50
CALPS:d=0
CALPS:d=10
CALPS:d=50

Fig. 1. Cost vs. application deadline for small applications.

uniformly from the interval (1, 2) MB and pc is taken to be
0.935 watt [13]. The optimal and lower bound solutions are
obtained using the CVX programming package, by employing
the Gurobi solver for the original optimization problem and
the SDPT3 solver for the lower-bound convex program. We
study the variation of cost with application deadline L, for
multiple values of communication delay, d.

We see that the cost performance of CALPS is very close to
that of the optimum for all the different values of application
deadline and communication delay. We see that it follows a
similar trend to the optimal and the lower bound, wherein
the cost decreases with increase in the application deadline.
Though not shown here, we further observe that CALPS
has 100% feasibility in this entire range with respect to the
optimum.

We are also interested in investigating the performance of
CALPS for larger systems. However, all of the existing work
in literature dealing with minimizing cost/energy under an
application deadline has assumed that the local device can
run any number of tasks simultaneously without affecting the
processing time of each task. In particular, the work in [8] uses
dynamic programming to obtain an optimal solution for this
problem. We study the performance of the algorithm proposed
in [8] when applied to our practical system, allowing only a
finite number of tasks to be run simultaneously. In other words,
we run their algorithm and obtain a scheduling decision and
use this decision in our system by queuing the tasks when their
number exceeds M . Figures 2 and 3 depict the feasibility and
cost, where the ‘Dyn Prog’ curves refer to the results obtained
from [8] by adopting the aforementioned technique. For fair
comparison, we only plot those cost points corresponding to
feasibility > 70%. We take |V| = 15, |E| = 25, d = 20 and
vary the number of local processors M . We assume in this
case that the local processors are identical with pj = 0.944
and tij is the same for task i on every processor j.

We see that the feasibility performance of the CALPS
algorithm is much better than the dynamic programming
algorithm. As the number of local processors increases, the
feasibility improves and is nearly the same (barring minor
quantization error) for M = 16, which is equivalent to the case
of infinite capacity for an application of size |V| = 15. Thus,
for large practical application sizes, we expect the dynamic

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

Application Deadline

F
ea

si
bi

lit
y

(%
)

Dyn Prog:M=4
Dyn Prog:M=8
Dyn Prog:M=16
CALPS:M=4
CALPS:M=8
CALPS:M=16

Fig. 2. Feasibility vs. application deadline for large applications.

0 0.5 1 1.5 2
0.045

0.05

0.055

0.06

0.065

0.07

0.075

Application Deadline

C
os

t

Dyn Prog:M=4
Dyn Prog:M=8
Dyn Prog:M=16
CALPS:M=4
CALPS:M=8
CALPS:M=16

Fig. 3. Cost vs. application deadline for large applications.

TABLE II
RUN-TIME COMPARISON

M Dyn Prog (K = 100) CALPS (|W| = 25)

4 0.3304 0.08

8 0.3258 0.095

16 0.3253 0.1775

programming algorithm to perform poorly when subjected to
our finite-capacity local device. Further, it runs in Θ(|V|DK)
time where D is the maximum in-degree of the task graph
and K is the number of quantisation levels. We take K = 100
and compare the run-time of this algorithm with CALPS,
O(|W|M(|V|+ |E|)) where |W| is the set of all scaling factor
w values used, in Table II. We observe that CALPS has much
lower complexity in typical scenarios.

The figures so far depict the performance after trying out
multiple values of w and picking the best one, namely, wopt,
for each application. We can improve the run-time of the
algorithm if we can pick a single suitable value of w. Toward
this goal, in Figure 4, we plot the average wopt over all
applications, for the simulation scenario of Figure 1. We
observe that wopt is sensitive to the application deadline. It
is an increasing function when the application deadline is
small to moderate, and then it decreases when the application
deadline is more relaxed.

VI. CONCLUSION

We have formulated an optimization problem to find the
minimum cost in scheduling dependent tasks under a deter-

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Application Deadline

A
ve

ra
ge

 w
op

t

d=0
d=10
d=20
d=50

Fig. 4. Average optimal scaling factor vs. application deadline.

ministic application deadline for a practical system model
consisting of finite-capacity local processors and the cloud.
We propose the CALPS algorithm to obtain a polynomial-time
solution for this NP-hard problem. Through simulation, we
compare its performance with the optimal solution and other
alternatives. We also use simulation to identify suitable scaling
factors to improve its run-time. Our proposed algorithm and
formulation can also be extended to the case of computational
offloading to peer devices in addition to the remote cloud.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), pp. 49–62, 2010.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, pp. 945–953, 2012.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[4] N. Vallina-Rodriguez and J. Crowcroft, “Erdos: achieving energy savings
in mobile os,” in Proc. ACM workshop on MobiArch, pp. 37–42, 2011.

[5] M. Satyanarayanan, “Mobile computing: the next decade,” ACM SIG-
MOBILE Mobile Computing and Communications Review, vol. 15, no. 2,
pp. 2–10, 2011.

[6] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in Proc. IEEE
INFOCOM, pp. 190–194, 2013.

[7] P. Balakrishnan and C.-K. Tham, “Energy-efficient mapping and
scheduling of task interaction graphs for code offloading in mobile cloud
computing,” in Proc. IEEE/ACM 6th International Conference on Utility
and Cloud Computing, pp. 34–41, 2013.

[8] B. Y.-H. Kao and B. Krishnamachari, “Optimizing mobile computational
offloading with delay constraints,” in Proc. Global Communication
Conference (Globecom), pp. 8–12, 2014.

[9] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” ACM SIGPLAN Notices, vol. 39, no. 6, pp. 119–130, 2004.

[10] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Proc. IEEE INFOCOM Workshop on Computer Communications, pp.
352–357, 2014.

[11] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, pp. 2716–2720, 2012.

[12] M.-A. Hassan Abdel-Jabbar, I. Kacem, and S. Martin, “Unrelated
parallel machines with precedence constraints: application to cloud com-
puting,” in Proc. IEEE International Conference on Cloud Networking
(CloudNet), pp. 438–442, 2014.

[13] B. Flipsen, J. Geraedts, A. Reinders, C. Bakker, I. Dafnomilis, and
A. Gudadhe, “Environmental sizing of smartphone batteries,” in Proc.
IEEE Electronics Goes Green (EGG), pp. 1–9, 2012.

