
Virtual Backbone Generation and Maintenance in
Ad Hoc Network Mobility Management

Ben Liang and Zygmunt J. Haas
School of Electrical Engineering, Cornell University, Ithaca, NY 14850
email: liang@ee.cornell.edu, haas@ee.cornell.edu

Abstract—In this paper, we present the implementation issues of a vir-
tual backbone that supports the operations of the Uniform Quorum System
(UQS) and the Randomized Database Group (RDG) mobility management
schemes in an ad hoc network. The virtual backbone comprises nodes that
are dynamically selected to contain databases that store the location infor-
mation of the network nodes. Together with the UQS and RDG schemes,
the virtual backbone allows both dynamic database residence and dynamic
database access, which provide high degree of location data availability
and reliability. We introduce a Distributed Database Coverage Heuristic
(DDCH), which is equivalent to the centralized greedy algorithm for virtual
backbone generation, but only requires local information exchange and lo-
cal computation. We show how DDCH can be employed to dynamically
maintain the structure of the virtual backbone, along with database merg-
ing, as the network topology changes. We also provide means to maintain
connectivity among the virtual backbone nodes. We discuss optimization is-
sues of DDCH through simulations. Simulation results suggest that the cost
of ad hoc mobility management with a virtual backbone can be far below
that of the conventional link-state routing.

I. INTRODUCTION

In the ad-hoc network architecture, there is no pre-existing
fixed network infrastructure. Nodes of an ad-hoc network are
mobile hosts with similar transmission power and computation
capabilities. Direct communication between any two nodes is
allowed when adequate radio propagation conditions and net-
work channel assignment exist, in which case we say that these
two nodes are neighbors. Otherwise the nodes communicate
through multi-hop routing [1]. The lack of fixed infrastruc-
ture suggests that some network functions, otherwise handled
by the wireline backbone, must now be maintained by the no-
madic nodes in the ad-hoc network.

Most of the proposed and existing systems directly send data
packets to a destination node through pre-determined routes,
without using any specialized databases to store the mobile
nodes’ location. To achieve this, the initiating node must ei-
ther already have an up-to-date routing table to all the nodes in
the network (pro-active routing) or try to determine the route on
demand (reactive) [2]-[4], or, as more recently proposed, a com-
bination of both [1]. For a large network with many nodes and
frequent topology change, direct routing potentially poses very
high traffic and computational demands. Multi-level ad-hoc
routing schemes [5]-[7] with similarity to the cellular wireline-
wireless hierarchy were also proposed, in which all packets are
sent from the initiating node to the destination through a set of
backbone nodes which comprises a centralized subnet. Since
every packet within the network must go through the subnet,
these schemes impose very high demand of channel bandwidth
and node stability on the backbone.

We have previously proposed ad-hoc mobility manage-
ment schemes that utilize location databases. These location

databases form a virtual backbone that is dynamically dis-
tributed among the network nodes [8][9] and serve only as con-
tainers for location storage and retrieval. Routing is carried out
in the flat network structure (see reference [1]). That is, the
routes do not necessarily go through the databases. However,
the node location in the databases can provide important infor-
mation to the routing protocol, so that route searching is more
localized.

Nodes containing the location databases can dynamically de-
tach and re-attach to the network at any time due to mobile
movements or changes in the communications environment.
However, the ups and downs of a database’s connectivity to
the network should have minimum effect on the other nodes’
communication. This imposes significant challenge in the de-
sign and operation of an ad-hoc network. The traditional al-
gorithms for mobility management, which rely on the base-
stations and Mobile Switching Centers, are not applicable here.
For example, in the HLR1-like schemes, which mimic the cel-
lular networks and set up fixed association between mobiles
and databases, the databases would too often fail to provide the
sought mobile’s location due to frequent disconnections of the
databases.

One obvious extension to the IS-41 and the GSM HLR/VLR2

schemes is to use multiple HLRs in ad-hoc networks. In such a
case, unless all HLRs have failed (probability of such an event
can be made small using large number of HLRs) the location
information is available to the call initiating mobile host. How-
ever, such schemes suffer from the disadvantages of fixed asso-
ciation between databases and the mobiles that store these loca-
tions.

An improvement to this scheme is to dynamically assign net-
work nodes to perform the HLR function depending on the time-
varying network node stability. When a node that serves as an
HLR disconnects from the rest of the network, a new active node
should be chosen to generate and maintain a new HLR with the
same identity as the disconnected one. Such a “virtual HLR”
or “adaptive HLR” scheme severs the association between a
location database and the mobile host where the database re-
sides. However, the rigid association between a mobile and the
databases where the mobile’s location information is stored is
still maintained.

In [8] and [9], we proposed two location database arrange-
ment schemes, namely, Uniform Quorum System (UQS) and
Randomized Database Group (RDG), that are doubly dis-

�Home Location Register
�Visitor Location Register

tributed. Both of them dynamically assign network nodes to
contain the location databases through employment of a virtual
backbone, which is assumed to have been dynamically formed,
contingent upon the network node stability and traffic and mo-
bility patterns. At the same time, they allow a mobile to access
randomly chosen groups of databases, which provide more ro-
bust and reliable location data availability than the fixed HLR
schemes.

At any instant, some location databases in an ad-hoc network
may have failed or may be separated from the network. How-
ever, because of the dynamic nature of the mobile and database
association in the UQS and RDG schemes, as long as at least one
quorum or database group remains, location updating and loca-
tion querying are still possible in the entire network. This is not
true for the HLR-like schemes, where loss of some HLRs, even
though small in number, can often disable part of the network.
Moreover, we have shown that the “adaptive HLR” scheme is a
limiting case of both the UQS and the RDG schemes, and is in
general inferior.

Thus, the distribution of responsibility among the databases
is the key benefit of employing the UQS and RDG structures of
database arrangement over a virtual backbone for ad hoc net-
work mobility management. The virtual backbone architecture
is the foundation for allowing dynamic location database resi-
dence in the UQS and RDG schemes, which provides high de-
gree of location data availability and reliability.

However, [8] and [9] do not specify how to generate and
maintain the virtual backbone. Reference [5] introduces a dis-
tributed way of generating a backbone-like set of cluster-heads.
In [6], the creation of a spine architecture is discussed. Both
structures require that every node is within one hop away from a
backbone node, which would lead to too many backbone nodes
and location databases. Therefore, the applicability of these
schemes to our work is limited.

We can consider the generation of a virtual backbone as a
Minimum Set Covering (MSC) problem over a graph represent-
ing the ad hoc network. The MSC problem is known to be NP-
hard, and the greedy algorithm provides the best known approx-
imation to the optimal solution [10]. However, the greedy algo-
rithm is a centralized one, which is not suitable for use here due
to the lack of stability in the ad hoc environment.

In this work, we introduce means to dynamically maintain
the virtual backbone in a distributed fashion. We present a Dis-
tributed Database Coverage Heuristic (DDCH) for virtual back-
bone generation. DDCH generates a virtual backbone with only
local information exchange and local computation. Further-
more, it is shown to be an equivalent, distributed implemen-
tation of the centralized greedy algorithm. DDCH can also dy-
namically regenerate location databases, which update the vir-
tual backbone, maintaining its structural integrity.

The rest of this paper is organized as follows. We first de-
scribe the network model in Section II, and define the scope of
the virtual backbone structure in Section III. We then present
two virtual backbone generation schemes, first the centralized
greedy algorithm and second the equivalent DDCH, in Section
IV. We then explain, in Section V, how the structure and con-
nectivity of the virtual backbone can be dynamically maintained

as the network topology changes over time. Performance evalu-
ations and optimization issues are then discussed in Section VI,
followed by conclusions in Section VII.

II. NETWORK MODEL

We consider an ad hoc network with similarly equipped
nodes, which have the same range of transmission power and ca-
pability. Each node has a fixed transmission radius. We assume
that the nodes find out about their neighbors through a Neigh-
borhood Discovery Protocol, in which periodic self-identifying
‘HELLO’ beacons are broadcast by each node’s transmitter.
Therefore, two nodes are neighbors of each other, if they are
within each other’s transmission radius and hear each other’s
beacon.

Two nodes that are not neighbors communicate through
multi-hop routing. We define the distance between two nodes as
the number of hops in the shortest (minimum-hop-count) path
between these two nodes.

We assume that packets are transmitted between nodes
through unicast communication. We assume that the underlying
CSMA/CA-like MAC layer protocols, such as MACAW [11]
or DBTMA [12], provide reliable shared access to the unicast
channel, and solve the problems of hidden and exposed termi-
nals.

We define the location of a node in terms of its positional
relationships between the node and the other nodes. Note that
the particular definition is irrelevant to the mobility management
scheme presented here. In particular, we will define the loca-
tion of a mobile host as the ID number of its nearest location
database.

We further assume that, although the network topology
changes frequently, the virtual backbone generation and main-
tenance protocols can be carried out much faster than the topo-
logical changes.

III. THE VIRTUAL BACKBONE

The virtual backbone facilitates mobility management with
the UQS or the RDG scheme of location database arrange-
ment. It comprises nodes that contain the location databases.
One location database resides in each virtual backbone node
(we will refer to such a node as a database throughout this pa-
per.) The databases are interconnected through multi-hop con-
nections. When there is no graph partitioning of the network
nodes, the database and the inter-connecting paths form a con-
nected graph. The regular network nodes are connected with the
databases, possibly through multi-hop connections. We further
require that each network node is no more than r hops away
from its nearest database.

Unlike in the physical hierarchical structures, where a back-
bone consists of high power nodes and high capacity links, the
nodes and links within the virtual backbone possess the same
capacity and stability as those of the regular nodes and links.
The network nodes are dynamically selected to join or leave the
virtual backbone based on the changing node movement and
link topology. Therefore, any node can potentially serve as a
database at some point during the time period that it remains in
the network.

The virtual backbone and the non-backbonenodes form a log-
ical two-level hierarchy. A connection can be a multi-hop path
that spans both the backbone and non-backbone nodes. In par-
ticular, the virtual backbone nodes can communicate between
each other through routes that pass by the non-backbone nodes.
Furthermore, the multi-hop nature of database interconnection
does not necessitate that the network routing traffic use the vir-
tual backbone as a major artery. The flat network structure,
where routing involves the regular nodes, should be employed,
which allows balanced loading on the nodes and the links.

In the UQS and RDG schemes, the network nodes query and
update selected groups of the location databases. There are
many ways of accomplishing this. In one scheme, we could
make available to every node the routes to all databases. In an-
other, we could keep the routing information to the databases
among the databases only, so that a non-database node needs to
send its location update or query packet to a nearby database
first, which then forwards the packet to the intended databases.
In this work, we assume that the latter scheme is chosen. Thus,
the virtual backbone nodes need to maintain inter-connection
among themselves at all times. The procedure for virtual back-
bone connectivity maintenance is described in Section V.

As shown in [8] and [9], the number of databases required for
the UQS and RDG structures in the virtual backbone is usually
small compared to the size of the network. Furthermore, we will
show later that the size of the virtual backbone with the optimal
r value is also moderate. Therefore, for a large ad-hoc network,
the cost of mobility management using the virtual backbone is
typically very small compared to routing within the entire net-
work. Besides mobility management, the virtual backbone can
also perform other network functions, such as employing the
database nodes as local congestion control centers for nearby
nodes, or serving as the authentication entity for secure infor-
mation exchange, on which we will not elaborate in this paper.
Thus, the cost of virtual backbone maintenance can by far be
offset by the benefit it gains.

IV. VIRTUAL BACKBONE GENERATION

Given the network topology and a radius r, we would like
to compute a virtual backbone of the minimum size. Since
the communication environment in an ad hoc network changes
rapidly, distribution and localization is key to the establishment
of the virtual backbone. The database selection should be based
on only local computation. At the same time, the locally com-
puted virtual backbone should be small, such that the intercon-
nectivity of databases is easy to maintain.

In this section, we will first introduce the centralized greedy
algorithm, then describe its distributed equivalence, DDCH.

A. Centralized Minimum Set Covering Computation through
the Greedy Algorithm

For each network node, we define an r-zone, which consists
of the node itself and all nodes r or less hops away, where r is
the guaranteed maximum hop count from a node to its nearest
database. Then, this problem can be restated as: find a set of
databases with minimum cardinality, such that every node in the
network is in at least one database’s r-zone. Namely, the virtual

backbone “covers” the entire network.
Thus, the computation of a virtual backbone can be reduced

to the following minimum set covering problem: given a set of
objects V (i.e. nodes) and a collection E of sets of these objects
(i.e. r-zones), find a subset C (i.e. r-zones induced by virtual
backbone)� E of minimum cardinality, such that every element
v � V belongs to at least one of the sets in C.

The MSC problem is well known to be NP-hard. A compar-
ative study of different approximation algorithms for this prob-
lem [10] has suggested that a randomized greedy algorithm with
redundancy elimination gives the best performance (producing
the smallest covering set) in many general situations. A greedy
algorithm for MSC has the structure as follows:

C � �

while �C �� V and E �� �,
X � argmaxY �EfjY jg
C � C � fXg
E � E � fXg
�Y � E, Y � Y �X

end

In the above maximum cardinality computation, ties can be
broken lexicographically or at random. For the randomized
greedy algorithm, the above process is run multiple number of
times, with different random seeds for tie-breaking, and the one
that leads to the minimum solution is taken. It has been shown
that this generally achieves a slightly better solution than a one-
shot greedy implementation, with the penalty of substantial in-
crease in running time [10].

The above procedure can terminate with redundant sets in C.
A redundancy elimination procedure is then applied on the so-
lution:

repeat,
redundancy � maxX�Cfminv�XfjZj � v � Y� Y �
Z�Z � Cgg
if redundancy � �,

C � C � argmaxX�Cfminv�XfjZj � v � Y� Y �
Z�Z � Cgg

end
until redundancy � �

The greedy algorithm for MSC (MSC GR) can be easily com-
puted in polynomial time, provided that a central controller is
given the full information of V and E. However, in an ad hoc
network, centralized control is generally not desirable, due to
the lack of stability in the communication environment. Full net-
work information exchange is prohibitive in an ad hoc network
with large number of nodes and frequently changing topology.

Next, we will show that the greedy algorithm can be imple-
mented in a distributive fashion, if the MSC problem is stated as
zone covering in a graph. We will first discuss the connectivity
issue of an r-zone.

B. Local r-Zone Connectivity Maintenance

An r-zone has similar function as the intrazone structure in-
troduced in [1]. Each node constantly monitors the identity and
connectivity of other nodes within its r-zone. The connectivity

between a node and other nodes within its r-zone can be accom-
plished by any one of the several intrazone routing protocols
suggested in [1].

Here, we assume that a link-state algorithm is employed, with
the range of link update limited to r hops. When a link between
two nodes is broken, this new piece of link-state information is
propagated to all nodes within r�� hops away. When a new link
is established between two nodes, in addition to propagating this
information to all nodes within r� � hops away, each node also
sends to its neighbors a link-state table that contains r-zone link
information updates due to the new link [13]. The node identity
and node state (see Section IV-C) are also sent along with a link-
state update. Thus, a node always has the current identity, state,
and routing information of all nodes within its r-zone. Since
link-state exchange and routing table computation is localized,
the r-zone connectivity maintenance is efficient and robust.

In this way, an r-zone is a basic unit of localized node connec-
tivity maintenance. As we will see later, the optimal selection
of r is one that balances the trade-off between the cost of lo-
cal database computation and the cost of maintaining the virtual
backbone connectivity. Note here that the cost of maintaining
the connectivity of an r-zone is independent of the size of the
network.

C. The Distributed Database Coverage Heuristic

In the ad hoc network under consideration, a node is either a
database or a regular node. A regular node could be in one of
the following three states: normal, panic, or samaritan.

With an ideally functioning virtual backbone, every node is
within r hops from a database. In this case, all nodes are in
the normal state. A node enters the panic state if there is no
database within its r-zone. It stays in the panic state until, either
it becomes a databases, or a database appears in its r-zone, at
which time it either goes into the samaritan state or returns to
the normal state, under conditions to be described. A node in
the samaritan state is connected with a database within r hops,
but it could become a database to cover the panic nodes within
its r-zone, if certain conditions are met. A node in the normal
state does not participate in updating the virtual backbone.

We define the dependency number of a node as the number
of panic nodes that are within r hops from the node (including
the node itself.) Thus, the dependency number of a node is the
number of new nodes to be covered by the virtual backbone, if
the node itself becomes a database.

The centralized MSC GR algorithm can now be rewritten as
(with slight abuse of notation):

C � �

while �C �� V ,
find node v with the maximum dependency number
C � C � fvg
re-compute dependency number

end

Then, the proposed DDCH replaces MSC GR, and generates
a virtual backbone as follows. Initially there is no database in
the network, and nodes are not connected with any database.
Therefore all nodes are in the panic state. A node in the panic or

TABLE I

DDCH FOR PANIC NODES

while panic,
send and receive state packets within �r hops
if self has maximum dependency number

become database node
else

wait for maximum database generation time
if no database appears in r-zone

remain in panic
elseif no panic nodes in r-zone

set state to normal
else

set state to samaritan

samaritan state sends a state packet to all nodes within �r hops
with the following format

ID state dep num hop

where ID is the identity number of the node, state indicates
whether the node is in the panic state or the samaritan state,
dep num is the dependency number, and hop is a hop counter
that is initiated to �r and is decremented by � each time the
packet is forwarded. A node receiving a packet with hop � �
will discard the packet.

A node in the panic or samaritan state collects the state pack-
ets and extract the dependency numbers from all other panic or
samaritan nodes within �r hops. If the node itself has the largest
dependency number (with random tie-breaking), it becomes a
database and joins the virtual backbone. Otherwise, three sce-
narios can occur to a panic node: if no new database appears
in its r-zone within a time threshold specified by the maximum
duration of new database generation after the panic messages,
the node remains in panic, re-computes its dependency number,
and sends out a new state packet. If a new database appears in
its r-zone, and there is no panic node in the r-zone, the node re-
turns to the normal state. If a new database appears in its r-zone
and there are still panic nodes in the r-zone, the node changes
its state to samaritan, re-computes its dependency number, and
sends out a new state packet.

Two scenarios can occur to a samaritan node that does not
have the maximum dependency number. After waiting for the
maximum time of new database generation, if there is no panic
node in its r-zone, the node returns to the normal state. If there
are still panic nodes in its r-zone, the node remains in the samar-
itan state, re-computes its dependency number, and sends out a
new state packet.

The above procedure is performed by all panic nodes in the
network, until each one of them either, 1) becomes a database, or
2) finds a database within r hops. Therefore, at the end, no panic
node is left in the network, and the virtual backbone covers all
nodes.

Thus, the DDCH procedure for panic nodes and samaritan
nodes can be compactly written as shown in Table I and II.

Note that, although we have described the above virtual back-
bone generation procedure in a synchronous fashion, it can be

TABLE II

DDCH FOR SAMARITAN NODES

while samaritan,
send and receive state packets within �r hops
if self has maximum dependency number

become database node
else

wait for maximum database generation time
if no panic nodes in r-zone

set state to normal
else

remain samaritan

carried out asynchronously. In an asynchronous mode of op-
eration, a panic/samaritan node constantly collects the depen-
dency number from nodes within �r hops, and periodically de-
cides, based on the current dependency information at the in-
stant, whether it will become a database or send out a new state
packet. In this case, the procedure still guarantees that the vir-
tual backbone covers all nodes in the network, but the size of
the virtual backbone may not be optimal. Furthermore, since
the exchange of dependency numbers is limited to a local area,
assuming that the network nodes do not move too fast, when the
periodic waiting time is long enough, it is possible to achieve
near synchronous performance.

Theorem I: The DDCH algorithm, while carried out syn-
chronously, generates the same virtual backbone as the central-
ized MSC GR algorithm does.

Proof: Let C be the virtual backbone set computed by
MSC GR. We first prove that all databases selected by the
DDCH are in C.

Let v be a panic or samaritan node turned into a database via
DDCH. Then, at the time when v is still in panic/samaritan, but
is going to become a database, every other panic/samaritan node
in its �r vicinity has a smaller dependency number. At the same
time, the selection of other new databases outside of v’s �r-hop
zone affects the panic nodes only within the r-zone of those
databases. Therefore, the new database selection outside of
v’s �r-hop zone only decreases the dependency numbers of the
nodes r � � or more hops away, but does not change the depen-
dency number of v. Thus, in either the DDCH or the MSC GR
algorithm, v will always have higher dependency number than
the other panic/samaritan nodes within its �r vicinity. No other
node within v’s �r-hop zone would become a database before v
does. Since MSC GR is guaranteed to terminate with all panic
nodes (in particular, those within v’s r-zone) covered by at least
one database, v will eventually be chosen to become a database
in MSC GR.

Secondly, with random tie-breaking, a node with the maxi-
mum dependency number over all panic/samaritan nodes always
exists. This node has the maximum dependency number among
the panic/samaritan nodes in its �r vicinity, and, therefore, will
become a database. Thus, DDCH does not terminate, but keeps
on generating new databases that are also in C, until all nodes
are covered by the virtual backbone.

Thus, given a graph representing the network topology and a
zone radius r, DDCH generates a virtual backbone that has the
same databases as one computed by the centralized MSC GR
algorithm.

Redundant databases can be eliminated once the databases
have established connections among themselves, through the
connectivity maintenance procedure to be described in Section
V-B. We define the coverage multiplicity of a node as the to-
tal number of databases in its r-zone. Then, the redundancy
number of a database is the minimum coverage multiplicity of
all nodes in its r-zone. As shown in Section IV-A, there is re-
dundancy in the database assignment if there exists a database
whose redundancy number is greater than one.

The redundancy elimination procedure can be carried out lo-
cally as follows. First, the redundancy numbers are exchanged
between databases that are �r or less hops apart. Then, ev-
ery database that has the maximum redundancy number among
all databases within its �r-hop zone deletes itself from the vir-
tual backbone set. The above redundancy number exchange and
database deletion continues until the redundancy number of ev-
ery database is reduced to one. Similarly to Theorem I, it’s easy
to prove that this distributed procedure eliminates the same re-
dundant databases as does the centralized one given in Section
IV-A.

Therefore, through only local information exchange and local
computation, DDCH computes the best known polynomial-time
approximating algorithm of generating the minimum covering
virtual backbone set. Next we will show how DDCH can be
employed in an dynamic scheme that updates the virtual back-
bone in order to adapt to the changing network topology.

V. DYNAMIC VIRTUAL BACKBONE MAINTENANCE

In a mobile ad hoc network, the topology is constantly chang-
ing and the graph of the virtual backbone should be updated as
the network topology changes. There are two choices here to ac-
complish this. One is to periodically regenerate the virtual back-
bone through DDCH over the entire network. However, more
preferable is a dynamic scheme that updates the virtual back-
bone concurrently as the network topology changes. Topology
changes in far away parts of the network should not affect the
local databases. Thus, the distribution and local computational
nature of the DDCH algorithm allows it to become an active part
of the dynamic virtual backbone maintenance scheme.

The structure of the virtual backbone is maintained by
DDCH, while the connectivity of the virtual backbone is main-
tained by local beacon exchanges and database mutual link-state
updates.

A. Structural Maintenance

As the network topology changes, a database might move
away from the neighborhood it used to occupied, or it might
totally detach from the network altogether (possibly due to lost
of radio contact, power failure, or jamming signals.) In either
case, the nodes originally covered by this database will either:
1) find another database in their perspective r-zones, or 2) in
the event that no other database is found, enter the panic state.
Nodes in the panic state, along with the samaritan nodes induced

by them, then start the DDCH algorithm to locally generate new
databases, until they are covered again by the virtual backbone.
Redundancy elimination is then performed. In order not to inter-
rupt the operation of the original virtual backbone nodes, only
the newly generated databases are allowed to be eliminated.

The above process repeats as the network topology changes
over time. In order to prevent over-sizing of the virtual back-
bone, databases are erased in regions where there are too many
of them. This can be accomplished by merging two databases
that are within a threshold distance, D hops, of each other,
where D is a design parameter.

We will see in Section V-B that the databases constantly mon-
itor each other’s location and availability through the virtual
backbone connectivity process. When two databases, DB� and
DB�, are within D hops of each other, we first find the number
of nodes in their respective r-zones, n� and n�. If n� � n�, the
content of DB� (in our case, the location information of nodes
who have updated in DB�) is copied into DB�, and then DB�

deletes itself from the virtual backbone, and vice versa. With
database merging, some nodes will be put into the panic state
due to the deletion of the databases covering them. They will
then trigger DDCH to update the virtual backbone.

Database movement, database detachment, and database
deletion have the same effect, and, therefore, are transparent to
the network nodes covered by the databases. When databases
disappear from a region, the neighborhood nodes locally re-
generates new databases to maintain connectivity to the virtual
backbone.

For simplicity of presentation, we assume here that DDCH
is carried out synchronously. Thus, we can view the system
as having a globally synchronized timer, such that database up-
dates are performed starting at some periodic database-updating
instants by all nodes currently in the panic or samaritan state.
We assume that the DDCH algorithm is carried out faster than
the topological changes due to node movement. Thus, DDCH
terminates when enough new databases have been generated to
cover all previous panic nodes.

Given the zone radius r and the merging distanceD, database
merging and regeneration keep the size of the virtual backbone
at a stable equilibrium over time. As we will show in Section
VI, the size of the dynamically maintained virtual backbone is
only slightly larger than the size of a virtual backbone periodi-
cally regenerated by applying DDCH or MSC GR over the en-
tire network.

B. Connectivity Maintenance

In order to facilitate uninterrupted location updates and
queries in the UQS and RDG schemes, as explained in Section
III, a virtual backbone node needs to have up-to-date routes to
all other backbone nodes. Therefore, as the network topology
changes, the databases need to maintain their inter-connectivity.

We approach this problem by first proving the following the-
orem.

Theorem II: In a connected network with the zone radius r,
a database can always find at least one other database within
�r � � hops away.

Proof: Use juvj to denote the distance between two net-

work nodes u and v. Suppose there exists a database u�, whose
nearest database u� is �r � � or more hops away. Then, in a
minimum-hop-countpath between u� and u�, there exists a non-
database node v, such that ju�vj � r � � and ju�vj � r � �.
Furthermore, ju�u�j � ju�vj � ju�vj. Since all nodes are
covered by the virtual backbone, there exists a database u�,
such that ju�vj � r. Thus, ju�vj � ju�vj � ju�u�j. Since
ju�u�j � ju�vj � ju�vj, this leads to ju�u�j � ju�u�j, which
contradicts with the assumption that u� is the nearest database
to u�.

Thus, if we define database adjacency as the state of being
within �r � � hops of distance, the virtual backbone is inter-
connected via paths between adjacent databases.

In order to maintain connectivity between adjacent databases,
database connectivity packets are piggy-backed within the peri-
odic neighborhood discovery beacons by all nodes. The packets
are used by a node to inform its neighbors of the shortest route
from the node to databases within �r hops away. One packet is
transmitted for each database, and it has the following format

ID DB ID hop path

where ID is the identity number of the node, DB ID is the iden-
tity number of the database, hop is distance to the database, and
path is the current route to the database.

In this way, a simple distance-vector protocol is in place to
provide every node a route to databases �r � � hops away. In
particular, the adjacent databases determine the routes between
each other through listening to the beacons and extracting the
database connectivity packets.

Then, any suitable routing protocol can be applied to main-
tain connectivity among all databases, treating the multi-hop
connection between two adjacent databases as a regular radio
link. In this work, we have chosen a link-state like protocol, in
which a database pro-actively monitors the “adjacent-database-
link-state” of the entire virtual backbone.

VI. PERFORMANCE EVALUATION AND OPTIMIZATION

In this work, we are most concerned with the bandwidth us-
age by the control messages in maintaining the virtual back-
bone. The cost of virtual backbone maintenance, in units of
control packets per unit time, is a summation of the cost of
r-zone connectivity maintenance, Czone, the cost of DDCH
database regeneration, CDDCH , the cost of merging databases,
Cmerge, and the cost of virtual backbone connectivity mainte-
nance, Cconnect. The cost of redundancy elimination is omitted
here, since it involves few databases and has negligible magni-
tude. Thus,

Ctotal � Czone � CDDCH � Cmerge � Cconnect �

Simulations are performed with a model ad hoc network with
various values of node density and relative node velocity. Node
density is reflected by the average number of neighbors, n, that
a node has. Node velocity is modeled by a two-dimensional
zero-mean Gauss-Markov process [14]

vxi�� � �vxi � �
p
�� ��uxi

v
y
i�� � �v

y
i � �

p
�� ��u

y
i �

1 2 3 4 5 6
0

20

40

60

80

100

120

zone radius, merging distance = zone radius

si
ze

 o
f v

irt
ua

l b
ac

kb
on

e

dynamic DDCH
full network MSC_GR

Fig. 1. Dynamic virtual backbone through DDCH

where � represents the amount of memory in a node’s veloc-
ity between two time steps, � is the standard deviation of the
velocity, representing how fast a node moves, and ux and uy

are i. i. d., zero mean, and unit variance, Gaussian random pro-
cesses. The velocity in both directions has the units of transmis-
sion radius.

All simulations run with 500 nodes. A square coverage area is
assumed. In order to keep the number of nodes in the coverage
area constant, nodes that move beyond the square boundaries
bounce back with symmetrical incident and reflective angles.

In computing Cmerge, we have assumed that the size of
a database is equal to the total number of nodes in the net-
work. Therefore, merging a database into another means pass-
ing, along a path between this two databases, a packet 500 times
as large as the control packets, such as the state packet sent out
by the panic nodes. In computing Czone and Cconnect, we as-
sume that a link-state updating table is transmitted via a packet
whose size is equivalent to the length of the table times the size
of a control packet.

A. Dynamic DDCH vs. Full Network DDCH/MSC GR

Dynamic virtual backbone maintenance, with DDCH and
databases merging, induces a virtual backbone that is necessar-
ily larger than that created by periodic virtual backbone gen-
eration with full network DDCH/MSC GR. Figure 1 shows a
side-by-side comparison of the average (over time) size of the
virtual backbone induced by dynamic DDCH and full network
DDCH/MSC GR, as a function of the zone radius r, where r
varies from � to �. In every case, the merging distance D is
set equal to r. The other parameters are n � �, � � ���,
and � � ���. We see here that the size of the dynamic virtual
backbone is only about ��� larger than that created in the full
network DDCH/MSC GR, the best known approximation to the
MSC problem.

Figure 2 shows the size of the dynamic virtual backbone
vs. the merging distance D. Here r � 	, and D varies from
� to twice the zone radius. The other parameters are n � �,

1 2 3 4 5 6
0

10

20

30

40

50

60

70

merging distance

VBB size, dynamic DDCH
VBB size, full network MSC_GR
VBB update size [ten], dynamic DDCH

Fig. 2. Effect of merging distance selection

1 2 3 4 5 6
0

2

4

6

8

10

12

14
x 10

4

zone radius

co
st

 o
f z

on
e

m
ai

nt
en

an
ce

Fig. 3. Cost of r-zone connectivity maintenance

� � ���, and � � ���. Also plotted is the size of a virtual
backbone by full network DDCH/MSC GR, and the number of
initial panic nodes right after the database merging (in units of
ten).

We see here that as the merging distance increases, the size
of the dynamic virtual backbone approaches the outcome of
full network DDCH/MSC GR. This is expected, since a longer
merging distance implies that more databases are merged, which
leads to more uncovered nodes, resulting in dynamic DDCH
performing more like full network DDCH. The number of panic
nodes due to merging of the databases at D � � is around 	��,
which is about ��� of the total number of nodes in the network.

Next, we consider the issues of cost trade-off in the zone ra-
dius and merging distance selection.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
x 10

5

merging distance / zone radius

co
st

 o
f d

at
ab

as
e

re
ge

ne
ra

tio
n

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 4. Cost of dynamic DDCH database regeneration

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

4

merging distance / zone radius

co
st

 o
f d

at
ab

as
e

m
er

gi
ng

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 5. Cost of merging databases

B. Optimal Zone Radius and Merging Distance Selection

As stated in Section IV, the zone radius is a parameter that
balances the trade-off between the cost of local connectivity
maintenance and global connectivity management. Figure 3
shows that Czone is an exponentially increasing function of the
zone radius. In Figures 4 - 6, we plot CDDCH , Cmerge, and
Cconnect vs. the merging distance and the zone radius. In each
of these figures, we have n � �, � � ���, � � ���, the zone
radius varies from � to �, and D varies from � to twice the zone
radius.

Figures 4 and 5 show that the cost of DDCH databases re-
generation and the cost of database merging are both increas-
ing function of the merging distance. In particular, the cost of
DDCH becomes significant, when the merging distance is larger
than the zone radius.

These figures also show that the DDCH cost is an increasing
function of zone radius, which is expected, due to the exponen-

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10
x 10

5

merging distance / zone radius

co
st

 o
f V

B
B

 c
on

ne
ct

iv
ity

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 6. Cost of virtual backbone connectivity maintenance

0 0.5 1 1.5 2
0

2

4

6

8

10

12
x 10

5

merging distance / zone radius

co
st

 o
f d

yn
am

ic
 V

B
B

 m
ai

nt
en

an
ce

 /
un

it
tim

e
r=1
r=2
r=3
r=4
r=5
r=6

Fig. 7. Cost of dynamic virtual backbone maintenance

tial increase in the cost of zone connectivity maintenance. On
the other hand, the database merging cost is not very sensitive to
the zone radius change.

Figure 6 shows that the cost to maintain the virtual backbone
connectivity falls sharply as the merging distance increases from
one hop to r hops. For example, in the case of r �
, as D goes
from � to
, Cconnect drops about �� times from ��� � ��� to

�� � ���. However, when D is larger than the zone radius,
Cconnect is mostly independent of D.

This figure also shows that Cconnect is a decreasing function
of r.

Figure 7 shows Ctotal vs. r and D, which is a summation of
the costs shown in Figures 3-6. This figure suggests the optimal
zone size and merging distance for the given ad hoc network.
From the graph, we see that a configuration of r � 	 and D �
	 incurs the minimum dynamic virtual backbone maintenance
cost, which is about ���� ���.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
x 10

5

merging distance / zone radius

co
st

 o
f d

yn
am

ic
 V

B
B

 m
ai

nt
en

an
ce

 /
un

it
tim

e

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 8. Cost of dynamic virtual backbone maintenance for network with �

neighbors per node

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

6

merging distance / zone radius

co
st

 o
f d

yn
am

ic
 V

B
B

 m
ai

nt
en

an
ce

 /
un

it
tim

e

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 9. Cost of dynamic virtual backbone maintenance for network with �

neighbors per node

In general, the optimal zone radius and merging distance vary
with different network parameters. Figure 8 and 9 show Ctotal

vs. r andD for a lower density network, with four neighbors for
each node on the average, and a higher density network, with
eight neighbors for each node on the average, respectively. Both
have the same mobility model as in Figure 7. Figure 10 and
11 show Ctotal vs. r and D for a lower velocity network, with
� � ���� radius/unit time, and a higher velocity network, with
� � ��� radius/unit time, respectively. The other parameters in
both are the same as in Figure 7. In particular, they have the
same database-updating period as described in Section V-A.

From Figure 8, we see that a configuration of r �
 and
D �
 incurs the minimum dynamic virtual backbone main-
tenance cost, which is about ��	 � ���. From Figure 9, we see
that a configuration of either r � � and D � �, or r � 	 and
D � � incurs the minimum dynamic virtual backbone mainte-

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8
x 10

5

merging distance / zone radius

co
st

 o
f d

yn
am

ic
 V

B
B

 m
ai

nt
en

an
ce

 /
un

it
tim

e

r=1
r=2
r=3
r=4
r=5
r=6

Fig. 10. Cost of dynamic virtual backbone maintenance for network with � �

���� radius/unit time

0 0.5 1 1.5 2
2

3

4

5

6

7

8

9

10

11
x 10

5

merging distance / zone radius

co
st

 o
f d

yn
am

ic
 V

B
B

 m
ai

nt
en

an
ce

 /
un

it
tim

e
r=1
r=2
r=3
r=4
r=5
r=6

Fig. 11. Cost of dynamic virtual backbone maintenance for network with � �

��� radius/unit time

nance cost, which is about ��� � ���. Therefore, the optimal
zone radius decreases as the network node density increases.
However, the optimal merging distance is almost always equal
to the zone radius.

From Figure 10, we see that a configuration of either r � 	
and D � �, or r �
 and D � 	 incurs the minimum dynamic
virtual backbone maintenance cost, which is about �� � ���.
From Figure 11, we see that a configuration of r � � and D �
� incurs the minimum dynamic virtual backbone maintenance
cost, which is about ��
 � ���. Therefore, the optimal zone
radius decreases as the network node velocity increases, but the
optimal merging distance is almost always near the zone radius.

Note here that, although the cost of virtual backbone main-
tenance appears to increase slower than the increase in node
velocity, in a system that is designed to match the database-
updating frequency accordingly with the node velocity, the total

TABLE III

COST COMPARISON, WITH VARIOUS NODE DENSITY

n 4 6 8
virtual backbone ��	� ��� ���� ��� ���� ���

link-state ���� ��� ���� ��� ���� ���

TABLE IV

COST COMPARISON, WITH VARIOUS NODE VELOCITY

� 0.05 0.2 0.8
virtual backbone ��� ��� ���� ��� ��
� ���

link-state
��� ��� ���� ��� ���� ���

cost should be linearly increasing with the node velocity.

C. Comparison with Pure Link-State Routing

Since we have used the link-state routing protocol in both r-
zone and virtual backbone connectivity maintenance, it is inter-
esting to compare the cost of the dynamic virtual backbone with
the cost of link-state routing over the entire network. In Table
III, we tabulate the cost of both schemes for three ad hoc net-
works with the same mobility pattern, � � ��� and � � ���, but
different node densities, where n �
, �, and �, respectively. In
Table IV, we tabulate both costs for three ad hoc networks with
the same node density, n � �, but different mobility patterns,
where � � ���, and � � ����, ���, and ���, respectively.

Here we see that dynamically maintaining the virtual back-
bone costs only about ��� as much as the link-state protocol.
Of course, this is not a fair comparison, since maintaining the
virtual backbone does not give a message initiating node a di-
rect route to the destination node. However, this does provide
a metric, against which the efficiency of the DDCH dynamic
virtual backbone maintenance scheme is measured.

As shown in [8] and [9], with suitable database arrangement
schemes such as UQS and RDG, the node location information
stored in the databases are easily accessible. At the very least3,
after obtaining the identity number of the destination node’s
nearest database through database queries, a message initiating
node can use the readily available routes between the databases
to forward the message to the destination. Therefore, in this
sense, maintaining the virtual backbone does provide a route
between nodes, which justifies the above comparison.

More importantly, the cost of link-state is a heavier-than-
linear increasing function of the node density, which is the case
with many other direct routing protocols. However, the cost of
virtual backbone maintenance seems to be an sub-linear func-
tion of the node density, suggesting that it is scalable to large
and dense networks.

VII. CONCLUSIONS

In this paper, we have described the implementation details of
a virtual backbone that supports the operations of the UQS and

�However, we do not recommend this mode of operation. Routing should be
carried out among all nodes and links, so as not to create congestion within the
virtual backbone. The exact routing methods are not within the scope of this
paper.

RDG schemes for mobility management in ad hoc networks. We
have presented a locally computed Distributed Database Cover-
age Heuristic for virtual backbone generation, which is shown
to be equivalent to the centralized greedy algorithm for comput-
ing a minimum covering database set. With DDCH, database
merging, and a database connectivity maintenance protocol, the
virtual backbone can be dynamically maintained as the network
topology changes. Simulation results show that the dynamically
maintained virtual backbone has the size of only ��� above
that of the minimum set covering approximation provided by
the greedy algorithm, which is the best known polynomial time
algorithm for MSC.

Due to the local computation nature of the DDCH scheme, the
adaptation to topological changes is fast, and the virtual back-
bone is scalable to various network size, density, and node ve-
locity. With optimally chosen r-zone size and database merging
distance, the cost of maintaining the virtual backbone is only
about one tenth of the cost of a link-state protocol applied to the
ad hoc network.

We have previously shown that proper utilization of location
databases can lead to highly robust node location information
access in ad hoc networks, even though the connectivity of such
a network is inherently unstable due to its lack of fixed infras-
tructures. Used together with suitable database arrangements,
such as the UQS and RDG scheme, the dynamically main-
tained virtual backbone can provide the efficiency and reliability
sought in in ad hoc mobility management.

REFERENCES

[1] M. R. Pearlman and Z. J. Haas, “Determining the optimal configuration
for the Zone Routing Protocol,” IEEE Journal on Selected Areas in Com-
munications, vol. 7, no. 8, pp. 1395-1414, August 1999.

[2] J. J. Garcia-Luna-Aceves et al, “Analysis of routing strategies for packet
radio networks,” Proceedings of IEEE INFOCOM’85, Washington, DC,
March 1985.

[3] B. M. Leiner, D. L. Nielson, and F. A. Tobagi, “Issues in packet radio
network design,” Proceedings of the IEEE, vol. 75, pp. 6-20, January 1987.

[4] J. Jubin and J. D. Tornow, “The DARPA packet radio network protocols,”
Proceedings of the IEEE, Special Issue on Packet Radio Networks, vol. 75,
pp. 21-32, January 1987.

[5] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design concept for
reliable mobile radio networks with frequency hopping signaling,” Pro-
ceedings of the IEEE, vol.75, no.1, 1987.

[6] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum
connected dominating sets,” IEEE Int. Conf. on Communications, June,
1997.

[7] J. Sharony, “A mobile radio network architecture with dynamically chang-
ing topology using virtual subnets,” MONET, vol. 1, no. 1, pp. 75-86,
1996.

[8] Z. J. Haas and B. Liang, “Ad hoc mobility management with uniform quo-
rum systems,” ACM/IEEE Transactions on Networking, vol. 7, no. 2, pp.
228-240, April 1999.

[9] Z. J. Haas and B. Liang, “Ad hoc mobility management with randomized
database groups,” Proceedings of IEEE ICC, June 1999.

[10] T. Grossman and A. Wool, “Computational experience with approxima-
tion algorithms for the set covering problem,” European Journal of Oper-
ational Research, no. 101, pp. 81-92, 1997.

[11] V. Bharghavan, S. Shenker, D. Demers, and L. Zhang, “MACAW: a
medium access protocol for wireless LANs,” Proceedings of ACM SIG-
COMM, August 1994.

[12] Z.J. Haas and J. Deng, “Dual Busy Tone Multiple Access (DBTMA) -
performance evaluation,” Proceedings of IEEE VTC, May 1999

[13] Z. J. Haas and M. R. Pearlman, “The Zone Routing Protocol (ZRP) for
ad Hoc networks,” Internet Draft, draft-ietf-manet-zone-zrp-02.txt, June
1999.

[14] B. Liang and Z. J. Haas, “Predictive distance-based mobility management
for PCS networks,” Proceedings of IEEE INFOCOM, March 1999.

