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Abstract—The concept of vehicle-to-grid (V2G) has gained
recent interest as more and more electric vehicles (EVs) are put to
use. In this paper, we consider a dynamic aggregator-EVs system,
where an aggregator centrally coordinates a large number of EVs
to perform regulation service. We propose a Welfare-Maximizing
Regulation Allocation (WMRA) algorithm for the aggregator
to fairly allocate the regulation amount among the EVs. The
algorithm operates in real time and does not require any prior
knowledge on the statistical information of the system. Compared
with previous works, WMRA accommodates a wide spectrum
of vital system characteristics, including limited EV battery
size, EV self charging/discharging, EV battery degradation cost,
and the cost of using external energy sources. Furthermore,
our simulation results indicate that WMRA can substantially
outperform a suboptimal greedy algorithm.

I. INTRODUCTION

Electrification of personal transportation is expected to
become prevalent in the near future. For example, millions of
electric vehicles (EVs) will be operated in the United States by
2015 [1]. Besides serving the purpose of transportation, EVs
can also be used as distributed electricity generation/storage
devices when plugged-in [2]. Hence, the concept of vehicle-
to-grid (V2G), referring to the integration of EVs with the
power grid, has received increasing attention [2]–[4].

Frequency regulation is a service to maintain the balance
between power generation and load demand, so as to stabilize
the frequency and voltage in a power grid. Traditionally, regu-
lation service is achieved by turning on or off fast responsive
generators and is the most expensive ancillary service [5].
Since EV power electronics and battery can well respond to the
regulation signal, it is possible for plugged-in EVs to provide
regulation service [6]. However, since the regulation service
is generally requested on the order of megawatts (MWs) and
the power capacity of an EV is typically 5-20kW, it is often
necessary for an aggregator to coordinate a large number of
EVs to provide regulation service [7].

There is a growing body of recent works on V2G regulation
service. Specific to the aggregator-EVs system, which focuses
on the interaction between the aggregator and EVs, centralized
regulation allocation is studied in [8]–[12], where the objective
is to maximize the profit of the aggregator or the EVs. For
example, in [8], a set of schemes based on different criteria of
fairness among EVs are provided. In [9], the regulation alloca-
tion problem is formulated as quadratic programming. In [10],
considering both regulation service and spinning reserves, the

underlying problem is formulated as linear programming. In
[11], the charging behavior of EVs is also considered, so that
the problem is then reduced to the control of the charging
sequence and charging rate of each EV, which is solved by
dynamic programming. In [12], a real-time regulation control
algorithm is proposed by formulating the problem as a Markov
decision process, with the action space consisting of charging,
discharging, and regulation. Finally, a distributed regulation
allocation system is proposed in [13] using game theory, and
a smart pricing policy is developed to incentivize EVs.

However, these earlier works have omitted to consider some
essential characteristics of the aggregator-EVs system. For
example, deterministic models are used in [8] and [11], which
ignore the uncertainty in the system. The dynamics of the
system is not incorporated in [13], nor the energy restrictions
of EV battery is considered. The self charging/discharging
activities in support of the EV own needs are omitted in [8] and
[13]. The cost of EV battery degradation is not considered in
[9], [11]–[13], and the cost of using external energy is ignored
in [8]–[12].

In this paper, we consider all of the above factors in a
more complete aggregator-EVs system model, to develop a
real-time algorithm for the aggregator to fairly allocate the
regulation amount among the EVs. We aim to maximize the
long-term social welfare of the aggregator-EVs system, under
the long-term constraint on the battery degradation cost of
each EV. We demonstrate how a solution to this maximization
can be formulated under a general Lyapunov optimization
framework [14] and propose dynamic allocation strategies
specific to the aggregator-EVs system. The resultant Welfare-
Maximizing Regulation Allocation (WMRA) algorithm does
not require any statistical information of the system, and is
shown to be asymptotically close to optimal as the EV battery
capacity increases. Finally, WMRA is compared with a greedy
algorithm through simulation and is shown to offer substantial
performance gains.

The rest of this paper is organized as follows. We describe
the system model and formulate the regulation allocation
problem in Section II. In Section III, we propose WMRA and
evaluate its performance theoretically. Simulation results are
exhibited in Section IV, and we conclude in Section V.

Notation: Denote [a]+ as max{a, 0}, [a, b]+ as max{a, b},
and [a, b]− as min{a, b}.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we propose a centralized dynamic
aggregator-EVs system and formulate the regulation allocation
problem mathematically.

A. Aggregator-EVs System and Regulation Service

Consider a time-slotted system, where regulation service
is performed over equal time intervals of length Δt. As
an example, in New England, New York, and Ontario, the
common Δt is 5 minutes. At the beginning of each time
slot t, the aggregator receives a random regulation signal Gt

from the power grid. If Gt > 0 then the aggregator needs
to perform regulation down service by absorbing Gt units of
energy from the power grid during time slot t, and if Gt < 0
then the aggregator needs to perform regulation up service by
contributing |Gt| units of energy to the power grid during time
slot t.

The aggregator coordinates N EVs to perform regulation
service and can communicate with all EVs bi-directionally.
Denote si,t, where 0 ≤ si,t ≤ si,cap, as the energy state of the
i-th EV at the beginning of time slot t, where si,cap represents
the battery capacity of the EV. Define st�[s1,t, · · · , sN,t].
Besides providing regulation service, the EVs can charge or
discharge according to their own needs independent of the
aggregator. Denote such self charging and discharging energy
amounts during time slot t as dic,t ≥ 0 and did,t ≥ 0,
respectively. Due to charging/discharging circuit limitation,
both quantities are upper bounded by di,max > 0. Assume that
self charging/discharging has higher priority than regulation
service and is performed at the beginning of each time slot.
Then, for the i-th EV, the available energy for regulation
service at time slot t is

mi,t�si,t + dic,t − did,t = si,t + ai,t,

where ai,t�dic,t − did,t. Define at�[a1,t, · · · , aN,t]. In ad-
dition, we assume that self charging and discharging cannot
happen at the same time, i.e., dic,tdid,t = 0, ∀i, t. To perform
regulation service, the EVs report their initial energy states,
and at each time slot report the self charging/discharging
amounts (if any) to the aggregator. Then, the aggregator allo-
cates the required regulation energy among all EVs. Denote
xid,t ≥ 0 as the amount of regulation down energy allocated
to the i-th EV and xiu,t ≥ 0 as the amount of regulation
up energy contributed by the i-th EV. Furthermore, assume
that xid,t and xiu,t are upper bounded by xi,max > 0.
Define xd,t�[x1d,t, · · · , xNd,t] and xu,t�[x1u,t, · · · , xNu,t].
The dynamics of the i-th EV energy state can be expressed as

si,t+1 = mi,t + 1d,txid,t − 1u,txiu,t = si,t + ai,t + bi,t, (1)

where 1d,t�
{
1, if Gt > 0

0, otherwise
, 1u,t�

{
1, if Gt < 0

0, otherwise
, and

bi,t�1d,txid,t−1u,txiu,t. Charging a battery to near its capac-
ity or discharging it to close to the zero energy state can sig-
nificantly reduce its lifetime [15]. Therefore, lower and upper
bounds for the battery energy state are usually imposed by its

manufacturer or user. Denote [si,min, si,max] as the preferred
energy range of the i-th EV, with 0 ≤ si,min < si,max ≤ si,cap.
By such constraints, at each time slot t, the available energy
for regulation and the energy state should satisfy

si,min ≤ mi,t ≤ si,max, and (2)
si,min ≤ si,t ≤ si,max, (3)

with (2) satisfied through the i-th EV self charging/discharging
activities. Hence, at each time slot t, the regulation amounts
xid,t and xiu,t are restricted as follows:

0 ≤ xid,t ≤ hid,t� [xi,max, si,max −mi,t]
−

0 ≤ xiu,t ≤ hiu,t� [xi,max,mi,t − si,min]
−
.

Assume that the initial energy state si,0 lies in [si,min, si,max].
For each EV, the regulation service gain comes at the

cost of battery degradation due to charging and discharging1.
Denote Ci(·) as the degradation cost function of the regulation
amount for the i-th EV, satisfying 0 ≤ Ci(·) ≤ ci,max

and Ci(0) = 0. Since faster charging or discharging, i.e.,
larger xid,t or xiu,t, has a more detrimental effect on the
battery life, we assume Ci(·) to be convex, continuous, and
non-decreasing. We further assume that each EV imposes an
upper limit on the average battery degradation, expressed by
limT→∞ 1

T

∑T−1
t=0 E [1d,tCi(xid,t) + 1u,tCi(xiu,t)] ≤ ci,up,

with the expectation taken over all randomness in the system.
Finally, the total regulation service provided by the EVs

may not be sufficient to serve the requested regulation amount.
For brevity, define xi,t�1d,txid,t + 1u,txiu,t as the regulation
amount allocated to the i-th EV at time slot t. Such insuffi-
ciency means that

∑N
i=1 xi,t < |Gt| for regulation down or up.

This could be due to, for example, a lack of participating EVs,
or high cost of battery degradation. The gap between

∑N
i=1 xi,t

and |Gt| represents an energy surplus in the case of regulation
down, or an energy deficit in the case of regulation up. Such
surplus or deficit must be cleared, or the regulation service
fails. Therefore, from time to time, the aggregator may need
to exploit more expensive external energy sources, such as
from the traditional regulation market. Denote the unit costs of
clearing energy surplus and energy deficit at time slot t as es,t
and ed,t, respectively, which are both restricted in [emin, emax].
Then the total cost for the aggregator at time slot t is

et�1d,tes,t

(
Gt −

N∑
i=1

xid,t

)
+ 1u,ted,t

(
|Gt| −

N∑
i=1

xiu,t

)
.

B. Fair Regulation Allocation through Welfare Maximization

The objective of the aggregator is to maximize the long-
term social welfare of the aggregator-EVs system, i.e., to
fairly allocate the regulation amount among the EVs, while
respecting battery degradation constraints of EVs and reducing
the need to utilize expensive external energy sources. To this

1We ignore the energy cost/benefit of regulation up/down service, since the
long-term average of the net regulation energy from the power grid is close
to zero [16].



3

end, we have the following stochastic optimization problem:
P1:

max
xd,t,xu,t

N∑
i=1

ωiU

(
lim

T→∞
1

T

T−1∑
t=0

E[xi,t]

)
− lim

T→∞
1

T

T−1∑
t=0

E[et]

s.t. 0 ≤ xid,t ≤ hid,t, ∀i, (4)
0 ≤ xiu,t ≤ hiu,t, ∀i, (5)
N∑
i=1

xid,t ≤ 1d,tGt, (6)

N∑
i=1

xiu,t ≤ 1u,t|Gt|, (7)

lim
T→∞

1

T

T−1∑
t=0

E [1d,tCi(xid,t) + 1u,tCi(xiu,t)] ≤ ci,up, ∀i,
(8)

where U(·) is a utility function assumed to be concave, con-
tinuous, and non-decreasing, with a domain bounded within
[0, xi,max], ∀i, and ωi > 0 is the normalized weight associated
with the i-th EV. Furthermore, to facilitate later analysis, we
assume that U(·) satisfies

U(x) ≤ U(0) + μx, ∀x ∈ [0, [x1,max, · · · , xN,max]
+
]
, (9)

where μ > 0. One sufficient condition for (9) to hold is
that U(·) has finite positive derivate at zero, such as U(x) =
log(1 + x). Denote the system state at time slot t as

At�(Gt, at, es,t, ed,t). (10)

The expectations in P1 are taken over At. From (6) and (7),
if Gt > 0 then xiu,t = 0, ∀i and if Gt < 0 then xid,t = 0, ∀i.

III. WELFARE-MAXIMIZING REGULATION ALLOCATION

To solve P1, we propose a real-time welfare-maximizing
regulation allocation (WMRA) algorithm by adopting a gen-
eral framework of Lyapunov optimization. We apply a se-
quence of two reformulations to the original problem, leading
to a solution that is asymptotically close to optimal as the EV
battery capacity increases.

A. Problem Transformation

The objective of P1 contains a function of long-term av-
erage, which complicates the problem. However, in general,
such a problem can be converted to a problem of maximizing
a long-term average of the function [14]. Specifically, we
transform P1 as follows.

We first introduce an auxiliary N -dimensional vector
zt�[z1,t, · · · , zN,t] with the constraints

0 ≤ zi,t ≤ xi,max, ∀i, and (11)

lim
T→∞

1

T

T−1∑
t=0

E[zi,t] = lim
T→∞

1

T

T−1∑
t=0

E[xi,t], ∀i. (12)

With the above constraints, the auxiliary variable zi,t and
the regulation allocation amount xi,t are within the same
range and have the same long-term average behavior. We now

consider the following problem.
P2:

max
xd,t,xu,t,zt

lim
T→∞

1

T

T−1∑
t=0

E

[(
N∑
i=1

ωiU(zi,t)

)
− et

]

s.t. (4), (5), (6), (7), (8), (11), and (12).

Compared with P1, P2 is optimized over xd,t, xu,t and zt,
with two more constraints (11) and (12). Note that P2 contains
no function of time average; instead, it maximizes a long-term
time average of the expected social welfare.

Denote (xopt
d,t,x

opt
u,t) as an optimal solution for P1, and

(x∗
d,t,x

∗
u,t, z

∗
t ) as an optimal solution for P2. Define

z̄opt
t �[z̄opt

1,t, · · · , z̄opt
N,t] with

z̄opt
i,t� lim

T→∞
1

T

T−1∑
t=0

E[xopt
i,t ], ∀i.

Denote the objective functions of P1 and P2 as f1(·) and f2(·),
respectively. The equivalence of P1 and P2 is stated below.

Lemma 1: P1 and P2 have the same optimal objec-
tive, i.e., f1(x

opt
d,t,x

opt
u,t) = f2(x

∗
d,t,x

∗
u,t, z

∗
t ). Furthermore,

(xopt
d,t,x

opt
u,t, z̄

opt
t ) is an optimal solution for P2, and (x∗

d,t,x
∗
u,t)

is an optimal solution for P1.
Proof: The proof follows the general framework given in

[14]. Details specific to our system are given in [17].
Lemma 1 indicates that the transformation from P1 to P2

results in no loss of optimality. Thus, in the following, we
focus on solving P2 instead.

B. Problem Relaxation

P2 is still a challenging problem since in constraints (4)
and (5), the regulation allocation amount of each EV depends
on its current available energy state mi,t, which couples with
all previous regulation allocation amounts and self charg-
ing/discharging amounts. To avoid such coupling, we relax
the constraints of xid,t and xiu,t and introduce P3 below.
P3:

max
xd,t,xu,t,zt

lim
T→∞

1

T

T−1∑
t=0

E

[(
N∑
i=1

ωiU(zi,t)

)
− et

]

s.t. 0 ≤ xid,t ≤ xi,max, ∀i, (13)
0 ≤ xiu,t ≤ xi,max, ∀i, (14)

lim
T→∞

1

T

T−1∑
t=0

E[ai,t + bi,t] = 0, ∀i, (15)

(6), (7), (8), (11), and (12).

In P3, we have replaced the constraints (4) and (5) in P2 with
(13), (14), and (15), so have avoided the coupling problem.
We now demonstrate that, any (xd,t,xu,t) that is feasible for
P2 is also feasible for P3. In other words, the feasible set
of optimization variables is enlarged from P2 to P3, and the
optimal value of P3 is greater than that of P2.
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Since (4) and (5) are equivalent to (3), (13), and (14), it
suffices to show (3) implies (15). Summing both sides of (1)
over t ∈ {0, 1, · · · , T − 1} and dividing them by T leads to

si,T
T

− si,0
T

=
1

T

T−1∑
t=0

[ai,t + bi,t]. (16)

Taking expectations over both sides of (16) and taking limit
gives

lim
T→∞

E[si,T ]

T
− lim

T→∞
E[si,0]

T
= lim

T→∞
1

T

T−1∑
t=0

E[ai,t + bi,t].

Since si,T and si,0 are always bounded based on (3), the left
hand side equals zero, which leads to (15).

The relaxed problem P3 allows us to apply Lyapunov op-
timization to design a real-time algorithm for solving welfare
maximization. We will show later that in fact our developed
solution also satisfies (4) and (5), thus providing an optimal
solution for P2 and the original problem P1. This relaxation
technique to accommodate the type of time-coupled action
constraints such as (4) and (5) is first introduced in [18] for
a power-cost minimization problem in data centers equipped
with stored energy. Unlike in [18], the structure of our problem
is more complicated, with a nonlinear objective which allows
both positive and negative values for the energy requirement
Gt. Thus, the algorithm design is more involved to ensure that
the original constraints in P2 are satisfied.

C. WMRA Algorithm

Define three virtual queues for each EV with the associated
queue backlogs Hi,t, Ji,t, and Ki,t evolving as follows:

Ji,t+1 = [Ji,t + 1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up]
+, ∀i,

(17)
Hi,t+1 = Hi,t + zi,t − xi,t, ∀i, (18)
Ki,t+1 = Ki,t + ai,t + bi,t, ∀i. (19)

Define Ht�[H1,t, · · · , HN,t], Jt�[J1,t, · · · , JN,t], Kt�[K1,t,
· · · ,KN,t], and Θt�[Ht,Jt,Kt]. Initialize H0 = J0 = 0.
Note that the queue backlog Ki,t and the energy state si,t
have the same evolutionary behavior. We relate them as

Ki,t = si,t − ci, (20)

where the constant ci�si,min + 2xi,max + di,max + V (ωiμ +
emax) with V ∈ [0, Vmax] and

Vmax� min
1≤i≤N

{si,max − si,min − 4xi,max − di,max

2(ωiμ+ emax)

}
. (21)

Note that xi,max and di,max are generally much smaller than
the energy capacity. For example, for Tesla Model S, the
energy capacity is 40kWh and xi,max = di,max = 0.83kWh
if the maximum charging rate is applied and the regulation
duration is 5 minutes. Therefore, generally we always have
Vmax > 0. The reason why ci is defined in such a specific
form will be clear later.

From (17), Ji,t is non-negative, and it will increase (resp.
decrease) if the current degradation cost is above (resp. below)

the upper bound. From (18), Hi,t can be positive or negative,
and it will increase (resp. decrease) if zi,t is larger (resp.
smaller) than xi,t. The fluctuation of Ki,t can be explained
similarly as Hi,t. By introducing the virtual queues, the
constraints (8), (12), and (15) hold if the queues Ji,t, Hi,t,
and Ki,t are mean rate stable, respectively [14].

Define the Lyapunov function L(Θt)�1
2

∑N
i=1(H

2
i,t +

J2
i,t + K2

i,t), and the associated Lyapunov drift as
Δ(Θt)�E [L(Θt+1)− L(Θt)|Θt]. We have the following:

Lemma 2: The Lyapunov drift Δ(Θt) is upper-bounded as

Δ(Θt) ≤ B +

N∑
i=1

Hi,tE[zi,t − xi,t|Θt] +

N∑
i=1

Ki,tE[ai,t + bi,t

|Θt] +

N∑
i=1

Ji,tE [1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up|Θt] ,

with B� 1
2

∑N
i=1

[
x2
i,max+(di,max+xi,max)

2 +[c2i,up, (ci,max−
ci,up)

2]+
]
.

Proof: See technical report [17].
Express the drift-plus-penalty function as Δ(Θt) +

V E

[
et −

∑N
i=1 ωiU(zi,t)|Θt

]
. From Lemma 2, it is upper

bounded as

Δ(Θt) + V E

[
et −

N∑
i=1

ωiU(zi,t)|Θt

]

≤ B + V E

[
et −

N∑
i=1

ωiU(zi,t)
∣∣∣Θt

]

+

N∑
i=1

Hi,tE[zi,t − xi,t|Θt] +

N∑
i=1

Ki,tE[ai,t + bi,t|Θt]

+

N∑
i=1

Ji,tE [1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up|Θt] ,

(22)

The proposed WMRA algorithm minimizes the right-hand-
side of (22) at each time slot. This is equivalent to solving
the following decoupled sub-problems with respect to zt, xd,t

and xu,t, respectively. Specifically, solve (a) with respect to
zi,t, ∀i:

(a): min
zi,t

Hi,tzi,t − ωiV U(zi,t)

s.t. 0 ≤ zi,t ≤ xi,max.

For Gt > 0, solve

(b1): min
xd,t

V es,t

(
Gt −

N∑
i=1

xid,t

)
−

N∑
i=1

Hi,txid,t

+

N∑
i=1

Ji,tCi(xid,t) +

N∑
i=1

Ki,t(ai,t + xid,t)

s.t. 0 ≤ xid,t ≤ xi,max,

N∑
i=1

xid,t ≤ Gt.
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Algorithm 1 Welfare-Maximizing Regulation Allocation
(WMRA) Algorithm.

1: The aggregator initializes the virtual queues as Ji,0 =
Hi,0 = 0, and Ki,0 = si,0 − si,min − 2xi,max − di,max −
V (ωiμ+ emax), ∀i.

2: At the beginning of each time slot t, perform the following
steps sequentially.
(2a) Each EV reports its self charging/discharging be-

havior and the associated amount (if any) to the
aggregator.

(2b) The aggregator observes Gt, es,t, ed,t, Jt, Ht, and
Kt.

(2c) The aggregator performs the following tasks: Solve
(a) and record an optimal solution z̃t. If Gt > 0,
solve (b1) and record an optimal solution x̃d,t. If
Gt < 0, solve (b2) and record an optimal solution
x̃u,t. Allocate the regulation amounts based on x̃d,t

and x̃u,t. If
∑N

i=1 x̃id,t < Gt or
∑N

i=1 x̃iu,t <
|Gt|, then clear the imbalance using external energy
sources.

(2d) Update the virtual queues Ji,t, Hi,t, and Ki,t, ∀i,
based on (17), (18), and (19), respectively.

For Gt < 0, solve

(b2): min
xu,t

V ed,t

(
|Gt| −

N∑
i=1

xiu,t

)
−

N∑
i=1

Hi,txiu,t

+
N∑
i=1

Ji,tCi(xiu,t) +
N∑
i=1

Ki,t(ai,t − xiu,t)

s.t. 0 ≤ xiu,t ≤ xi,max,

N∑
i=1

xiu,t ≤ |Gt|.

Note that (a), (b1), and (b2) are all convex problems, so
they can be efficiently solved using standard methods such as
the interior point method and the Lagrange dual method. We
summarize WMRA in Algorithm 1. From Steps (2c) and (2d),
the solutions of (a) and (b1) (or (b2)) affect each other over
multiple time slots through the update of Hi,t, ∀i. Note that,
to perform WMRA, no statistical information of the system is
needed, which makes it easy to implement.

D. Performance Analysis

Denote the allocated regulation amounts under WMRA as
x̃d,t�[x̃1d,t, · · · , x̃Nd,t] and x̃u,t�[x̃1u,t, · · · , x̃Nu,t]. In the
following lemma, we characterize sufficient conditions under
which the unique optimal solution of xid,t and xiu,t is zero.

Lemma 3: Under the WMRA algorithm, we have

1) for Gt > 0, if Ki,t > xi,max + V (ωiμ + emax) then
x̃id,t = 0; and

2) for Gt < 0, if Ki,t < −xi,max − V (ωiμ + emax) then
x̃iu,t = 0.
Proof: See technical report [17].

Using Lemma 3, we can prove that queue backlog Ki,t is
lower and upper bounded.

Lemma 4: Under the WMRA algorithm, queue backlog
Ki,t associated with the i-th EV is bounded by si,min − ci ≤
Ki,t ≤ si,max − ci.

Proof: See technical report [17].
Since Ki,t�si,t − ci, from Lemma 4 there is si,min ≤

si,t ≤ si,max, demonstrating that under WMRA, the energy
state is bounded within the preferred range for each EV. In
the following theorem, we characterize the performance of
WMRA with respect to our original problem P1.

Theorem 1: Given that the system state At in (10) is i.i.d.
over time slots, we have

1) (x̃d,t, x̃u,t) is feasible for P1.
2) f1(x̃d,t, x̃u,t) ≥ f1(x

opt
d,t,x

opt
u,t)− B

V ,

where B� 1
2

∑N
i=1

[
x2
i,max + (di,max + xi,max)

2

+[c2i,up, (ci,max − ci,up)
2]+
]

and V ∈ [0, Vmax].

Proof: See technical report [17].
Remarks: Theorem 1 indicates that the welfare performance
of WMRA is away from the optimum by O(1/V ). Hence, the
larger V , the better the performance of WMRA. However, in
practical systems, due to the boundedness condition of EVs’
battery capacities, V cannot be arbitrarily large and is upper
bounded by Vmax. Note that Vmax increases with the smallest
span of the EVs’ preferred ranges, i.e., min1≤i≤N{si,max −
si,min}. Therefore, roughly speaking, the performance gap
between WMRA and the optimum decreases as the smallest
battery capacity increases; mathematically, if the EVs’ battery
capacities go to infinity, WMRA would achieve exactly the
optimum.

IV. SIMULATION RESULTS

Although WMRA is shown to be asymptotically optimal
in the previous section, we are further interested in its per-
formance in example numerical settings. Towards this goal,
we have simulated an aggregator-EVs system with parameters
drawn from practical scenarios. We compare the performance
of WMRA with that of a suboptimal greedy algorithm.

We assume that the aggregator is connected with N = 100
EVs, evenly split into Type I (Ford Focus Electric) and Type II
(Tesla Model S). The parameters of Type I and Type II EVs
are summarized in Table I. For simplicity, assume that the
EVs do not perform self charging/discharging. The regulation
interval Δt = 5 minutes, and the regulation energy amount
Gt is drawn uniformly from [−69.2, 69.2] (kWh) at each time
slot, with 69.2 kWh being the maximum total allowed energy
amount from all EVs at each time slot. The unit costs of
external sources, i.e., es,t and ed,t, are drawn uniformly from
[0.1, 0.12] (dollars/kWh). In the objective function of P1, we
set U(x) = log(1+x) and ωi = 1, ∀i. The battery degradation
cost function of each EV is Ci(x) = x2, and the upper bound
ci,up is set to be x2

i,max/4.
To allocate the requested regulation amount, we apply

WMRA at each time slot with V = Vmax. The simulation
is performed over T = 1000 time slots. For comparison, we
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TABLE I
PARAMETERS FOR TYPE I AND TYPE II EVS

Type I EV Type II EV
si,cap (kWh) 23 40
xi,max (kWh) 0.55 0.83
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Fig. 1. Time-averaged social welfare with si,min = 0.1si,cap and si,max =
0.9si,cap.

consider a greedy algorithm, which only optimizes the system
performance at the current time slot. Thus, the regulation
allocation at each time slot is derived from the following
optimization problem.

max
xd,t,xu,t

(
N∑
i=1

ωiU(xi,t)

)
− et

s.t. (4), (5), (6), (7), and
1d,tCi(xid,t) + 1u,tCi(xiu,t) ≤ ci,up, ∀i.

The above is a convex optimization problem, which can be
solved by standard numerical algorithms.

We compare the performance of WMRA and the greedy
algorithm in Figs. 1 and 2. In Fig. 1, for si,min = 0.1si,cap and
si,max = 0.9si,cap, WMRA is uniformly superior to the greedy
algorithm by about 20% after 100 time slots. In Fig. 2, we set
si,min = 0.1si,cap and vary si,max from 0.3si,cap to 0.9si,cap.
The observations are, first, WMRA uniformly outperforms
the greedy algorithm; second, as si,max increases, the social
welfare under WMRA keeps on increasing while that under the
greedy algorithm reaches saturation when si,max ≥ 0.6si,cap.

V. CONCLUSION

We have studied a practical model of an aggregator-EVs
system providing regulation service, which accounts for ran-
dom system dynamics, EV self charging/discharging, battery
constraints, and the costs of battery degradation and external
energy sources. Adopting a general Lyapunov optimization
framework, we have developed a real-time WMRA algorithm
for the aggregator to fairly allocate the regulation amount
among EVs. The algorithm is proven to be asymptotically
optimal, and it offers substantial performance gains over a
greedy algorithm.
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Fig. 2. Time-averaged social welfare with si,min = 0.1si,cap, and various
si,max.
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