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Abstract—It is well known that the Generalized Max-Weight
Matching (GMWM) scheduling policy, and in general throughput-
optimal scheduling policies, often require the solution of a complex
optimization problem, making their implementation prohibitively
difficult in practice. This has motivated many researchers to
develop distributed sub-optimal algorithms that approximate the
GMWM policy. One major assumption commonly shared in this
context is that the time required to find an appropriate schedule
vector is negligible compared to the length of a timeslot. This
assumption may not be accurate as the time to find schedule
vectors usually increases polynomially with the network size. On
the other hand, we intuitively expect that for many sub-optimal
algorithms, the schedule vector found becomes a better estimate
of the one returned by the GMWM policy as more time is given
to the algorithm. We thus, in this paper, consider the problem
of scheduling from a new perspective through which we carefully
incorporate channel variations and time-efficiency of sub-optimal
algorithms into the scheduler design. Specifically, we propose a
Dynamic Control Policy (DCP) that works on top of a given
sub-optimal algorithm, and dynamically but in a large time-
scale adjusts the time given to the algorithm according to queue
backlog and channel correlations. This policy does not require the
knowledge of the structure of the given sub-optimal algorithm, and
with low-overhead can be implemented in a distributed manner.
Using a novel Lyapunov analysis, we characterize the stability
region induced by DCP, and show that our characterization can
be tight. We also show that the stability region of DCP is at least
as large as the one for any other static policy. Finally, we provide
two case studies to gain further intuition into the performance of
DCP.

I. INTRODUCTION

The problem of scheduling of wireless networks has been
extensively investigated in the literature. A milestone in this
context is the seminal work by Tassiulas and Ephremides
[1], where the authors characterized the capacity region of
constrained queueing systems, including wireless networks, and
designed a throughput-optimal scheduling policy, commonly
referred to as GMWM scheduling. Capacity region by definition
is the largest region that can be stably supported using any
policy, including those with the knowledge of future arrivals
and channel states. A throughout-optimal policy is a policy
that stabilizes the network for any input rate that is within the
capacity region. In general [2][3], GMWM scheduling should
maximize the sum of backlog-rate product at each timeslot
given channel states, which can be considered as a GMWM
problem explaining the name of the policy. This problem has
been shown to be, in general, complex and NP-Complete
[4][3][5]. Even in those cases where the optimization prob-
lem can be solved polynomially, distributed implementation
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becomes a major obstacle. These issues, naturally, motivated
researchers to study and develop suboptimal centralized or
distributed algorithms that provide solutions that are a constant
factor away from optimality [6][4][5][7][8].

One implicit but major assumption in this context is that
the time required to find an appropriate scheduling vector,
search-time, is negligible compared to the length of a timeslot,
or otherwise, during this search-time, channel states remain
effectively unchanged. Since most algorithms take polynomial
time with the number of users to output a solution [4][5][8],
we see that this assumption may not hold for networks with
large number of users. In particular, it is possible that once an
optimal solution corresponding to a particular channel state is
found, due to channel variations, it becomes outdated to the
point of being intolerably far away from optimality.

Intuitively, for many suboptimal algorithms, the solution
found becomes a better and more efficient estimate of the
optimal solution as the number of iterations increases or more
time is given to the algorithm, e.g., see PTAS in [5]. This
inspires us to consider this time-efficiency correspondence as
a classifying tool for sub-optimal algorithms. As mentioned
earlier, however, the solution found might become outdated
due to channel variations. This poses a challenging problem
as how the search-time given to sub-optimal algorithms should
be adjusted to ensure an efficient scheduling when channels
states are time-varying.

Our work in this paper addresses the above challenge by
joint consideration of channel correlation and time-efficiency
of sub-optimal algorithms. In particular, we propose a dynamic
control policy (DCP) that operates on top of a given sub-optimal
algorithm A, where the algorithm is assumed to provide an
approximate solution to the GMWM problem. Our proposed
policy dynamically tunes the length of scheduling frames as the
search-time given to the algorithm A so as to maximize the time
average of backlog-rate product, improving the stability region.
This policy does not require the knowledge of input rates or the
structure of the algorithm A, works with a general class of sub-
optimal algorithms, and with low-overhead can be implemented
in a distributed manner. We analyze the performance of DCP
in terms of its associated stability region, and prove that this
policy enables the network to support all input rates that are
within θ∞-scaled version of the capacity region. The scaling
factor θ∞ is a function of the interference model, algorithm
A, and channel correlation, and we prove that in general this
factor can be tight. We also show that the stability region of
DCP is at least as large as the one for any other static scheme
that uses a fixed frame-length, or search-time, for scheduling.

As far as we are aware, our study is the first that jointly
incorporates the time-efficiency of sub-optimal algorithms and



channel variations into the scheduler design and stability region
analysis. One distinguishing feature of our work, apart form its
practical implications, is the use of a Lyapunov drift analysis
that is based on a random number of steps. Therefore, to
establish stability results, we use a method recently developed
for Markov chains [9], and modify it such that it is also
applicable to our network model.

The rest of this paper is organized as follows. We review the
related work in the next section. Network model including de-
tails of arrival and channel processes is presented in Section III.
Structures of the sub-optimal algorithms and DCP policy are
discussed in Section IV. We then provide performance analysis
and the related discussion in Section V, followed by two
case studies in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

Previous work on throughput-optimal scheduling includes
the studies in [1][10][2]. In particular, in [1], Tassiulas and
Ephremides characterized the throughput capacity region for
multi-hop wireless networks, and developed GMWM schedul-
ing as a throughput-optimal scheduling policy. This result has
been further extended to general network models with ergodic
channel and arrival processes [2]. Due to its applicability
to general multi-hop networks, GMWM scheduling has been
employed as a key component in many cross-layer designs.
Examples include rate control [11], energy optimal design
[12][13], and congestion control [14][15].

GMWM scheduling despite its optimality, in every timeslot,
requires the solution of the GMWM problem, which can be, in
general, NP-Complete and Non-Approximable [5]. Thus, many
studies has focused on developing sub-optimal constant factor
approximations to GMWM scheduling. One interesting study
addressing the complexity issue is the work in [16], where
sub-optimal algorithms are modeled as randomized algorithms,
and it is shown that throughput-optimality can be achieved
with linear complexity. This work, however, assumes non-time-
varying channels. More recent studies in [3][17] generalize
the approach in [16] to time-varying networks, and prove its
throughput-optimality. This optimality, as expected, comes at
the price of requiring excessively large amount of other valuable
resources in the network, which in this case is memory storage.
Specifically, the memory requirement in [3][17] increases ex-
ponentially with the number of users, making the generalized
approach hardly amenable to practical implementation in large
networks.

Another example of sub-optimal approximation is the work
in [4], where the authors assume that the controller can use
only an imperfect scheduling component, and as an example
they use maximal matching to design a distributed scheduling
that is within a constant factor of optimality. This schedul-
ing algorithm under the name of maximal scheduling (MM)
has been widely studied in the literature [6][5][18][8][19]. In
[6][4], it is shown that under simple interference models, MM
scheduling can achieve a throughput (or stability region) that
is at least half of the throughput achievable by a throughput-
optimal algorithm (or the capacity region). Extended versions of

these results for more general interference models are presented
in [5][8], where in [8] randomized distributed algorithms are
proposed for implementing MM scheduling, being a constant
factor away from the optimality. All of the mentioned proposals
so far either do not consider channel variations, or assume
the search-time is relatively small compared to the length of
a timeslot.

The closest work to ours in this paper is [7], where based on
the linear-complexity algorithm in [16], the impact of channel
memory on the stability region of a general class of sub-optimal
algorithms is studied. Despite its consideration for channel
variations, this work still does not model the search-time, and
implicitly assumes it is negligible.

In this paper, we consider the problem of scheduling from a
new perspective. We assume a sub-optimal algorithm A is given
that can approximate the solution of the GMWM problem,
and whose efficiency naturally improves as the search-time
increases. We then devise a dynamic control policy which
tunes the search-time, as the length of scheduling frames,
according to queue backlog levels in the network, and also
based on channel correlations. As far as we are aware, our study
is the first that explicitly models the time-efficiency of sub-
optimal approaches, and uses this concept along with channel
correlation in the scheduler design.

III. NETWORK MODEL

We consider a wireless network with N one-hop source-
destination pairs, where each pair represents a data flow1.
Associated with each data flow, we consider a separate queue,
maintained at the source of the flow, that holds packets to
be transmitted over a wireless link. Examples of this type of
network include downlink or uplink of a cellular or a mesh
network.

A. Queueing

We assume the system is time-slotted, and channels hold
their state during a timeslot but may change from one timeslot
to another. Let the state of the ith link (channel) at time t
be si(t), and s(t) be vector of channel states, i.e., s(t) =
(s1(t), . . . , sN (t)). Throughout the paper, we use bold face
to denote vectors. Let S represent the set of all possible
channel state vectors with finite cardinality |S|. Let Di(t)
denote the rate over the ith link at time t, and D(t) be the
corresponding vector of rates, i.e., D(t) = (D1(t), . . . , DN (t)).
In addition, let Ii(t) represent the amount of resource used by
the ith link at time t, and I(t) be the corresponding vector,
i.e., I(t) = (I1(t), · · · , IN (t)). The vector I(t) contains both
scheduling and resource usage information, and hereafter, we
refer to it simply as the schedule vector. Let I denote the set
containing all possible schedule vectors, with finite cardinality
|I|.

Note that the exact specification of the scheduling vector
I(t) is system dependent. For instance, in CDMA systems,
it may represent the vector of power levels associated with
wireless links; in OFDMA systems, it may represent the number

1Extension to multi-hop flows are possible using the methods in [1][2].



of sub-channels allocated to each physical link; in OFDM-
CDMA systems, it can be a combination of the two; finally,
when interference is modeled as K-hop interference model
[5], the vector can be an activation vector representing a sub-
graph in the network. Since transmission rates are completely
characterized given channel states, the schedule vector, and the
interference model, we have

D(t) = D(s(t), I(t)).
We emphasize that the exact dependence of D(t) on s(t) and
I(t) is determined by the interference model. We assume that
transmission rates are bounded, i.e., for all s ∈ S and I ∈ I,

Di(s, I) < Dmax, 1 ≤ i ≤ N,

for some large Dmax > 0.
Let Ai(t) be the number of packets arriving in timeslot t

associated with the ith link (or data flow), and A(t) be the
vector of arrivals, i.e., A(t) = (A1(t), · · · , AN (t)). We assume
arrivals are i.i.d.2 with mean vector

E[A(t)] = a = (a1, . . . , aN ),
and bounded above:

Ai(t) < Amax, 1 ≤ i ≤ N,

for some large Amax.
Finally, let X(t) = (X1(t), . . . , XN (t)) be the vector of

queue lengths, where Xi(t) is the queue length associated with
the ith link (or data flow). Using the preceding definitions, we
see that X(t) evolves according to the following equation

X(t + 1) = X(t) + A(t) − D(t) + U(t),
where U(t) represents the wasted service vector with non-
negative elements; the service is wasted when in a queue the
number of packets waiting for transmission is less than the
number that can be transmitted, i.e., when Xi(t) < Di(t).
B. Channel State Process

We assume the channel state process is stationary and
ergodic. In particular, for all s ∈ S, as k → ∞, we have

1
k

k−1∑
i=0

1s(t+i)=s → π(s), a.s.,

where 1(·) denotes the indicator function associated with a
given event, and π(s) is the steady state probability of state
s. Let Pt represent the past history of the channel process and
be defined by Pt = {s(i); 0 ≤ i ≤ t}. The above almost surely
convergence implies that for any ε > 0 and ζ > 0, we can find
a sufficiently large Kε,ζ,t > 0 such that [20]

P
(

sup
k>Kε,ζ,t

∣∣1
k

k−1∑
i=0

1s(t+i)=s − π(s)
∣∣ > ε

∣∣Pt

)
< ζ. (1)

We assume that the almost surely convergence is unform in the
past history and t in the sense that regardless of Pt and t, there
exists a Kε,ζ such that (1) holds with Kε,ζ,t = Kε,ζ

3.
C. Capacity Region

In our context, capacity region, denoted by Γ, is defined
as the closure of the set of all input rates that can be stably

2This assumption is not essential for our results to hold, and is made only
to simplify the analysis.

3Examples of this channel model include but are not limited to Markov
chains.

supported by the network using any scheduling policy including
those that use the knowledge of future arrivals and channel
states. In [1][21] and recently under general conditions in [2],
it has been shown that the capacity region Γ is given by

Γ =
∑
s∈S

π(s) Convex-Hull{D(s, I)|I ∈ I}.

IV. DYNAMIC CONTROL POLICY

As mentioned in the introduction, DCP controls and tunes
the search-time given to a sub-optimal algorithm to improve
the stability region. The considered sub-optimal algorithms are
assumed to provide a sub-optimal solution to the GMWM
problem. In the following, we first elaborate on the structure
of the sub-optimal algorithms, and then, describe the operation
of DCP.

A. Sub-optimal Algorithms Approximating GMWM Problem

It is well known that GMWM scheduling is throughput-
optimal in that it stabilizes the network for all input rates
interior to capacity region Γ. This policy in each timeslot
uses the schedule vector I∗(t) that is argmax to the following
GMWM problem:

max
N∑

l=1

Xl(t)Dl(s(t), I), subject to I ∈ I. (2)

However, as mentioned in Section I, this optimization problem
can be in general NP-Complete. We therefore assume that there
exists an algorithm A that can provide suboptimal solutions
to the max-weight problem given in (2). To characterize the
structure of algorithm A, let I∗(X, s) be the argmax to (2) by
setting X(t) = X and s(t) = s. Thus,

I∗(X, s) = argmax
I∈I

XD(s, I),

where XD(s, I) is the scalar product of the two vectors, and
for ease of notation, we have dropped the transpose symbol
required for D(s, I). In the rest of this paper, we use the same
method to show the scalar products. Associated with I∗(X, s),
let D∗(X, s) be defined as

D∗(X, s) = D(s, I∗(X, s)). (3)

Thus, D∗(X, s) is the optimal rate, in the sense of (2), when
the backlog vector is X and the channel state vector is s.

Let I(n) be the output schedule vector of algorithm A when
it is given an amount of time equal to n timeslots, X(t) =
X, and s(t) = s. We therefore assume that the time given
to algorithm A can be programmed or tuned as desired, or
simply, the algorithm can continue or iterate towards finding
better solutions over time. We assume that I(n) is in general
a random vector with distribution µ

(n)
X,s. Since the objective

function in (2) is a continuous function of X(t), we naturally
assume that algorithm A characterized by the distribution of
I(n), for all n ≥ 1, and all values of X and s, has the following
property:

Assumption 1: For all I ∈ I, s ∈ S, and n, we have that

|µ(n)
X1,s(I

(n) = I) − µ
(n)
X2,s(I

(n) = I)| → 0,

as X1 → X2. In addition, assuming and keeping ‖X1−X2‖ <
C for a given C > 0, the above convergence also holds when



‖X1‖ → ∞. Moreover, the convergence becomes equality if
X1 = βX2, for some β > 0.

In the following, we discuss concrete models that provide
further details on the structure of algorithm A. Note that these
models serve only as examples, and our results do not depend
on any of these models; what required is only Assumption 1.

The first model arises from the intuition that the distribution
µ

(n)
X,s should improve as n increases. More precisely, we can

define the sequence {µ(n)
X,s, n = 1, 2, 3, · · · } to be an improving

sequence if for all n > 1,

E[XD(s, I(n))] ≥ E[XD(s, I(n−1))] ≥ · · · ≥ E[XD(s, I(1))].
The first model uses the above and defines a natural algorithm
to be the one for which the above inequalities hold for all values
of X and s.

As for the second model, we may have that I(n) is such that
for all X’s and s’s

XD(s, I(n)) ≥ g(n)XD(s, I∗(X, s)), (4)

where the function g(n) is a non-decreasing function of n,
and less than or equal to one. For instance, if the optimization
problem can be approximated to a convex problem [22], then
g(n) = ξ(1 − ζn), where 0 < ξ ≤ 1 and 0 ≤ ζ < 1. Another
possible form for g(n) is(

1 − β
ln N

ln n

)
,

where β is a positive constant. This form of g(n) may stem
from cases where the optimization problem associated with (2)
admits Polynomial-Time Approximation Scheme (PTAS) [5].

The last model that we consider is a generalization of the pre-
vious model, where we assume that (4) holds with probability
h(n) as a non-decreasing function of n. This specification can
model algorithms that use randomized methods to solve (2),
and without its consideration for the improvement over n, is
similar to the ones developed in [16][7].

B. Dynamic Control Policy and Scheduling

The dynamic control policy in this paper interacts with
scheduling component, and through some measures, which
will be defined later, dynamically tunes the time spent by the
scheduler, or more precisely algorithm A, to find a schedule
vector. In what follows, we describe the joint operation of DCP
and the scheduler.

As DCP operates, the time axis becomes partitioned to a
sequence of scheduling rounds, where each round might consist
of a different number of timeslots. An illustrative example is
provided in Fig. 1. Let t̂k denote the start time of the kth

round. Each round begins with a test interval followed by
an update interval. In the beginning of the test interval of
each round, a candidate value for the number of timeslots
given to the algorithm A to solve (2) is selected by DCP.
Let Nr

1 (t̂k) denote this candidate value for the kth round, and
assume Nr

1 (t̂k) ∈ N1, where N1 has a finite cardinality. In
the rest, we use Nr

1 instead of Nr
1 (t̂k) where appropriate. The

algorithm that chooses the candidate value might be in general a
randomized algorithm. Thus, we use the superscript r to make
this point clear. We assume Nr

1 takes an optimal value with

Fig. 1. Illustration of scheduling rounds, test intervals, update intervals, and
frames.

probability δ > 0, where optimality will be defined later by (7)
and its following discussion.

We set the length of the test interval to be

Nr
1 Nr

2 = Nc = const.,

a multiple of Nr
1 , where Nr

2 is adjusted accordingly so that the
test interval has a fixed length Nc. Therefore, given Nr

1 , the
test interval becomes partitioned into Nr

2 consecutive frames
of Nr

1 timeslots. In the beginning of each frame, e.g., at time
t, the current backlog vector X(t) and channel state vector s(t)
are provided to the algorithm A. The algorithm then spends Nr

1

timeslots to find a schedule vector that is used throughout the
next frame of Nr

1 timeslots starting at time t + Nr
1 . Thus, the

schedule vector used in any frame is obtained by using backlog
and state vector information at the beginning of its previous
frame. Note that depending on the properties of a particular
instance of algorithm A, other methods can be considered to
use the found vector for the update of scheduling decisions [23],
and our results extend to these cases as long as Property 1 and
Property 2 in Section V-B hold.

Given Nr
1 , DCP evaluates scheduling performance resulting

from the chosen value for Nr
1 . The performance criterion is the

normalized time-average of the backlog-rate (scalar) product.
To define the criterion precisely, let ϕ(·, ·, ·) be defined as

ϕ(t, n1, n2) =
n2−1∑
j=0

n1−1∑
i=0

Xt+jn1+iDt+jn1+i

n1n2‖Xt‖ .

If ‖Xt‖ = 0, we set ϕ(t, n1, n2) = 0. Based on the above
definition, the criterion associated with the test interval of the
kth scheduling round, which is computed by DCP, is denoted
by ϕr(t̂k), where

ϕr(t̂k) = ϕ(t̂k, Nr
1 (t̂k), Nr

2 (t̂k)).
This quantity is then used to determine the length of frames in
the update interval of the kth round.

Update intervals are similar to the test intervals in that they
are consisted of a multiple number of fixed-length frames. More
precisely, we assume that the update interval in the kth round
becomes partitioned into N2(t̂k)N3(t̂k) consecutive frames of



N1(t̂k) timeslots. Integers N1(t̂k) and N2(t̂k) are such that

N1(t̂k)N2(t̂k) = Nc. (5)

Therefore, the length of the kth update interval is N3(t̂k) times
the length of a test interval. Moreover, we see that N1(t̂k) in
the kth scheduling round takes the role of Nr

1 (t̂k) in the kth

test interval. Assuming the same method is applied to all test
and update intervals to use the output of algorithm A, we can
properly define ϕ(t̂k) as

ϕ(t̂k) = ϕ(t̂k + Nc, N1(t̂k), N2(t̂k)N3(t̂k)).
The quantity ϕ(t̂k) is similar to ϕr(t̂k), and measures the
normalized time-average of backlog-rate product in the kth

update interval.

DCP , on top of algorithm A, uses ϕ(t̂k−1) and ϕr(t̂k) to
dynamically control the value of N1(t̂k) and N3(t̂k) over time.
Specifically, in the kth round, at the end of its corresponding test
interval, the policy chooses either the N1 used in the previous
update interval, N1(t̂k−1), or the newly chosen value of N1

in the current test interval, Nr
1 (t̂k), according to the following

update rule:

N1(t̂k) =
{

Nr
1 (t̂k) if ϕr(t̂k) > ϕ(t̂k−1) + α

N1(t̂k−1) otherwise
,

where α is a suitably small but otherwise an arbitrary positive
constant. At the same time, the value of N3(t̂k), is updated
according to the following:

N3(t̂k) =

{
max(1, N3(t̂k−1)

2 ) if ϕr(t̂k) > ϕ(t̂k−1) + α
min(L1, 2N3(t̂k−1)) otherwise,

where L1 is a suitably large but otherwise an arbitrary positive
constant. Note that N2(t̂k) becomes updated such that (5) holds.
Once the values of N1, N2, and N3 are updated, in the rest of
the scheduling round, which by definition is the update interval,
the policy proceeds with computing the time average ϕ(t̂k).
When the kth round finishes, the k + 1th round starts with a
test interval, and DCP proceeds with selecting Nr(t̂k+1), and
applying the update rule at the end of the k + 1th test interval.
This completes the description of joint operation of DCP and
the scheduling component.

Considering the above description, we see that DCP keeps
trying new values for N1. Once a good candidate is found
for N1, the update rule with high probability uses this value
for longer periods of time by doubling the length of update
intervals. In case the performance in terms of the backlog-rate
product degrades, the length of update intervals are halved to
expedite trying new values for N1. Note that α can be arbitrarily
small, but should be a positive number. This avoids fluctua-
tions between different values of N1 performing closely, thus
preventing short update intervals. In addition, it limits incorrect
favoring towards new values of N1 in the test intervals, where
due to atypical channel conditions, the normalized backlog-
rate product deviates from and goes beyond its expected value.
Finally, note that L1 can be arbitrarily large, but should be a
finite integer. This assumption is mainly analysis-inspired but
is also motivated by the fact that a larger L1 can lead to a
larger delay. Delay analysis is an interesting topic and is left
for future research.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of DCP in terms
of its associated stability region. We first introduce several key
definitions and functions, and then state the main theorem of
the paper.

A. Definitions

Since the backlog vector is non-Markovian, we consider the
following definition for the stability of a process.

1) Stability: Suppose there are a bounded closed region C
around the origin, and a real-valued function F (·) ≥ 0 such
the following holds: For any t, and σC defined by

σC = inf{i ≥ 0 : Xt+i ∈ C},
we have

E[σC ] ≤ F (X(t))1X(t)/∈C .

Then, the system is said to be stable.
This definition implies that when X(t) /∈ C, i.e, when ‖X(t)‖

is larger than a threshold, the conditional expectation of the
time required to return to C, i.e., ‖X(t)‖ becomes less than
or equal to the threshold, is bounded by a function of only
X(t), uniformly in the past history and t. This definition further
implies that if the sequence X(t) is stable, then [24]

lim
k→∞

sup
t

P (|X(t)| > k) = 0.

2) θ-scaled Region and Maximal Stability: Suppose 0 ≤ θ ≤
1. A region is called θ-scaled of the region Γ, and denoted by
θΓ, if it contains all rates that are θ-scaled of the rates in Γ,
i.e.,

θΓ = {a1 : a1 = θa2, for some a2 ∈ Γ}.
Further, the θ-scaled region is called maximally stable if for all
arrival rate vectors interior to θΓ, the system can be stabilized,
and for all ε > 0 there exists at least one rate vector interior to
(θ + ε)Γ that makes the system unstable, both under the same
given policy. Thus, maximal stability determines the largest
scaled version of Γ that can be stably supported under a given
policy.

B. Auxiliary Functions and Their Properties

To define the first function, hypothetically suppose for all t,
X(t) = X for a given X, X �= 0, and thus, X(t) does not
get updated. In addition, assume that N1 has a fixed value over
time. Considering these assumptions and an update interval of
infinite number of frames4, each consisting of N1 timeslots,
we can see that in the steady state the expected normalized
backlog-rate product, averaged over one frame, is equal to

φ(X, N1) = Es,A
(
∑N1

i=1 XDi)
N1‖X‖ , (6)

where Di is the rate vector in the ith timeslot of a given
frame in the steady state. This expectation is over the steady
state distribution of channel process, and possibly over the
randomness introduced by the algorithm A.

4Here, we assume the channel evolves, and that the algorithm A is used in
the same manner as it is used in an ordinary update interval with a finite Nc,
as discussed in Section IV-B.



Intuitively, φ(X, N1) states how well a particular choice for
N1 performs, in terms of backlog-rate product, when queue-
length changes are ignored. This is exactly what we need to
study since the stability region often depends on the behavior
of scheduling at large queue-lengths, where in a finite window
of time the queue-lengths do not change significantly.

To simplify notation, where appropriate, we use t as the first
argument of φ(·, ·); by that we mean5

φ(t,N1) = φ(X(t), N1).

Having defined φ(X, N1), we define Ñ1(X) and φ̃(t) by

Ñ1(X) = argmax
N1∈N1

φ(X, N1), (7)

and

φ̃(t) = φ̃(X(t)) = φ
(
X(t), Ñ1

(
X(t)

))
.

Finally, for a given X with ‖X‖ �= 0, we define

χ(X) = Es

[XD∗(X, s)
‖X‖

]
,

where D∗(X, s) is defined in (3), and the expectation is over
the steady state distribution of the channel process.

According to the above definitions, we see that when vari-
ations in the backlog vector are ignored after time t, and
N1 is confined to have a fixed value, Ñ1(X(t)) becomes the
optimal value for N1 in terms of the normalized backlog-rate
product, and φ̃(t) represents the corresponding expected value.
In particular, note that Ñ1(X) is a function of X and may take
different values for different X’s. The quantity χ(X), on the
other hand, is the expected normalized backlog-rate product
if for all states we could find the optimal schedule vector.
This quantity, therefore, can serve as a benchmark to measure
performance of sub-optimal approaches.

Note that χ(X) is continuous function of X and does not
depend on ‖X‖. Similarly, by Assumption 1, φ(X, N1) does
not depend on ‖X‖, and is expected to have the following
property.

Property 1: Suppose ‖X1 − X2‖ < C for a given C > 0.
For any given ε > 0, there exists a sufficiently large M > 0
such that if ‖X1‖ > M , then for all N1 ∈ N1

|φ(X1, N1) − φ(X2, N1)| < ε.

This property holds since by Assumption 1, the algorithm A
statistically finds similar schedule vectors when two backlog
vectors are close and large.

Recall that ϕr(t̂k) is the normalized time-average of backlog-
rate product over the kth test interval. If we assume that the
backlog vector is kept fixed at X(t̂k), by ergodicity of the chan-
nel process as explained in Section III-B, we expect ϕr(t̂k) to
converge to φ(t̂k, Nr

1 (t̂k)). Hence, when the number of frames
is large, which is the case when Nc is large, ϕr(t̂k) should
be close to φ(t̂k, Nr

1 (t̂k)) with high probability. However, the
backlog vector is not fixed and changes over time. But by
Assumption 1, algorithm A statistically responds similarly to
different backlog vectors if they are close and sufficiently large.
This can be exactly our case since arrivals and departures are
limited, and thus, for a fixed Nc, the changes in the norm of

5By definition of φ(·, ·), here we hypothetically assume the backlog vector
X(t1) for all times t1 is equal to X(t).

backlog vector are bounded over one test interval. Therefore,
by Assumption 1, if ‖X(t̂k)‖ is sufficiently large, the changes
in the backlog have little impact on the distribution of ϕr(t̂k).
Applying a similar discussion to ϕ(t̂k) while noting that the
length of update intervals is bounded by L1Nc, we expect the
following property6.

Property 2: There exist 
ϕ > 0 and θϕ > 0 such that for
any given ε > 0, there exists M > 0 such that if ‖Xt̂k

‖ > M ,
then regardless of k and the past history, up to and including
time t̂k, with probability (1 − 
ϕ)∣∣ϕr(t̂k) − φ(t̂k, Nr

1 (t̂k))
∣∣ < θϕ + ε1,

where ε1 is some positive number less than ε. Similarly,
regardless of k and the past history, up to and including time
t̂k + Nc, with probability (1 − 
ϕ)∣∣ϕ(t̂k) − φ(t̂k + Nc, N1(t̂k))

∣∣ < θϕ + ε2,

where ε2 is some positive number less than ε. Moreover, 
ϕ

and θϕ approach zero as Nc approaches infinity.
According to the preceding discussion, we can see that θϕ

and 
ϕ mainly measure how fast the time-averages converge to
their expected value, and ε models the error due to variations in
the backlog vector Xt̂k+i, 1 ≤ i ≤ t̂k+1−t̂k−1. Thus, as stated
above, 
ϕ and θϕ can be made arbitrarily small by assuming a
sufficiently large value for Nc. In a practical implementation,
however, Nc is a limited integer, and therefore, θϕ > 0 and

ϕ > 0.

As the final step towards the main theorem, we define
several random variables that are indirectly used in the theorem
statement. Specifically, let iδ be a geometric random variable
with success probability δ

′
, where

δ
′
= (1 − 
ϕ)2δ,

where δ is defined in Section IV-B. In addition, let iϕ be a r.v.
with the following distribution.

P (iϕ = 0) = 
ϕ,

and

P (iϕ = k) = (1 − 
ϕ)2k−1(1 − (1 − 
ϕ)2), k ≥ 1.

We also define the random sequence {N ′
3(i), i ≥ 1} as7

N
′
3(i) =




L1 (1 ≤ i ≤ iδ) ∨
(i = iδ + iϕ + 1)

1 (i = iδ + 1) ∧ (iϕ = 1)
2 (i = iδ + 1) ∧ (iϕ > 1)
min( 2i

2iδ+2 , L1) (iδ + 2 ≤ i ≤ iδ + iϕ)∧
(iϕ > 1)

0 i > iδ + iϕ + 1

.

Using the above sequence, we define R∞ as

R∞ =
E

[∑iδ+iϕ

i=iδ+1 N
′
3(i)

]
E

[ ∑iδ+iϕ+1
i=1 (1 + N

′
3(i))]

, (8)

which plays a key role in theorem statement and its proof. Note
that for a fixed δ > 0, we have

lim
�ϕ→0

R∞ =
L1

1 + L1
.

6We can prove that this property holds as a result of the above discussion,
uniform convergence of the channel process, and finiteness of |I|.

7Here, ∧ and ∨ are the and and or operators, respectively.



As mentioned earlier, we can make 
ϕ and θϕ arbitrarily small
by choosing a sufficiently large value for Nc. We are now ready
to state the theorem.

C. Main Theorem on Stability of DCP

We have the following theorem:
Theorem 1: Consider a network as described in Section III.

For this network, let θ be a constant defined by

θ = R∞ inf
‖X‖=1

(φ̃(X) − α − 3θϕ)
χ(X)

.

In addition, let θ∞ be

θ∞ = inf
‖X‖=1

φ̃(X)
χ(X)

.

(a) If 6θϕ < α and 2α ≤ inf‖X‖=1 φ̃(X), then the network
is stable under DCP if the mean arrival rate vector, a, lies
strictly inside the region θΓ.

(b) For any input rate strictly inside θ∞Γ, there exist a
sufficiently small value for α, and sufficiently large values
for L1 and Nc such that the network becomes stabilized
under DCP. In other words, we can expand the sufficient
stability region θΓ arbitrarily close to θ∞Γ by choosing
appropriate values for for α, L1, and Nc.

(c) There exist instances of networks, as described in Sec-
tion III, for which their associated region θ∞Γ is maxi-
mally stable under DCP.

Proof: The proof is provided in the Appendix.

D. Discussion

1) Intuitive Explanation of θ: Theorem 1 states that all
input rates interior to θΓ can be stably supported under DCP.
In particular, it implicitly quantifies θ as a function of the
sub-optimality of algorithm A and channel state correlation.
Clearly, the value of θ is not fixed, and can vary from a
particular network setup to another. As expected, for a fixed X,
as algorithm A finds better schedule vectors in shorter times,
and as the channel states become more correlated, φ̃(X) gets
closer to χ(X), and θ gets closer to one, expanding the region
θΓ to the capacity region Γ.

In addition, Theorem 1 shows how the stability region is
directly affected by the choices for α and L1, and the values
for θϕ and 
ϕ. The impact of α on θ could be predicted by
noting that the update rule uses Nr

1 in an update interval only
when the normalized average backlog-rate product increases at
least by α. Thus, we expect to see a decrease of the type α

χ(X)
in the stability region scaling. The effect of θϕ and 
ϕ is less
obvious, but can be roughly explained as follows. Suppose at
the kth round the optimal N1 is selected, i.e., Nr

1 (t̂k) = Ñ1(t̂k).
In this case, to have a proper comparison, ϕr(t̂k) and ϕ(t̂k−1)
should satisfy their corresponding inequalities in Property 2.
Moreover, to make sure that Nr

1 (t̂k) or a near optimal N1 is
used in the lth round after the kth, we at least require ϕr(t̂l)
satisfy its corresponding inequality in Property 2. Therefore,
there are at least three inequalities of the form in Property 2
that should be satisfied, which results in the term 3θϕ in the
expression for θ.

The factor R∞ in a sense measures a lower-bound for the
fraction of time where near optimal values for N1 are used by
DCP. To better understand R∞, suppose 
ϕ is small, and the
backlog vector is large. Once the optimal value for N1 is found
in a round, as long as the inequalities in Property 2 hold for the
subsequent rounds, N1 gets updated for only a few times. By
the update rule, this means that N3 gets doubled in most of the
rounds, and is likely equal to L1. Thus, the update intervals
constitute L1

1+L1
fraction of time. At the same time, in these

intervals, near optimal values for N1 are being used. Thus, we
expect to see L1

1+L1
as a multiplicative factor in θ.

The above discussion and Theorem 1 also state that DCP
successfully adapts N1 in order to keep ϕ(t̂k + Nc, N1(t̂k))
close to φ̃(X(t̂k + Nc))8. Note that for a given X finding
Ñ1(X), or equivalently, φ̃(X), in general, is a difficult problem.
Specifically, it requires the exact knowledge of channel state
and arrival process statistics, and the structure of algorithm
A. Even when this knowledge is available, as the number of
users increases, finding Ñ1(X) demands computation over a
larger number of dimensions, which becomes exponentially
complex. Hence, we see that DCP dynamically solves a difficult
optimization problem, without requiring the knowledge of input
rates or the structure of algorithm A9.

2) Comparison with Static Policies, Minmax v.s. Maxmin:
Part (b) of the theorem gives the region θ∞Γ as the fundamental
lower-bound on the limiting performance of DCP. It also
implicitly states that this lower-bound depends on the solution
to a minmax problem. To see this, recall that by definition φ̃(X)
is the maximum of φ(X, N1) over all choices for N1. Thus,
we have that

θ∞ = inf
‖X‖=1

max
N1∈N1

φ(X, N1)
χ(X)

.

Now, consider a static policy that assumes a fixed value for
N1. This policy partitions the time axis into a set of frames each
consisting of N1 timeslots, with the ith frame starting at time
(i−1)N1. The static policy, in the beginning of each frame, e.g.,
the ith frame, provides algorithm A with vectors X((i− 1)N1)
and s((i−1)N1). Algorithm A uses these vectors as input, and
after spending N1 timeslots, returns a schedule vector as the
output. This output vector is then used to schedule users in the
next following frame.

It is not difficult to show that the above static policy stabilizes
the network for all rates interior to θs

N1
Γ, where

θs
N1

= inf
‖X‖=1

φ(X, N1)
χ(X)

.

Thus, the best static policy, in terms of the region θs
N1

Γ, is the
one that maximizes θs

N1
. Let θs

o be the maximum value. We
have that

θs
o = max

N1∈N1
inf

‖X‖=1

φ(X, N1)
χ(X)

.

Therefore, the best static policy corresponds to a maxmin
problem. Considering the definition of θ∞ and θs

o, and that

8This statement is in fact a direct result of Lemma 4 in [23], which is omitted
due to page limitation.

9DCP also does not require the exact knowledge of channel state statistics.
However, a practical implementation of DCP requires Nc to be related to the
convergence-rate of channel process to its steady state.



the minmax of a function is always larger than or equal to
the maxmin, we have that θs

oΓ ⊆ θ∞Γ. More generally, using
the above definitions and a simple drift analysis, we can show
that the stability region of static policies is not larger than the
limiting stability region of DCP.

3) Tightness of θ∞ and θs
o: Note that parts (a) and (b) of

the theorem do not exclude the possibility of networks being
stable under DCP for rates outside of θΓ or θ∞Γ. Part (c) of
the theorem, on the other hand, compliments parts (a) and (b),
and shows that for some networks the region θ∞Γ is indeed the
largest scaled version of Γ that can be stably supported under
DCP. This for instance may happen when the channel state
vector is statistically symmetric with respect to users [23]. The
same discussion also applies to θs

N1
and the stability region

of static policies. We therefore have θ∞ and θs
o both as tight

measures, stating that for some networks, including the ones
in the next section, DCP can increase throughput efficiency of
static policies by a factor of θ∞−θs

o

θs
o

. Analytical quantification
of this gain is an interesting problem and is left for future
research.

4) Delay and Distributed Implementation: Note that getting
close to the boundary of θ∞Γ increases delay. This follows
from part (b) of the theorem stating that for input rates close
to the boundary, L1 and Nc should be large. These choices, as
expected, increase the length of test and update intervals, which
can potentially be large intervals of sub-optimal transmissions
in terms of the value used for N1. This in turn makes data wait
in queues before transmission, thus increasing the delay.

Assuming algorithm A is decentralized [6][4][5][8], DCP can
be implemented in a distributed manner with low overhead.
This is possible since consistent implementation of DCP in all
nodes requires updates of only queue backlog and nodes’ time-
average of backlog-rate product, and such updates are needed
only over long time intervals. Further discussion of this topic
is provided in [23].

VI. CASE STUDIES

In this section, we present two examples that provide further
insight into our analytical results and the performance of DCP.
To be able to compare the simulation results with analytical
ones, we consider a small network consisting of two data flows
in the downlink of a wireless LAN or a cellular network. In this
case, s(t) is the vector of channel gains, and we assume the
schedule vector is the power allocation vector, i.e., I = P =
(p1, p2), with constraint

p1 + p2 = Pt,

where Pt is total power budget. Assuming super-position cod-
ing is used in the downlink, if s1(t) < s2(t), then [25]

D1(s(t),P) = log
(
1 +

p1|s1|2
p2|s1|2 + n0

)
,

and

D2(s(t),P) = log
(
1 +

p2|s2|2
n0

)
.

If s1(t) ≥ s2(t), we obtain similar expressions for user rates
by swapping the role of one user for another.

For illustration purposes, we assume that algorithm A in
every step, i.e., during each timeslot, reduces the gap to the
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optimal backlog-rate product. Specifically, if the initial gap
corresponding to the initial power vector I(0), assumed to be
chosen randomly, is ∆0, then after i steps the gap is decreased
to ∆i, where

∆i = XD∗(X, s) − XD(s, I(n))

=
1
βi

(
XD∗(X, s) − XD(s, I(0))

)
=

∆0

βi
,

where β > 1. This case corresponds to g(n) = (1 − ζi) with
ζ = 1

β , where g(n) is introduced in Section IV-A.

Having specified rates and algorithm A, as the first example,
we assume that the channel state is Markovian with two
possible state vectors, namely, s1 = (1, 5) and s2 = (5, 1),
where the channel in each transition takes a different state
with probability pt = 0.3. For this case, we set α = 0.06,
Nc = 12000, L1 = 32, β = 1.7, N1 = {N1 : 1 ≤ N1 ≤ 6},
n0 = 10, and pt = 50. To study the stability region, we
consider the rate vector a = (2.4181, 2.4181) which belongs
to the boundary of Γ corresponding to this example. We then
assume the arrival vector is γa, where γ is the load factor, and
varies from 0.84 to 0.92. Fig. 2 depicts the resulting average
queue sizes. For loads larger than 0.93, the queue sizes increase
with time implying network instability. The range selected for
γ is motivated by noting that θ∞ = 0.9447, which is computed
numerically. Considering the growth of average queue sizes in
Fig. 2, we therefore see that for this example θ∞ is indeed
an upper bound for capacity region scaling. In fact, part (c) of
Theorem 1 applies to this example, and any rate of the form
(θ∞ + ε)a, ε > 0, makes the network unstable.

As for the second example, we increase the number of states



to six corresponding to the following state vectors:

s1 = (1, 5), s2 = (5, 1),
s3 = (1, 2), s4 = (2, 1),
s5 = (2, 5), s6 = (5, 2),

and having the following symmetric transition matrix:

Tm =




0.3 0.1 0.2 0.1 0.2 0.1
0.1 0.3 0.1 0.2 0.1 0.2

...
...

...
...

. . .
0.1 0.2 0.1 0.2 0.1 0.3


 . (9)

For this case, we keep the same Nc, L1, and N1, but assume
α = 0.02, β = 1.5, n0 = 50, and pt = 10. Similar to the
previous example, to vary arrival rate vector, we consider the
rate vector a = (0.6952, 0.6952) which belongs to the boundary
of Γ associated with this example. Then, the arrival vector is
assumed to be γa, where the load factor γ varies from 0.67
to 0.76. The resulting average queue sizes are also shown
in Fig. 2. In this case, for load factors larger than 0.76, the
queue sizes increase with time, suggesting network instability.
This result is consistent with our analytical results since the
numerically computed value of θ∞ is 0.7762. Note that part (c)
of Theorem 1 also applies to this example, and any rate of the
form (θ∞ + ε)a, ε > 0, makes the network unstable.

Finally, in Fig. 3, for the two examples, we have shown
θs

N1
10 as a function of N1, and also shown the value of θ∞ for

DCP. As expected and the figure suggests, since DCP adapts
N1 according to queue backlog, it outperforms the best static
policy. We also see that the optimal stationary policy for the
first example is the one with N1 = 3 and θs

o = 0.9122,
and for the second example is the one with N1 = 2 and
θs

o = 0.7511. Note that characterization of the best static policy
requires computation of φ̃(X), which, as briefly discussed
in Section V-D1, can be computationally intensive. From the
figure, we also observe that the performance of a suboptimal
static policy can be substantially less than DCP if the static
policy does not assume a proper value for N1.

VII. CONCLUSION

In this paper, we have considered the problem of scheduling
in time-varying networks from a new perspective. Specifically,
in contrast to previous research which assumes the search-
time to find schedule vectors is negligible, we have considered
this time, based on which we modeled the time-efficiency of
sub-optimal algorithms. Inspired by this modeling, we have
proposed a dynamic control policy that dynamically but in a
large time-scale tunes the time given to an available sub-optimal
algorithm according to queue backlog and channel correlation.
Remarkably, this policy does not require knowledge of input
rates or the structure of available sub-optimal algorithms, nor
it requires exact statistics of channel process. We have shown
that this policy can be implemented in a distributed manner
with low overhead. In addition, we have analyzed the stability

10Note that for both examples, the region θs
N1

Γ is either maximally stable
or very close to the maximal stable region of the form (θs

N1
+ ε)Γ, where

ε < 10−5. This can be easily verified through numerical values for φ̃(X), and
the proof of part (c) of Theorem 1.

region of the proposed policy and showed that it performs at
least as efficient as any other static policy. We believe that study
and design of similar policies opens a new dimension in the
design of scheduling policies, and in parallel to the efforts to
improve the performance of sub-optimal algorithms, can help
boost the throughput performance to the capacity limit.

APPENDIX

Proof of Theorem 1: For the lack of space, we only
provide the proof of part (a) of the theorem, with some
intermediate steps omitted. The complete proof of the theorem
is provided in [23].

The proof of part (a) consists of two main parts. First, using
several lemmas, we obtain a negative drift with a random
number of steps. In the second part, we use the negative drift
analysis to show that the return time to a bounded region
has a finite expected value, and conforms to the properties
required for network stability, according to the definition given
in Section V-A1.

We start by noting that θ ≤ 1, and since a is strictly inside
θΓ, there must be some non-negative constants βs,I with the
property that for all s ∈ S∑

I∈I
βs,I < θ ≤ 1, (10)

such that

a =
∑
s∈S

π(s)
∑
I∈I

βs,IDs,I. (11)

Considering (10), we can define positive ξ′ as

ξ′ = θ − max
s∈S

∑
I∈I

βs,I.

Since ξ′ > 0, by the definition of θ, for ‖Xt‖ �= 0, we have
that

R∞(φ̃(t) − α − 3θϕ)
χ(Xt)

− max
s∈S

∑
I∈I

βs,I > ξ′ > 0. (12)

To proceed with the proof, associated with a given time t,
we define a sequence of random variables {τi}∞i=−1, where τ−1

and τ0 denote the number of timeslots to the last timeslot of the
previous and the current scheduling round, respectively, and τi,
i ≥ 1, is the number of timeslots to the last timeslot of the ith

subsequent scheduling round. Let Ht denote the past history
of the system up to and including time t. Thus, given Ht, the
value of Xt is known. Let f(·) be defined as

f(X) = ‖X‖2,

Considering a τK +1-step drift with function f(·), we can write

∆(τK + 1) = E[f(Xt+τK+1) − f(Xt)|Ht]

= E[
τK∑
k=0

f(Xt+k+1) − f(Xt+k)|Ht]

= E[
τK∑
k=0

(Xt+k+1 + Xt+k)(Xt+k+1 − Xt+k)|Ht].

Using the fact that arrivals and departures are bounded, after



performing some preliminary steps, we can show that

∆(τK + 1)

≤ E

[
(τK + 1)C1 + (τK + 1)2C2

+ 2
τK∑
k=0

(XtAt+k − Xt+kDt+k)
∣∣Ht

]
,

for appropriate constants C1 and C2. Since Xt+kDt+k ≥ 0,
we have

∆(τK + 1) ≤ E

[
(τK + 1)C1 + (τK + 1)2C2

+ 2
τK∑
k=0

(XtAt+k − Xta)

+ 2
τK∑
k=0

(Xta − Xt+kD∗
t+k)

+ 2
τK∑
k=0

Xt+kD∗
t+k

− 2
τK∑

k=τ0+1

Xt+kDt+k

∣∣Ht

]
,

where D∗
t+k = D∗(X(t + k), s(t + k)). In the following, we

derive an upper bound for ∆(τK + 1).
As mentioned in Section III-A, arrivals are i.i.d with mean

vector a. We can therefore apply the same method used to prove
Lemma 1 in [23] to obtain

E
[‖ τK∑

k=0

At+k − (τK + 1)a‖ ∣∣Ht

] ≤ εE
[
(τK + 1)|Ht

]
,

where ε > 0, and can be made arbitrarily small by choosing a
sufficiently large K.

Using the above inequality, Lemma 2, Lemma 3, and
Lemma 4, as provided in [23], all with the same choice for
ε, we can show that

∆(τK + 1) ≤ E
[
(τK + 1)‖Xt‖χ(Xt)(

ε1 + 2
(
max
s∈S

∑
I∈I

βs,I − R∞(φ̃(t) − α − 3θϕ)
χ(Xt)

))∣∣Ht

]
, (13)

where

ε1 =
1

χ(Xt)

( C1

‖Xt‖ +
C2(τK + 1)

‖Xt‖ + 8ε
)
. (14)

Note that according to the lemmas, ε can take any given positive
real number if K and ‖Xt‖ are sufficiently large.

We can show that ε1 < ξ′ if K is chosen sufficiently large,
and ‖Xt‖ > MK , for an appropriately large MK [23]. Using
these assumptions, (13), and (12), we have that

∆(τK + 1) < −E
[
ξ′‖Xt‖(τK + 1)χ(Xt)

∣∣Ht

]
.

This inequality and that for ‖X‖ �= 0, χ(X) ≥ υ√
N

, for some
positive υ > 0 [23], further imply that

∆(τK + 1) < −E
[
ξ(τK + 1)‖Xt‖

∣∣Ht

]
, (15)

where ξ = υ√
N

ξ′ > 0. We, therefore, have obtained the negative
drift expression, completing the first part of the proof.

Note that in above τK is a random variable, and in fact, is a

stopping time with respect to the filtration H = {Ht}∞t=0. This
means that we have obtained a drift expression that is based on
a random number of steps. Proofs of stability in the literature,
however, are often based on a negative drift with a fixed number
of steps. This contrast has motivated us to adopt an interesting
method recently developed in [9]. This method is general since
it can be applied in both cases, and also leads to an intuitive
notation of stability. However, it has been originally developed
for Markov chains. Therefore, as well as using less technical
notations, in what follows, we apply minor modifications to the
method so that it is appropriate in our context.

We now, in the second part of the proof, use the negative
drift, and prove that the expected value of the return time to
some bounded region is finite in a manner that renders network
stable. Let C denote the bounded region, and be defined as

C = {X ∈ RN , ‖X‖ ≤ MK}.
Associated with C, we define σC to be the number timeslots
after which the process {Xt+i}∞i=0 enters C, i.e.,

σC = inf{i ≥ 0 : Xt+i ∈ C}.
Similarly, we let τC be

τC = inf{i ≥ 1 : Xt+i ∈ C}.
Therefore, τC , in contrast σC , characterizes the first time that
the process {Xt+i}∞i=1 returns to C.

Back to the drift expression in (15), let η be a random
variable defined by

η = ξ(τK + 1)‖Xt‖.
We obtain, for K sufficiently large,

E[f(Xt+τK+1) + η|Ht] ≤ f(Xt), (16)

provided that ‖Xt‖ > MK . Let η0 = η, and τK,0 = τK ,
where η and τK are random variables defined by considering
time t. We now consider time t

(1)
K = t + τK,0 + 1. For this

particular time, we can define another pair τK,1 and η1 such
that if ‖X

t
(1)
K

‖ > MK , then

E[f(X
t
(1)
K +τK,1+1

) + η1|Ht
(1)
K

] ≤ f(X
t
(1)
K

),

where τK,1 is the number of timeslots from time t
(1)
K to the last

timeslot of the Kth subsequent scheduling round, and

η1 = ξ(τK,1 + 1)‖X
t
(1)
K

‖.
Note that the definition of τK,1 and η1 is independent of
whether the previous inequality holds.

We can continue this process by considering the drift criteria
for time t

(i)
K = t

(i−1)
K + τK,i−1 + 1, and defining random

variables τK,i and ηi. The random variables τK,i and ηi have a
similar definition as τK,1 and η1, respectively, except that they
are associated with time t

(i)
K . Using these definitions, we can

define t
(i)
K more precisely by

t
(0)
K = t,

t
(i)
K = t

(i−1)
K + (τK,i−1 + 1) = t +

i−1∑
j=0

(τK,j + 1).

Note that t
(i)
K is a stopping time with respect to H. Using t

(i)
K ,



we set

X̄i = X
t
(i)
K

, i ≥ 0, (17)

and define Hτ as the filtration given by Hτ = {H
t
(i)
K

}∞i=0. In
addition, associated with ηi, which is given by

ηi = ξ(τK,i + 1)‖X
t
(i)
K

‖,
we define η(i) as

η(0) = 0, η(i) =
i−1∑
j=0

ηj . (18)

We also define ν as

ν = inf{i ≥ 0 : t
(i)
K ≥ t + σC}, (19)

which is a stopping time with respect to Hτ . Intuitively,
i = ν marks the first time t

(i)
K at or before which the process

{Xt+i}∞i=0 enters C. We finish the chain of definitions by
introducing the sequence {Zi}∞i=0, where

Zi = f(X̄i) + η(i). (20)

For i < ν, using (18), we have

E[Zi+1|Ht
(i)
K

] = E
[
f(X̄i+1) + ηi|Ht

(i)
K

]
+ η(i)

≤ f(X̄i) + η(i) = Zn, (21)

where the first equality follows from the fact that η(i) is
completely determined given H

t
(i)
K

, and the inequality is simply
an immediate result of (16) and the assumption i < ν. To
simplify the notation, let ν ∧ i denote

ν ∧ i = min(ν, i).
It now follows directly from (21) that the sequence {Zν∧i}∞i=0

is an Hτ -supermartingale. Since f(·) is non-negative, we have

E[η(ν∧i)|Ht] ≤ E[Zν∧i|Ht].
But Ht = H

t
(0)
K

, and {Zν∧i}∞i=0 is a supermartingale. Hence,

E[Zν∧i|Ht] = E[Zν∧i|Ht
(0)
K

]

≤ Z0 = f(Xt).
Considering the last two inequalities, we obtain

E[η(ν∧i)|Ht] ≤ f(Xt). (22)

In addition, using the definition of η(i) and ηj while assuming
MK > 1, it is easy to see that

η(ν∧i) =
i−1∑
j=0

ηj1(j<ν) ≥ ξ

i−1∑
j=0

(τK,j + 1)1(j<ν)

= ξ(t(ν∧i)
K − t). (23)

Applying the monotone convergence theorem [20], we can take
the limit in (22) and (23) as i → ∞ yielding

E[t(ν)
K − t|Ht] ≤ ξ−1f(Xt).

But by definition in (19), σC ≤ t
(ν)
K − t. Thus, for Xt /∈ C

E[σC |Ht] ≤ ξ−1f(Xt).
If Xt ∈ C, we have σC = 0. Hence, we have that

E[σC |Ht] ≤ ξ−1f(Xt)1Xt /∈C ,

showing that the expected σC is bounded by a function of Xt

uniformly in the past history and t, as required.
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