
2-Approximation Algorithm for a Generalization of

Scheduling on Unrelated Parallel Machines

Yossi Azara, Jaya Prakash Champatib, Ben Liangb

aBlavatnik School of Computer Science, Tel-Aviv University
bDepartment of Electrical and Computer Engineering, University of Toronto

Abstract

In their seminal work [8], Lenstra, Shmoys, and Tardos proposed a 2-approximation algorithm to solve the problem of scheduling

jobs on unrelated parallel machines with the objective of minimizing makespan. In contrast to their model, where a job is processed

to completion by scheduling it on any one machine, we consider the scenario where each job j requires processing on k j differ-

ent machines, independently. For this generalization, we propose a 2-approximation algorithm based on the ρ-relaxed decision

procedure [8] and open cycles used in [3, 2].

1. Introduction

We consider a system of m parallel machines. At time

zero, n independent and non-preemptible jobs are given. Let

M = {1, 2, . . . ,m} and J = {1, 2, . . . , n} denote the set of ma-

chine indices and job indices, respectively. Each job j requires

processing on k j ≤ m different machines and the processing of

the job can be performed independently on different machines.

The processing time required by a job j on machine i ∈ M is

pi j. For each job j and machine i ∈ M, let xi j denote a binary

variable such that xi j = 1 if job j is assigned to machine i, and

xi j = 0 otherwise. A schedule is then determined by the set

{xi j : xi j ∈ {0, 1},∀i ∈ M,∀ j ∈ J}. The schedule is feasible if

and only if
∑

i∈M xi j = k j for all j ∈ J.

Given a schedule, the completion time on a machine i is de-

termined by the sum of processing times of jobs assigned to

it. The makespan of the jobs, denoted by Cmax, is the maximum

completion time over all machines. Given {k j} and {pi j} for all j

and i, our objective is to find a feasible schedule that minimizes

the makespan. We formulate the problem P as an ILP below:

minimize Cmax

subject to
∑

i∈M

xi j = k j, ∀ j ∈ J (1)

∑

j∈J

xi j pi j ≤ Cmax, ∀i ∈ M (2)

xi j ∈ {0, 1}, ∀i ∈ M,∀ j ∈ J. (3)

We note that the above formulation is general and can be used

for the case where jobs have placement constraints, i.e., a job j

can only be processed on a subset of machines. In this case, we

assign pi j = ∞, for every machine i on which the job j cannot

be processed.

Our motivation for studyingP is the following model for data

retrieval in a coded memory storage system [10, 7]. A data file

j is divided into k j blocks that are encoded into N j ≥ k j code

blocks. Each of the N j code blocks are stored on N j different

storage units. A read request for the data file j can be served

by retrieving any k j code blocks. Given m storage units and n

data file read requests, the problem of minimizing the total time

to retrieve the files from the storage system can be formulated

using P.

For the special case where k j = 1 for all j ∈ J, P is equiv-

alent to the classical problem of minimizing makespan on un-

related parallel machines, denoted by R||Cmax [5, 6, 4, 9, 8].

Horowitz and Shani [6] provided a fully polynomial time ap-

proximation algorithm for any fixed number of unrelated ma-

chines. A list scheduling algorithm having 2
√

m approximation

ratio was proposed by Davis and Jaffe [4]. Later, Potts [9] pro-

posed a 2-approximation algorithm by solving a relaxed linear

program and doing enumeration for the non-integral part of the

solution. However, due to the enumeration step, Potts’ algo-

rithm has O(mm−1) time complexity.

Lenstra, Shmoys, and Tardos (LST) [8] extended the solution

approach of Potts by providing a polynomial time algorithm for

rounding the fractional solution of the linear program. The LST

algorithm is based on finding a ρ-relaxed decision procedure as

follows. Given P, an instance of R||Cmax, and a deadline T , the

ρ-relaxed decision procedure outputs ‘no’ if there is no schedule

with makespan at most T for an integer relaxation of P, else

it outputs a schedule with makespan at most ρT for P. The

LST algorithm finds a 2-relaxed decision procedure and uses

a simple binary search to obtain a 2-approximation solution to

R||Cmax.

We note that the LST algorithm cannot be directly extended

to solveP. To see this, consider the underlying feasibility prob-

lem for finding a ρ-relaxed decision procedure forP, for a given

deadline T . It comprises of the constraints in (1), constraints

in (2) with Cmax replaced by T , and the relaxed constraints

0 ≤ xi j ≤ 1, for all i and for all j. Let r be the number of vari-

ables in this feasibility problem, then the number of constraints

are 2r + m + n. This is in contrast to the number of constraints

Preprint submitted to Information Processing Letters, Elsevier July 11, 2018

r + m + n present in the corresponding feasibility problem for

the classical unrelated parallel machines problem [8]. There-

fore, the counting argument used in [8] to claim that only m

jobs will have non-integral xi j values is not applicable to the

feasibility problem at hand.

In this work, we present a 2-approximation solution to P.

Our solution approach closely follows [8] with an exception

that we use open cycles in a bipartite graph [3, 2] to round the

solution of the feasibility problem for P. For ease of exposi-

tion, in Section 2 we first present our solution to a special case

of P, where the processing time of any job is the same on any

eligible machine, i.e., the case of identical machines with as-

signment restrictions. This is then extended in Section 3 to the

case of related machines with assignment restrictions. Finally,

in Section 4 we detail the additional steps required for solving

P.

2. Identical Machines with Assignment Restrictions

Let PI denote the special case of P, where the processing

time of a job j on any machine is either p j or∞. Let M j denote

the set of eligible machines of job j on which its processing

time is p j. Similarly, let Ji denote the set of jobs which have

finite processing time on machine i. In the following we present

a 2-relaxed decision procedure for PI .

2.1. 2-Relaxed Decision Procedure

The 2-relaxed decision procedure for PI is based on the fol-

lowing feasibility problem.

∑

i∈M j

xi j = k j, ∀ j ∈ J

∑

j∈Ji

xi j p j ≤ T, ∀i ∈ M

0 ≤ xi j ≤ 1, ∀i ∈ M,∀ j ∈ J

xi j = 0, ∀i < M j,∀ j ∈ J,

(4)

for some T ≥ max j p j. If (4) is not feasible, then there is no

schedule forPI with makespan at most T . If (4) is feasible, then

we round the fractional solution using open cycles followed by

a simple matching in a forest graph. We show that the resulting

schedule has makespan at most 2T forPI , thus establishing a 2-

relaxed decision procedure forPI . In the following we solve (4)

by reducing it to a maximum flow problem.

2.1.1. Maximum Flow Problem

Consider the bipartite graph G = {J ∪ M, E}, where E =

{(j, i) : j ∈ J, i ∈ M j}. Using G we construct a flow network N
as follows:

• Introduce a source and add directed edges from the source

to all vertices in J. Assign capacity k j p j to the edge from

the source to vertex j.

• If (j, i) ∈ E, then direct the edge from j to i and assign

capacity p j to the edge.

• Introduce a sink and add directed edges from all vertices

in M to the sink. Assign capacity T to all these edges.

It is easy to establish that solving the maximum flow problem

in N results in a feasible solution for (4). This is stated in the

following proposition.

Proposition 1. For any given T , (4) is feasible if and only if

there exists a maximum flow f with value
∑n

j=1 k j p j in N . Fur-

ther, if such flow f exists, then the schedule {x̄i j = f (j, i)/p j, for

all (j, i) ∈ E} is a solution for (4).

Assuming n ≥ m, the maximum flow problem in N can be

solved efficiently by a bipartite preflow-push algorithm with run

time O(m3n) [1]. Next, we assume that for a given T a maxi-

mum flow f with value
∑n

j=1 k j p j exists in N . We round the

non-integral part of {x̄i j} using open cycles and matching in a

forest graph.

2.1.2. Open Cycles

We construct an undirected bipartite graph Ḡ = {J̄ ∪ M̄, Ē},
such that J̄ ⊆ J, M̄ ⊆ M, and (j, i) is in Ē if and only if 0 <

f (j, i) < p j for all j ∈ J and i ∈ M. A job vertex j̄ that is in

Ḡ should have at least two non-saturated edges under f . To see

this, note that since j̄ is in Ḡ, we should have 0 < f (j̄, i1) < p j̄

for some i1 ∈ M j̄. Now, there should be at least one edge 0 <

f (j̄, i2) < p j̄ for some i2 ∈ M j̄ to satisfy
∑

i∈M f (j̄, i) = k j̄ p j̄, the

total flow out of j̄.

If there are cycles in Ḡ, we use the following pro-

cedure to open the cycles. Let C = {(j1, i1),(i1, j2),

(j2, i2) . . .,(jl, il),(il, j1)} be an undirected cycle in Ḡ. Since Ḡ

is a bipartite graph, the cycle has an even number of edges.

For each edge in C, modify the flow f in N as follows.

For some small ǫ > 0, which will be determined later, in-

crease the flow on edge (j1, i1) by ǫ, reduce the flow on edge

(j2, i1) by ǫ and repeat this procedure for consecutive edges

in the cycle. This is demonstrated in an example graph Ḡ

in Figure 1. Note that it only contains one cycle, given by

{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 1)} and the flow on alterna-

tive edges are increased/decreased by ǫ. It is easy to see that the

modified flows on the edges of the cycle do not affect the value

of the flow f .

We choose the minimum ǫ value such that the modified flow

on one of the edges in cycle C either is reduced to zero or sat-

urates the edge. Such ǫ value can be derived by using the fact

that the flow on any edge is non-negative and cannot exceed the

edge capacity. We have

f (j1, i1) + ǫ ≤ p j1

f (j2, i1) − ǫ ≥ 0

...

f (jl, il) + ǫ ≤ p jl

f (j1, il) − ǫ ≥ 0.

From the above inequalities, we obtain

ǫ = min
(jq,iq)∈C

min{ f (jq+1, iq), p jq − f (jq, iq)}.

2

3

2

1

1

2

3

J M

f(1,1)+ε

f(2,1)-ε

f(2,2)+ε

f(3,3)+ε

f(3,1)-ε

f(1,3)-ε

G

Figure 1: An example of an undirected graph Ḡ with one cycle

As a numerical illustration for the example given in Figure 1,

consider the case that the processing times of tasks 1, 2, and

3 are given by 2, 4, and 5 units, respectively. Further suppose

the solution to the maximum-flow problem resulted in the fol-

lowing flow values: f (1, 1) = 1.6, f (2, 1) = 2.8, f (2, 2) =

1.2, f (3, 2) = 2.5, f (3, 3) = 2.5, and f (1, 3) = 0.4. This im-

plies, x̄11 = 0.8, x̄12 = 0.7, x̄22 = 0.3, x̄23 = 0.5, x̄33 = 0.5 and

x̄31 = 0.2. Using the above values we compute ǫ = 0.4, which

is the minimum value that reduces the flow on edge (1, 3) to

zero (and also saturates edge (1, 1)). The new flow values are

f (1, 1) = 2, f (2, 1) = 2.4, f (2, 2) = 1.6, f (3, 2) = 2.1, f (3, 3) =

2.9, and f (1, 3) = 0.

Now, the cycleC is opened by deleting an edge from Ḡ where

the flow either is reduced to zero or saturates the edge. We

repeat this procedure of opening cycles until there is no cycle

in Ḡ. We denote Ḡ with no cycles by Ḡ0. Note that Ḡ0 is a

forest graph. Since opening each cycle results in deleting an

edge, it takes polynomial time to open all cycles.

After opening all cycles in Ḡ, the modified flow f in N still

has the value
∑n

j=1 k j p j. Using this modified flow f , we re-

compute the schedule {x̄i j}. Note that the recomputed {x̄i j} is

a feasible solution for (4). Now, to obtain a feasible solution

{x̂i j} for PI , we proceed as follows. Initialize all x̂i j to 0. Under

the modified flow f , if an edge from a job vertex to a machine

vertex is saturated, then assign the job to that vertex, i.e., for all

(j, i) ∈ E, if f (j, i) = p j, then x̂i j = 1. According to the above

assignment, we can infer that x̂i j = 1 if and only if x̄i j = 1.

Lemma 1. Let M̄0, j denote the set of machine vertices adjacent

to the job vertex j in the forest graph Ḡ0, then the degree of a

job vertex j in Ḡ0 satisfies the following inequality:

|M̄0, j| ≥ k j −
∑

i∈M j\M̄0, j

x̂i j + 1.

Proof. By noting the initial construction of Ḡ and the procedure

of opening cycles, the job vertex j in forest graph Ḡ0 should

have 0 < f (j, i) < p j, for all i ∈ M̄0, j. Since f is a maximum

flow, we have
∑

i∈M j

f (j, i) = k j p j

⇒
∑

i∈M̄0, j

f (j, i)

p j

+
∑

i∈M j\M̄0, j

f (j, i)

p j

= k j

⇒
∑

i∈M̄0, j

f (j, i)

p j

+
∑

i∈M j\M̄0, j

x̂i j = k j (5)

⇒|M̄0, j| ≥ k j −
∑

i∈M j\M̄0, j

x̂i j + 1.

In the third equality above we have used the fact that x̂i j =
f (j,i)

p j
,

for all i ∈ M j\M̄0, j, because in this case f (j, i) is either equal

to p j or zero. In the last inequality above we have used 0 <

f (j, i) < p j, for all i ∈ M̄0, j.

The following corollary can be deduced from Lemma 1.

Corollary 1. The degree of a job vertex j in the forest graph

Ḡ0 is at least 2.

Proof. To prove the corollary it is sufficient to show that

k j −
∑

i∈M j\M̄0, j

x̂i j ≥ 1.

Noting that f (j, i) > 0, for all i ∈ M̄0, j and all x̂i j are either 0 or

1, the above inequality follows from equation (5).

Next, we describe how to match the remaining jobs to ma-

chines in the forest graph Ḡ0.

2.1.3. Matching in Forest Graph Ḡ0

Since all the job vertices in Ḡ0 have degree at least 2, only

machine vertices can be leafs in Ḡ0. Now, consider each con-

nected component, in the forest graph Ḡ0. Use any job vertex

as a root in the tree. Since any job vertex has at least one child,

we may assign each job vertex to one of its children machine

vertices, delete those machine vertices, and set the correspond-

ing x̂i j to 1. If for any job j,
∑

i∈M j
x̂i j = k j, then delete the job

vertex as well. The above step is repeated till all job vertices

are deleted.

Theorem 1. The schedule {x̂i j}, obtained after matching in the

forest graph Ḡ0, is feasible for PI and has a makespan at most

2T.

Proof. Note that all x̂i j are either 0 or 1. Before performing

the above matching in the forest, any job vertex j not in the

forest graph Ḡ0 should have
∑

i∈M j
x̂i j = k j. Otherwise, for

some i ∈ M j, we would have 0 < f (j, i) < p j, and j would

have been in Ḡ0. From Lemma 1, the degree of a job j in Ḡ0

is at least (k j −
∑

i∈M j\M̄0, j
x̂i j + 1), which implies that it has at

least (k j −
∑

i∈M j\M̄0, j
x̂i j) children in the tree that contains it.

Therefore, in the matching procedure job j will be matched to

(k j −
∑

i∈M j\M̄0, j
x̂i j) children in the tree, i.e.

∑

i∈M̄0, j

x̂i j = k j −
∑

i∈M j\M̄0, j

x̂i j.

3

Thus, by the end of the matching procedure the constraints∑
i∈M j

x̂i j = k j, for all j ∈ J, are satisfied.

Recall that the schedule {x̄i j} is computed based on the modi-

fied flow f obtained after opening all cycles in Ḡ. Also, match-

ing in the forest graph Ḡ0 results in each machine being as-

signed to at most one job. This implies that for each machine i,

the vectors (x̄i j, j = 1, 2, . . . , n) and (x̂i j, j = 1, 2, . . . , n) differ

in at most one value. Therefore,

∑

j∈Ji

x̂i j p j ≤
∑

j∈Ji

x̄i j p j +max
j

p j, ∀i ∈ M

≤ T + T = 2T, ∀i ∈ M.

The second inequality above follows from the fact that {x̄i j} is

a feasible solution for (4) and the value of T is chosen to be at

least max j p j.

2.2. Binary Search

Given the 2-relaxed decision procedure for PI , we use the

following binary search algorithm to obtain a 2-approximation

solution. Let

a = max{ 1
m

n∑

j=1

k j p j,max
j

p j}

b =

n∑

j=1

k j p j.

Clearly, a and b are lower and upper bounds for the optimal

makespan. Set T = ⌊ a+b
2
⌋. For this T if (4) is not feasible,

then output ‘no’, and set a = T + 1; else set b = T . Again,

set T = ⌊ a+b
2
⌋ and repeat the above procedure until a = b. The

output is a 2-approximation solution for PI [Lemma 1, [8]].

3. Related Machines with Assignment Restrictions

For the case of related machines with assignment restrictions,

the processing time of job j is p j/vi, for all i ∈ M j, where vi is

the speed factor of machine i. The 2-relaxed decision procedure

for this case is the same as that of the case of identical machines

except the following changes to be made in constructing graph

N:

• We assign the capacity of an edge from machine vertex i

to the sink to be viT .

• For any edge from job j to machine i, if p j/vi > T , delete

the edge.

Note: If we do not delete the edges (j, i) where p j/vi > T , then

under the maximum flow solution f , we may have f (j, i) > 0

for those edges. However, f (j, i) will be zero for those edges

after rounding. Therefore, one may improve the run time of the

algorithm by simply deleting those edges.

4. Unrelated Machines

The solution approach for finding a 2-approximation solution

forP is the same as that ofPI except the open cycles procedure,

which is more involved for P. In the following we present the

2-relaxed decision procedure for P.

Given T , the feasibility problem for P is presented below.

∑

i∈M

xi j = k j, ∀ j ∈ J

∑

j∈J

xi j pi j ≤ T, ∀i ∈ M

xi j = 0, ∀i ∈ M,∀ j ∈ J such that pi j > T

0 ≤ xi j ≤ 1, ∀i ∈ M,∀ j ∈ J.

(6)

The third constraint above is crucial for the proof of our 2-

approximation result. If we do not impose this constraint, a

feasible solution may have 0 < xi j < 1 for some i and j such

that pi j > T . In contrast to (4), (6) cannot be reduced to a max-

imum flow problem. However, given a solution {x̄i j} to (6) we

obtain flow values f (j, i) = x̄i j pi j,∀i ∈ M,∀ j ∈ J. We then

construct the undirected bipartite graph Ḡ = {J̄ ∪ M̄, Ē}, such

that (j, i) is in Ē if and only if 0 < f (j, i) < pi j.

Let C = {(j1, i1),(i1, j2),(j2, i2) . . .,(jl, il),(il, j1)} be an undi-

rected cycle in Ḡ. We modify the flow f as follows:

f (j1, i1) = f (j1, i1) + ǫ

f (j2, i1) = f (j2, i1) − ǫ

f (j2, i2) = f (j2, i2) + ǫ ·
pi2 j2

pi1 j2

f (j3, i2) = f (j3, i2) − ǫ ·
pi2 j2

pi1 j2

f (j3, i3) = f (j2, i2) + ǫ ·
pi2 j2

pi1 j2

·
pi3 j3

pi2 j3

...

f (jl, il) = f (jl, il) + ǫ ·
pi2 j2

pi1 j2

·
pi3 j3

pi2 j3

· · ·
pil jl

pil−1 jl

f (j1, il) = f (j1, il) − ǫ ·
pil j1

pi1 j1

In the above modification, the flow entering any machine vertex

i ∈ M̄ is unchanged except for machine vertex il. The flow

entering il is changed by −ǫ · pil j1

pi1 j1

· (1 − Π), where

Π =
pi1 j1

pil j1

·
pi2 j2

pi1 j2

·
pi3 j3

pi2 j3

· · ·
pil jl

pil−1 jl

If Π ≤ 1, then the flow entering il cannot increase. By choos-

ing sufficiently small ǫ > 0, we can compute a new feasi-

ble solution for (6) by using the modified flow values. If

Π > 1, then we modify the flows in the reverse cycle given

by {(j1, il), (il, jl), . . . , (j2, i1), (i1, j1)}. We start with reducing

the flow f (j1, il) by ǫ and increasing the flow f (il, jl) by ǫ and

repeat this procedure for consecutive edges in the reverse cy-

cle. In this case, it can be verified that only the flow enter-

ing machine vertex i1 will be changed. It will be changed by

4

−ǫ · pi1 j1

pil j1

· (1 − 1/Π). Since 1
Π
< 1, the flow entering machine

vertex i1 will be reduced. Again, choosing sufficiently small

ǫ > 0, we can compute a new feasible solution for (6) by using

the modified flow values.

Again, choose the maximum ǫ value such that the modified

flow value f (j, i) on some edge either equals pi j or is reduced

to 0. We open the cycle by deleting that edge. After opening

all cycles, we initialize all x̂i j values to 0, and assign x̂i j = 1

if and only if f (j, i) = pi j. Matching in the forest graph Ḡ0 is

performed exactly the same as before, leading to the solution

{x̂i j}.

Theorem 2. The schedule {x̂i j} is feasible for P and has a

makespan at most 2T.

Proof. The proof is similar to the proof of Theorem 1, where

the approximation bound holds using also the fact that pi j ≤ T

for x̂i j > 0, for all i, j.

Again, given the 2-relaxed decision procedure for P, we can

find a 2-approximation solution by binary search with lower and

upper bounds for T chosen as follows:

a = max{ 1

m

n∑

j=1

k j min
i

pi j,max
j
{min

i
pi j}}

b =

n∑

j=1

k j max
i

pi j.

Acknowledgement

We would like to thank Allan Borodin for a helpful discus-

sion that led to the present collaboration. This work has been

supported in part by the Natural Sciences and Engineering Re-

search Council of Canada, the Israel Science Foundation (grant

No. 1506/16), and the ICRC Blavatnik Fund.

References

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ.

[2] Andelman, N., Mansour, Y., 2004. Auctions with budget constraints. In:

Algorithm Theory - SWAT 2004. Vol. 3111 of Lecture Notes in Computer

Science. Sringer, Berlin, Heidelberg.

[3] Azar, Y., Epstein, L., Richter, Y., Woeginger, G. J., 2004. All-norm ap-

proximation algorithms. J. Algorithms 52 (2), 120–133.

[4] Davis, E., Jaffe, J. M., 1981. Algorithms for scheduling tasks on unrelated

processors. J. ACM 28 (4), 721–736.

[5] Graham, R. L., Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G.,

1979. Optimization and approximation in deterministic sequencing and

scheduling: A survey. Annals of discrete mathematics 5 (2), 287–326.

[6] Horowitz, E., Sahni, S., 1976. Exact and approximate algorithms for

scheduling nonidentical processors. JACM 23 (2), 317–327.

[7] Joshi, G., Liu, Y., Soljanin, E., 2014. On the delay-storage trade-off in

content download from coded distributed storage systems. IEEE Journal

on Selected Areas in Communications 32 (5), 989–997.

[8] Lenstra, J. K., Shmoys, D. B., Tardos, E., 1990. Approximation algo-

rithms for scheduling unrelated parallel machines. Math. Program. 46 (3),

259–271.

[9] Potts, C. N., 1985. Analysis of a linear programming heuristic for

scheduling unrelated parallel machines. Discrete Applied Mathematics

10 (2), 155–164.

[10] Rashmi, K., Shah, N. B., Gu, D., Kuang, H., Borthakur, D., Ramchan-

dran, K., 2014. A“hitchhiker’s” guide to fast and efficient data reconstruc-

tion in erasure-coded data centers. In: proceedings ACM SIGCOMM. pp.

331–342.

5

