
Balancing Interruption Frequency and Buffering
Penalties in VBR Video Streaming

Guanfeng Liang and Ben Liang
Dept. Electrical and Computer Engineering

University of Toronto
Email: {guanfeng, liang}@comm.utoronto.ca

Abstract—The main goal of a streaming application is to enable
the successful decoding of each video object before its displaying
deadline is violated, and to recover from a deadline violation
properly. Hence, we define the main performance metric of
a streaming system as the number of interruptions during a
video presentation, or the number of jitters. Previous literature
has described solutions to estimate the jitter-free probability
for an entire video segment. In this work, we present a novel
analytical framework, which requires only a Markov Variable
Bit Rate (VBR) channel model, to study the frequency of jitters
under the constraint of initial playback delay, receiver buffer
size, and different jitter recovering schemes. Both the infinite
and finite buffer cases are considered. This technique is then
applied to investigate streaming over a wireless system modeled
by an extended Gilbert channel with ARQ transmission control.
Experimental results with MPEG-4 VBR encoded video validate
our analysis. Finally, we show that the proposed analysis provides
a theoretical foundation to quantify the tradeoffs between the
jitter frequency, jitter recovering delay, initial delay, and the
receiver buffer size for a general class of VBR streaming over
random VBR channels with different jitter recovering schemes.

I. INTRODUCTION

Mobile devices of the near future are expected to bring
ubiquitous access to streaming multimedia services, such as
TV news, music video, and online movie. Streaming multime-
dia are likely to become major applications in future mobile
systems and may indeed be a key factor for their success. How-
ever, wireless multimedia delivery faces several challenges,
such as bandwidth scarcity, random channel variation, and
limited storage capacity [1], [2]. In this work, we focus on
the streaming of pre-encoded video to wireless clients, taking
into account these system constraints and limited resources.

A general media streaming system is illustrated in Figure 1.
This system consists of a media streaming server, a transport
channel, and a streaming client. The server stores a number
of pre-encoded video objects in the wired backbone network.
We consider general variable bit-rate (VBR) encoded videos,
with non-linear playback curves [3]. These video objects are
accessed by the clients, through a wire or wireless access
network.

In general, the transmission rate of the channel varies over
time. Video display interruption may occur if data are not
delivered on time when the transmission rate does not match
the encoded rate. We term the event of playback interruption
playout jitter, or jitter. Clearly, jitter reduces the perceived
video quality and is undesirable in video streaming.

Base Station

VBR
Channel Receiver

Buffer
Network

Backbone
Server

Streaming

b
it

s

t

b
it

s

t

Mobile Client

Receiver CurvePlayback Curve Playout Curve

t

b
it

s

Fig. 1. A typical wireless media streaming system.

Depending on the channel condition and the chosen jitter
recover scheme, a client may experience a number of jitters
and some jitter buffering delay every time jitter occurs. From
a client’s point of view, the frequency of jitters experienced
should not be too high, and the jitter-recovery delays should
not be too long, either. Unfortunately, these two objectives
conflict with each other. To address the balancing of this
tradeoff is uniquely important to streaming media systems.

In this work, we present an analytical framework to quantify
the fundamental tradeoffs between the frequency of jitters,
jitter-recovery delay, the initial playout delay, and the receiver
buffer size, in order to optimize the streaming of VBR encoded
video over a random VBR channel. Our main contributions in-
clude the following: First, we propose an analytical framework
to derive the distribution of the number of jitters, for three
different jitterrecovery buffering schemes, and for both infinite
and finite buffering cases. The proposed analysis technique
provides a means to compute the frequency of jitters for
a general class of VBR multimedia streaming over random
VBR channels. Second, we apply the proposed analysis toward
optimal streaming over a general wireless network. Numerical
analysis results are obtained for wireless systems modeled by
a generic Markov channel with ARQ transmission control.
Finally, experiments using sample MPEG-4 video traces are
carried out to validate the proposed analysis and provide new
insight into the optimal balancing of delay, buffering, and
jitters for optimal multimedia streaming.

The rest of this paper is organized as follows. We discuss
related work in Section II. The network model is presented
in Section III. In Section IV, an analytical framework is
presented to derive the jitter frequency given different initial
delay values and receiver buffer sizes. This framework is
applied to study the performance of three different jitter-
recovery buffering schemes. Section V provides the numerical
and experimental results for streaming MPEG-4 videos over
a wireless system and discusses the performance tradeoffs.
Conclusions are drawn in Section VI.

II. RELATED WORK

One obvious way to avoid jitter is to start displaying the
video only after it is fully downloaded. By doing this, jitter
is completely avoidable, but it also results in the longest
initial delay and the maximal buffer size, which is generally
unacceptable, especially for small wireless devices. In practice,
the system buffers a certain portion of video data at the client
before displaying the video, so that transient packet losses and
delay do not constantly interrupt the playout of the stream.
Intuitively, the more data is buffered, the fewer jitters will
occur in the future, but the initial/jitter delay induced by
buffering increases, too. For this reason, system designers must
trade the reliability of uninterrupted playback against delay
and buffer size.

In this context, Sen et al. proposed an online smoothing
technique for VBR streaming video in [4] by introducing a few
seconds of startup delay and a client buffer to compensate for
the variation of video encoding rate. The authors of [5] used
network calculus analysis to derive an optimal multimedia
smooth scheme. However, both schemes require a dedicated
smoothing server or an intermediate smoothing node and
only consider a wired network offering guaranteed bandwidth
service. Therefore these schemes are not suitable for error-
prone networks such as wireless streaming systems.

The authors of [6] introduced the concept of having two
buffers at the receiver - a delay jitter buffer and a decoder
buffer. The delay jitter buffer is used to compensate for the
delay jitter introduced by the channel and to reduce bit rate
variations caused by the VBR behavior of the channel. By
choosing a suitable initial delay, the jittered streaming data
is de-jittered by the delay jitter buffer and a virtual constant
bit rate (CBR) channel is formed at the input of the decoder
buffer. Therefore, traditional hypothetical reference decoders
(HRD) such as the video buffer verifier (VBV) for MPEG-2
or the H.263 HRD can be applied.

In [7], the authors compared the single receiver buffer
approach with the aforementioned separate buffer approach
and showed that a single receiver buffer always performs at
least as good as two separate buffers. They then described a
method to provide a certain QoS guarantee, where the initial
delay and receiver buffer size are decided according to the
upper and lower bounds of the random receiver curve to
guarantee a minimum jitter-free probability. However, they did
not give a general means to find such bounds of the receiver
curve, and only a simple Bernoulli channel is considered.

A Markov chain analysis method was introduced in [8] to
examine the tradeoff between buffer underflow probability and
latency for Adaptive Media Playout (AMP) video streaming.
Applying the two-state Gilbert-Elliott lossy channel model
[9], [10], this method represents the streaming system with a
Markov chain and gives the underflow probability by solving
this Markov chain. However, in order to construct a Markov
chain, the transmission time of each frame are assumed
to be independent and identically distributed (i.i.d.) random
variables, which is usually not true for VBR encoded video

streaming where the frames have different sizes.
The problem of media streaming via TCP-Friendly Rate

Control (TFRC) was studied in [11]. Modeling the TFRC traf-
fic by a Markov-Renewal-Modulated Deterministic Process,
the authors developed a queueing model for the TFRC client
buffer, based on the imbedded Markov process of the buffer
state immediately after a jitter. This model is then applied to
obtain the distribution of the total duration of all rebuffering
events experienced by a user. However, this work considers
only CBR encoded videos and an infinite receiver buffer.

The authors of [12] considered the problem of supporting
VCR functionaly in video on demand (VoD) systems. The re-
ception process was modeled as a semi-Markov accumulation
process, and a lower bound was obtained on the probability of
successfully playout of the video with VCR actions. However,
only CBR encoded videos were considered and the bound was
not accurate for small value of segment length.

In [13], we proposed an analytical framework to bound
the jitter probability for a video segment, given initial delay
and receiver buffer size for VBR video streaming over VBR
channels. It provides close bounds to the probability of jitter
while only requiring knowledge of the VBR video playback
curve, the maximum channel transmission rate, and general
statistics of the channel. However, from the client’s point of
view, jitter frequency maybe a more meaningful QoS metric
for longer video streams.

In this work, we propose a novel analytical framework
to find the distribution of the number of jitters during the
streaming of a VBR video over random VBR channels, given
the jitter recovery scheme. The proposed framework can be
applied to most general systems and only requires a Markovian
model of the channel. To the best of our knowledge, this
paper represents the first attempt to analytically quantify the
the tradeoff between initial playback delay, receiver buffer
size, jitter recovering operation, and the frequency of jitters
for streaming with arbitrary encoding scheme and random
channels.

III. NETWORK MODEL

We consider the same video streaming system as in [7]. It
consists of a video streaming server, a VBR transport channel,
and a streaming client. Pre-encoded video objects are stored
in the server. Each video object is characterized by a playback
curve p(t). The playback curve describes the total amount of
data that have to be received by time t. It is generally assumed
that p(t) = 0 for t ≤ 0 and p(t) = p(L) for t ≥ L, where L
is the length of the video in time and p(L) is the size of the
video in bits. The playback curve is assumed to be included
in the preamble of the video stream and is available to the
receiver.

Consider when a client requests a video object from the
server. Corresponding to the request, the server streams video
data to the client through the transport channel. The channel is
assumed to be error free, possibly due to an ideal error control
mechanism, such as coding or ARQ, but its bit rate may vary
over time. The fluctuations in the transmission rate can lead

Fig. 2. A k-th order extended Gilbert model.

to significant late packet arrivals. The client allows an initial
delay, which is a common practice in commercial streaming
products. All packets arriving earlier than their playout times
are stored in the client’s local buffer.

In this work, we consider a generic class of discrete-time
Markov channel models characterized by (S,A, R), where
S = {S1, ..., SK} is the set of channel states, A is the
transition probability matrix, and R = {r1, ..., rK} is the set
of transmission rates associated the states. More precisely, ri

represents the number of packets that can be transmitted in
one time slot.

Figure 2 shows an example of this class of Markov channel
models. This is a k-th orded extended Gilbert model proposed
by Sanneck et al. in [14]. It is a generalization of the Gilbert-
Elliott model [9], [10], one of the most widely adopted
wireless channel representations in the literature. There are
k + 1 states, {S1, S2, ..., Sk+1}, where S1 represents the
reception state in which one packet is transmitted in one
time slot, and S2, S3, . . . , Sk+1 represent loss states, where no
packet is transmitted successfully. For each state, the subscript
represents the current distance from the last reception, except
for state Sk+1, which represents the case that the current loss
run-length is at least k, in which case the channel remains
in state Sk+1 with a subsequent loss or returns to S1 with
the first occurrence of reception. The extended Gilbert model
out performs the traditional Gilbert-Elliott model in capturing
the long-term dependence in packet-loss processes for com-
munication networks, and hence provides better prediction of
performance measures depending on longer-term correlation of
errors. For the purpose of illustration, we will use this model
to obtain simulation and numerical analysis results, although
we emphasize that any generic Markov channel model can be
accommodated by the analysis framework presented in Section
IV.

A streaming example with unlimited receiver buffer is
illustrated in Figure 3. Without loss of generality, we assume
the video starts playing out at time 0 and the transmission
begins at time −�, where � represents the initial delay. In
the figure, G(t) represents the amount of data received at the
client by time t. When G(t) < p(t), jitter occurs. Then the
application stops playing out the video and data accumulates
in the receiver buffer, until the jitter-recovery buffering scheme
decides to resume displaying.

We study three jitter-recovery buffering schemes in this
paper:

• Fixed Jitter Buffering Delay (FBD): after a jitter, buffer
for a fixed amount of time Djit, and then resume display;

• Fixed Buffered Playout Data (FPD): after a jitter, buffer

0 L
0

J1

J2

p(L)

time

da
ta

−∆

Playback curve p(t)
Playout curve
Receiver curve G(t)

First jitter

Second jitter

Jitter buffering
delays

Fig. 3. An example of jitters.

for a fixed number of packets Bjit, and then resume
display; and

• Fixed Buffered Playout Time (FPT): after a jitter, buffer
the a number of packets that corresponds to a fixed play
out duration Tjit.

Depending on the channel condition and the jitter-recovery
buffering scheme, a client may experience a number of jitters
and some jitter buffering delay. Next, we will present our
analytical framework and study the tradeoffs among different
system parameters.

IV. PERFORMANCE ANALYSIS OF VBR VIDEO

STREAMING

In this section, we propose a recursive analytical framework
to study the effect of initial delay, receiver buffer size, and
the parameters of the three aforementioned jitter-recovery
buffering schemes. We are particularly interested in computing
E{N}, the expected number of jitters in a given streaming ses-
sion. The key notation introduced in this section is summarized
in Table I for easy reference.

A. Overview of Analysis Framework

We define the position of a jitter by the packet index where
it occurs. Thus, by “a jitter occurs at packet i,” we mean that
the ith packet is the first packet whose playout deadline di is
violated after the start of display or the previous jitter. Denote
Jn as the position of the nth jitter, and Xn as the channel state
when the nth jitter occurs. Also, let P

(n)
k (i) be the probability

that the nth jitter occurs at packet i in channel state Sk, i.e.

P
(n)
k (i) = Pr{Jn = i,Xn = Sk}, k = 1, ...,K. (1)

Now, let’s first assume we have a means to compute the
conditional probability that the (n+1)th jitter occurs at packet
i in channel state Sk, given it is after the nth jitter that occurred
at packet j in channel state Sl. We denote it as

Ql,k(j, i) = Pr{Jn+1 = i,Xn+1 = Sk|Jn = j,Xn = Sl}.
(2)

Note that
∑

i

∑
k Ql,k(j, i) does not necessarily equal to one,

because there may be no more jitters after the one at packet j.

Notation Definition

� Initial delay

B Receiver buffer size

t Distance in time in the video with respect to the beginning

p(t) The minimum amount of data that has to be received by t

di Arrival deadline of the ith packet, p−1(i)

Jn Index of the first packet whose deadline is violated after

n − 1 jitters

Xn State of the VBR channel when the nth jitter occurs

L Length of a video

K Number of states of the channel

Rm Maximum number of packets that can be transmitted in

one time slot

Djit Fixed jitter buffering delay in FBD

Bjit Fixed jitter buffered playout data in FPD

Tjit Fixed jitter buffered playout time in FPT

N Total number of jitters during streaming of a video

π[i] The ith element of vector π

TABLE I
TABLE OF NOMENCLATURE

Moreover, because of the Markovian behavior of the channel
and the schemes being considered only make their decision
based on the current state, Ql,k(j, i) only depends on the
positions and the channel states, but not n.

By direct application of the total probability theorem [15],
the probability that the (n+1)th jitter occurs at packet i equals
to the sum of probabilities that the nth jitter occurs at packets
with j ≤ i and the (n+1)th jitter occurs at packet i. We have

P
(n+1)
k (i) =

i∑
j=1

K∑
l=1

Pr{Jn = j,Xn = Sl, Jn+1 = i,

Xn+1 = Sk}

=
i∑

j=1

K∑
l=1

Ql,k(j, i)P (n)
l (j). (3)

Then the probability that there are at least n jitters during the
playout of a video is

Pr{N ≥ n} =
p(L)∑
i=1

Pr{Jn = i} =
p(L)∑
i=1

K∑
k=1

P
(n)
k (i). (4)

Since N ≥ 0, the expected number of jitters can be obtained
by

E{N}=
∞∑

n=1

Pr{N ≥ n}

=
∞∑

n=1

p(L)∑
i=1

K∑
k=1

P
(n)
k (i). (5)

Then, if P
(1)
k (i) and Ql,k(j, i) are known, we can recur-

sively compute the above metrics. In the rest of this section, we
present the derivation of these probabilities for different jitter-
recovery buffering schemes and for both the infinite buffer and
finite buffer cases.

B. Infinite Buffer Case

We first consider the case with unlimited receiver buffer, or
the buffer size is large enough such that it will not be full
during streaming.

1) First Jitter Distribution P
(1)
k (i): The first jitter dis-

tribution P
(1)
k (i) is common to all jitter-recovery buffering

schemes, and hence we provide its derivation first. Denote

Fl,k,r = Pr{Sl → Sk}e(rk, r), r ≤ Rm, (6)

as the probability that, given the channel state in the previous
step is Sl, the current channel state is Sk, and r packets are
successfully transmitted. Here e(rk, r) equals to 1 if rk = r
and 0 otherwise, and Rm is the maximum number of packets
that can be transmitted in one time slot. We can express the
state of the system with the tuple (g, s), where g specifies the
number of received packets, and s ∈ S specifies the channel
state. Then we can construct a Markov chain of the system
with the following transition probability matrix

Φ =

0

1

...
p(L)−1

p(L)

...




A0A1· · ·ARm
0 · · · 0

0 A0A1 · · · ARm
0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 A0 A1 · · ·ARm

0
0 · · · 0 A0 A1 · · · ARm

...
. . .




, (7)

where

(g+r,S1) · · · (g+r,SK)

Ar =

(g,S1)

...
(g,SK)




F1,1,r · · · F1,K,r

...
. . .

...
FK,1,r · · · FK,K,r


 . (8)

With this transition matrix, we can obtain the distribution of
the number of packets that have been received by time t simply
from πinitΦ�+t, where πinit is the initial state distribution
at −�. However, what we are interested in is the probability
of the system arriving at a state without any jitter by time t.
Moreover, since the video is VBR encoded, the consumption
speed of data is predetermined but varies over time. Hence the
standard homogeneous Markov chain approach [15] can not
be applied in this non-homogeneous case.

Instead, we propose the following. At any time t, states with
g < p(t) should not be considered for the computation of the
state distribution of the next time slot because these states
have already violated the playout deadline by time t. Figure
4 illustrates the idea: the contribution of arrows starting from
the shaded states should be eliminated. This can be done by
setting πt[Kg+ l], the (Kg+ l)th element of π corresponding
the state (g, Sl), to 0 for g < p(t), l = 1, ...,K, before using
it to compute the state distribution of the next time slot. It is
equivalent to modifying Φ into ΦUt, with

Ut =
[
0Kp(t)×Kp(t) 0

0 I

]
, (9)

Fig. 4. Arrows indicate the transition of states. The shaded blocks represent
the states that have violated the playout deadline. The thick arrow indicates
the transition that introduces a jitter at packet g at time t.

in each time slot. Then the probability of arriving at a state
without having jitter by time di − 1 is given by

πdi−1 = πinit(
di−1∏

t=−�
ΦUt). (10)

And the value of the (K(i − 1) + k)th (k ≤ K) element of

π′
di

= πdi−1Φ = πinit(
di−1∏

t=−�
ΦUt)Φ (11)

is the probability that there has been no jitter by time di − 1,
and the client has only received i− 1 packets in channel state
Sk by di, which is P

(1)
k (i), i.e.,

P
(1)
k (i) = π′

di
[K(i − 1) + k]. (12)

2) Next Jitter Probability Ql,k(j, i): Next, we will study
the distributions of the position of the subsequent jitter for the
aforementioned jitter recovery buffering schemes.

a) Fixed Jitter Buffering Delay: In the FBD scheme,
every time a jitter occurs, the application stops displaying
and buffers data for a fixed jitter buffering delay Djit. The
procedure to find Ql,k(j, i) is similar to that of finding the first
jitter probability in section IV-B1. We only need to imagine
we start playing out the video from packet j with an empty
buffer. Then (j − 1, Sl) is the virtual “initial” state, and Djit

is the virtual “initial” delay. Denote the virtual initial state
distribution after a jitter occurs at (j, Sl) as

πj,l = [0 · · · 0 1 0 · · · 0]. (13)

the (K(j − 1) + l) th element

Then similar to equation (11), the state probability distribution
at time di of having no jitter by di − 1 is given by

π′
di

= πj,l(
di−1∏

t=dj−D

ΦUt)Φ. (14)

And Ql,k(j, i) is obtained by

Ql,k(j, i) = π′
di

[K(i − 1) + k]. (15)

b) Fixed Buffered Playout Data: In the FPD scheme,
after a jitter happens, the application stops playing out the
video and buffers data until the number of packets in the
buffer reaches Bjit. If a jitter occurs at the jth packet, it
will restart playing out the video once the (j + Bjit − 1)th
packet arrives. To find Ql,k(j, i), we first have to find the

probability distribution of the state (g, Sh) where playout is
restarted, where g ∈ [j+Bjit−1, j+Bjit+Rm−2] represents
the last packet received when display resumes. To find these
probabilities, we construct a Markov chain of the receiver
buffer during this buffering stage with transition probability
matrix

Ψ =

j−1

j

...
j+Bjit−2

j+Bjit−1

...
j+Bjit+Rm−2




A0A1· · ·ARm
0 · · · 0

0 A0A1 · · · ARm
0 · · ·

...
. . .

. . .
...

0 · · · 0 A0 A1 · · ·ARm

0 · · · 0 I 0 · · ·
... · · · . . .

. . . 0
0 · · · 0 I




. (16)

States with g ∈ [j + Bjit − 1, j + Bjit + Rm − 2] are
modeled as absorption states, because once the system arrives
at any one of these states, it exits the jitter recover buffering
stage, and resumes playing out the video. Then the distribution
of resuming display among these states can be obtained by
solving the absorption probabilities of these states, starting
from state (j − 1, Sl) [15].

Now we can compute Ql,k(j, i) for the FPD scheme. Let
πj,l be the state distribution when exiting the buffering stage
after a jitter at (j, Sl), where each element indexed by Kg+h,
for g = j + Bjit − 1, ..., j + Bjit + Rm − 2 and h ≤ K,
equals the absorption probability of the corresponding state
(g, Sh). Noting that, after exiting the buffering stage, the
system restarts playing out the video from packet j, we can
compute Ql,k(j, i) from

π′
di

= πj,l(
di−1∏
t=dj

ΦUt)Φ, (17)

and

Ql,k(j, i) = π′
j,l[K(i − 1) + k], i ≥ j + Bjit. (18)

Moreover, in order to compare FPD with the FBD scheme,
we want to quantify the jitter recover buffering delay of FPD.
Since the delay is not constant, we will look into the expected
buffering delay. The expected buffering delay after a jitter at
(j, Sl) can be obtain by solving the mean time to absorption
of the above Markov chain [15]. Let mk be the mean time to
absorption into any one of the absorption states, starting from
state Sk, which can be solved from the probability transition
matrix Ψ. Then the expected buffering delay of the nth jitter
is

E{Dn} =
p(L)∑

i

K∑
k=1

P
(n)
k (i)mk. (19)

Here we define Dn = 0 if the nth jitter does not exist. And the
expected total jitter buffering delay experienced by the client
becomes

E{Dtotal} =
∞∑

n=1

E{Dn} =
∞∑

n=1

p(L)∑
i=1

K∑
k=1

P
(n)
k (i)mk. (20)

Then the average buffering delay per jitter can be approxi-
mated by

E{Dtotal}
E{N} =

∑∞
n=1

∑p(L)
i=1

∑K
k=1 P

(n)
k (i)mk∑∞

n=1

∑p(L)
i=1

∑K
k=1 P

(n)
k (i)

. (21)

c) Fixed Buffered Playout Time: The FPT scheme is
similar to the FPD scheme, except that, rather than buffering a
fixed amount of data before resuming display, the FPT scheme
buffers data until the playout duration of these data reaches a
fixed value Tjit. One advantage of this scheme is that, when
display resumes, it is guaranteed that the next jitter is at least
Tjit away in the future. This scheme is used in Windows
Media Player and Real Player.

The process to find Ql,k(j, i) is similar to the one in the
FPD scheme. The difference is that, for different values of the
jitter position j, the number of packets to buffer is p(dj +
Tjit) − (j − 1), which is not a fixed number as it is in the
FPD scheme. Then for each jitter position j, we have a Markov
chain characterized by the transition probability matrix

Ψj =

j−1

j

...
p(dj+Tjit)−1

p(dj+Tjit)

...
p(dj+Tjit)+Rm−1




A0A1· · ·ARm
0 · · · 0

0 A0A1 · · · ARm
0 · · ·

...
. . .

. . .
...

0 · · · 0 A0 A1 · · ·ARm

0 · · · 0 I 0 · · ·
... · · · . . .

. . . 0
0 · · · 0 I




.(22)

Then we can compute the state distribution when exiting
the buffering stage after a jitter at (j, Sl), πj,l, by computing
the absorption probabilities of Ψj starting from state (j, Sl).
Similar to (17) and (18), we have

π′
di

= πj,l(
di−1∏
t=dj

ΦUt)Φ, (23)

and
Ql,k(j, i) = π′

j,l[K(i − 1) + k]. (24)

Further, for a different Ψj , the mean time to absorption is
different. We use mk(i) to denote the mean time to absorption
of Ψi, starting from (i− 1, Sk), which is obtained by solving
Ψi. Then similar to the FPD scheme, the average buffering
delay per jitter is approximated by

E{Dtotal}
E{N} =

∑∞
n=1

∑p(L)
i=1

∑K
k=1 P

(n)
k (i)mk(i)∑∞

n=1

∑p(L)
i=1

∑K
k=1 P

(n)
k (i)

. (25)

C. Finite Buffer Case

In the previous sections, we have studied the case where
the receiver buffer size is infinite, or large enough, such that
the amount of data received is not limited from above. Next,
we study the case where the receiver buffer size is limited.

Suppose the receiver buffer size is B. At any video position
t, we can have at most received p(t)+B packets. We consider
systems in which the client continuously updates its buffer

Fig. 5. Solid arrows indicate the transition of states that should be considered.
The shaded blocks indicate the states that have violated the playout deadline
or that have surpassed the receiver buffer limit. The dotted arrow represents
the state transitions that should be merged into the state transitions represented
by the thick solid arrow.

fullness to the server, the server stops sending data packets
when it knows the receiver buffer is full, and the server
restarts sending data packets once the buffer starts to empty
again1. Figure 5 illustrates the state transitions in this case.
The transitions to any state with g ≥ p(t) + B should be
merged into the states with g = p(t) + B − 1. This can be
accomplished by setting

πt[K(p(t) + B − 1) + l] =
∑

g≥p(t)+B−1

πt[Kg + l], (26)

and πt[Kg + l] = 0 for g ≥ p(t) + B and l ≤ K, while
computing the state distribution. And this operation can be
formulated in matrix multiplications similar to (10) as

πdi−1 = πinit(
di−1∏

t=−�
ΦU′

t), (27)

where

p(t)+B−1

U′
t =




0Kp(t)×Kp(t) 0 0 0
0 IK(B−1)×K(B−1) 0 0
0 0 I′ 0
0 0 0 0


 , (28)

and

I′ = [IK×K · · · IK×K︸ ︷︷ ︸]T . (29)

Rm+1

I′ here is a K(R + 1) × K matrix. By doing this, any state
with g ≥ p(t)+B is merged into a state with g = p(t)+B−1
according to its channel state. Then (11) can be rewritten as

π′
di

= πinit(
di−1∏

t=−�
ΦU′

t)Φ. (30)

The process is similar while computing Ql,k(j, i). We only
need to replace Ut with U′

t in (17) and (23), and in (14) for
t ≥ dj . In (14) when t < dj , we should set

j+B−1

U′
t =




0Kj×Kj 0 0 0
0 IK(B−1)×K(B−1) 0 0
0 0 I′ 0
0 0 0 0


 , (31)

1This mechanism is vital, as jitters due to buffer overflow would occur
without it.

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

jitter buffering delay D
jit

 (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)
ana, ∆=1.6s
ana, ∆=9.6s
ana, ∆=17.6s
sim, ∆=1.6s
sim, ∆=9.6s
sim, ∆=17.6s

(a) FBD, infinite buffer

0 1 2 3 4 5

x 10
5

0

0.125

0.25

0.375

0.5

0.625

jitter buffered playout data B
jit

 (bits)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

ana, ∆=1.6s
ana, ∆=9.6s
ana, ∆=17.6s
sim, ∆=1.6s
sim, ∆=9.6s
sim, ∆=17.6s

(b) FPD, infinite buffer

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

jitter buffered playout time T
jit

 (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

ana, ∆=1.6s
ana, ∆=9.6s
ana, ∆=17.6s
sim, ∆=1.6s
sim, ∆=9.6s
sim, ∆=17.6s

(c) FPT, infinite buffer

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

jitter buffering delay D
jit

 (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

ana, B=1.44×106 bits

ana, B=20.16×106 bits

ana, B=25.92×106 bits
ana, B=∞
sim, B=1.44×106 bits

sim, B=20.16×106 bits

sim, B=25.92×106 bits
sim, B=∞

(d) FBD, finite buffer, � = 17.6s

0 1 2 3 4 5

x 10
5

0

0.125

0.25

0.375

0.5

0.625

jitter buffered playout data B
jit

 (bit)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

ana, B=1.44×106 bits

ana, B=20.16×106 bits

ana, B=25.92×106 bits
ana, B=∞
sim, B=1.44×106 bits

sim, B=20.16×106 bits

sim, B=25.92×106 bits
sim, B=∞

(e) FPD, finite buffer, � = 17.6s

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

jitter buffered playout time T
jit

 (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

ana, B=1.44×106 bits

ana, B=20.16×106 bits

ana, B=25.92×106 bits
ana, B=∞
sim, B=1.44×106 bits

sim, B=20.16×106 bits

sim, B=25.92×106 bits
sim, B=∞

(f) FPT, finite buffer, � = 17.6s

Fig. 6. Frequency of jitters vs. Djit, Bjit and Tjit for FBD, FPD and FPT schemes, respectively, for video “Alpin Ski”.

because within the buffering delay, the buffer can contain up
to the (j + B − 1)th packet.

V. EXPERIMENT AND NUMERICAL RESULTS

In this section, we apply the proposed analysis framework
to study how different jitter recovering schemes and the choice
of parameters affect the jitter performance in VBR video
streaming. The analysis results are validated by comparison
with simulation results. We further investigate the optimal
balance between jitters and buffering delay.

A. Experimental Setup

We experiment on wireless streaming using MPEG-4 VBR
video traces provided by [16]. Some main statistics of these
videos clips are listed in Table II. These sequences were
encoded at a constant frame rate of 25 frames/s in the Quarter
Common Intermediate Format (QCIF) resolution (176×144).
We have chosen the QCIF format because we are particularly
interested in wireless networking systems where hand-held
wireless devices typically have a screen size that corresponds
to the QCIF video format.

To emulate a realistic wireless channel, we adopt a three-
state extended Gilbert model shown in Figure 2 as the VBR
channel model (i.e., k = 2), with transition probabilities
Pr{0|1} = 0.1, Pr{0|10} = 0.5 and Pr{0|00} = 0.8. Then
the transition matrixes are constructed by

A0 =


0 0.1 0

0 0 0.5
0 0 0.8


 , and A1 =


0.9 0 0

0.5 0 0
0.2 0 0


 .

Video name Parameters of the video stream
Mean bit rate (per sec) Peak bit rate (per sec)

Alpin Ski 1.8247e+05 3.0248e+06
Formula 1 1.7754e+05 2.1428e+06

Jurassic 1.7100e+05 3.1668e+06

TABLE II
PARAMETERS OF DIFFERENT VIDEO STREAMS

We set the packet size to 1800 bytes and the time interval
between two consecutive transmission to 80 ms. This results in
a maximum transmission bit rate of 180,000 bit/s. For different
initial delay values, receiver buffer sizes and jitter recover
scheme parameters, we simulate in Matlab the transmission
and playback of each video sequence over 200 realizations of
the random VBR channel and measure the number of jitters
and the buffering delay of each jitter. Furthermore, we compute
the expected number of jitters and expected buffering delay
based on the proposed analysis and compare them with the
simulation results.

B. Numerical Validation

In Figure 6, we plot the frequency of jitters vs. jitter
recovery parameters for video “Alpin Ski” in different initial
delay and receiver buffer size settings. Figure 6(a) and 6(d)
are based on the fixed jitter buffering delay FBD scheme as
in IV-B2a. Figure 6(b) and 6(e) are based on the fixed jitter
buffered playout data FPD scheme as in IV-B2b. Figure 6(c)
and 6(f) are based on the FPT scheme as in IV-B2c. The
95% confidence intervals for the simulations are also shown
in these figures. We observe good match between the derived

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

expected jitter delay (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

FBD, ∆=1.6s
FPD, ∆=1.6s
FPT, ∆=1.6s
FBD, ∆=9.6s
FPD, ∆=9.6s
FPT, ∆=9.6s
FBD, ∆=17.6s
FPD, ∆=17.6s
FPT, ∆=17.6s

(a) Infinite buffer with different initial delays

0 0.5 1 1.5 2 2.5 3
0

0.125

0.25

0.375

0.5

0.625

expected jitter delay (sec)

fr
en

qu
en

cy
 o

f j
itt

er
 (

se
c−

1)

FBD, B=1.44×106 bits

FPD, B=1.44×106 bits

FPT, B=1.44×106 bits

FBD, B=20.16×106 bits

FPD, B=20.16×106 bits

FPT, B=20.16×106 bits

FBD, B=25.92×106 bits

FPD, B=25.92×106 bits

FPT, B=25.92×106 bits

(b) Finite buffers with fixed initial delay � = 17.6s

Fig. 7. Jitter frequency vs. average jitter recovery buffering delay, for three jitter recovery buffering schemes.

expected number of jitters and simulation. Similar results are
observed for different playback curves and omitted to reduce
redundancy.

It can be seen in Figure 6(a) that, for all initial delay and
buffer size settings, there is deminishing gain by increasing
Djit on the performance: the number of jitters decreases
dramatically as Djit increases at the beginning and then slowly
after Djit surpasses a certain value. We also observe that for a
fixed buffer size, a larger initial delay results in smaller number
of jitters and a more dramatic decrease as Djit increases. On
the other hand, for a fixed initial delay, a larger buffer size
also results in fewer jitters and a sharper drop.

The practical implication of this observation is clear. The
jitter buffering delay is a delicate parameter in the optimal
design of multimedia streaming. Increasing the jitter buffering
delay can drastically reduce the number of jitters, but only
up to a certain level. Beyond that, the improvement is negli-
gible, and the long jitter buffer delay may actually harm the
perceived quality of the streaming.

We further note that similar observations can be found in
other jitter-recovery buffering schemes.

C. Comparison of Jitter-Recovery Buffering Schemes

In Figure 7 we plot the jitter frequency vs. expected
buffering delay under the three jitter recovery schemes, with
different fixed initial delays and receiver buffer sizes. For the
FBD scheme, the expected delay is just Djit. For the FPD and
FPT schemes, the expected delays are given by equation (21)
and (25). It is interesting to note that these schemes provide
very similar tradeoff between jitter frequency and the expected
jitter recovery buffering delay.

However, as shown in Figure 8, the FBD scheme has zero
delay variance because the delay is fixed, while the other
two schemes have large delay variances. Moreover, the FPT
scheme has much larger delay variance than the FPD scheme.
This is because in the FPT scheme, the amount of data that has
to be buffered varies drastically when jitter occurs at different
position in the video, which results in more fluctuations, in
comparison with the FPD scheme. In another words, while

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

average jitter delay (sec)

va
ria

nc
e

of
 ji

tte
r

de
la

y

FBD
FPD
FPT

Fig. 8. Variance of jitter recovery buffering delay.

jitters can not occur close to each other in the FPT scheme,
they are more likely to incur unacceptably long buffering delay
compared with the other two schemes.

D. Optimal Delay-Buffer Tradeoff

Finally, we consider the optimal tradeoff between the initial
playback delay � and the receiver buffer size B in video
streaming. In most cases, long buffering delay in the middle
of a streaming session is less acceptable for a streaming client.
Therefore, a client may impose stiff constraints on the jitter
recovery buffering delay and may wish to tradeoff the initial
delay and the receiver buffer size for a lower frequency of
jitters. Figure 9 shows contour maps for the initial delay and
the buffer size that achieve different frequencies of jitters, for
different fixed jitter recover buffering delays.

We observe that the right branch of a contour curve is
roughly horizontal. This suggests that when the buffer size
is fixed, increasing the initial delay can only decrease the
frequency of jitters to a certain level. When � is large enough,
the buffer is always filled up during the initial delay, and the
display of the video always begins with a full buffer. Further
increasing the initial delay will not change this situation,

0.20.3

0.3

0.4

0.4 0.4

0.5
0.5

0.5 0.5

slope = α/(α−1) →

initial delay ∆ (sec)

re
ce

iv
er

 b
uf

fe
r

si
ze

 B
 (

bi
t)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

x 10
6

(a) Djit = 0.8s

0.15

0.15

0.2

0.2

0.2

0.25
0.25

0.25 0.25

0.3
0.3

0.3
0.3 0.3

initial delay ∆ (sec)

re
ce

iv
er

 b
uf

fe
r

si
ze

 B
 (

bi
t)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

x 10
6

(b) Djit = 1.6s

0.06

0.08
0.08

0.1
0.1

0.12
0.12

0.12

0.14
0.14

0.14 0.14

0.16
0.16

0.16

0.16 0.16

initial delay ∆ (sec)

re
ce

iv
er

 b
uf

fe
r

si
ze

 B
 (

bi
t)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

x 10
6

(c) Djit = 3.2s

Fig. 9. Contour maps of buffer size vs. initial delay, with the frequency of jitters labeled on the curves.

resulting in no improvement of performance. Similarly, the
left branch of a contour curve is roughly vertical. The rational
behind this is that, when B is large enough, the receiver
buffer will never be completely filled throughout a streaming
session, which is equivalent to the case with infinite buffer.
Finally, these figures provide a convenient means to obtain
an optimal operating point for the system that balances the
tradeoff between � and B, given a certain required frequency
of jitters and jitter recovery buffering delay. If we define a cost
function as a weighted sum of the two

C = α� + (1 − α)B, (32)

where α ∈ [0, 1], then to minimize this cost function, we
simply find the tangent line of the corresponding contour curve
with slope α

α−1 . The point of contact between the tangent
line and the contour curve, given any value of frequency of
jitter, defines the optimal operating point for the system. An
illustration of such a procedure is shown in Figure 9(a).

VI. CONCLUSIONS

In this work, we have considered the problem of providing
QoS to VBR encoded video streaming service over random
VBR channels. We have shown that, when some statistical
characteristics of the channel, such as the channel state tran-
sition probability, are available, a certain level of QoS can be
guaranteed by selecting appropriate jitter recovery schemes.

We present an analytical framework that only requires
knowledge of the playback curve and a Markov channel model.
The frequency of jitters and the expected jitter recovery buffer-
ing delay have been derived for both the infinite buffer and
finite buffer cases. Numerical and experimental results using
MPEG-4 encoded VBR video traces validate our findings.
The proposed numerical analysis allow precise estimation of
the effect of the choice of jitter recovery schemes, initial
playout delay and receiver buffer size. We show that the FBD,
FPD, and FPT schemes provide similar tradeoff performance
between the jitter frequency and the jitter recovery buffering
delay, while the FBD scheme incurs zero buffering delay
variance and the FPT scheme incurs the worse buffering delay
variance. To practical streaming system designers, the pro-
posed analysis technique provides a convenient framework to

optimize the tradeoffs between the various system parameters
for optimal VBR multimedia streaming over random VBR
channels.

REFERENCES

[1] M. Etoh, and T. Yoshimura, “Advances in Wireless Video Delivery,”
Proc. IEEE, vol. 93, no. 1, pp. 111–122, Jan 2005.

[2] C. Chiasserini, M. Meo, D. Tarfanelli, and D. Visconti, “A Study of
Video Services in a Wireless Environment,” in The 4th IEEE Conference
on Mobile and Wireless Communitions Networks, Sept 2002.

[3] T. V. Lakshman, A. Ortega, and A.R. Reibman, “VBR Video: Trade-offs
and Potentials,” Proc. IEEE, vol. 86, no. 1, pp. 952–973, May 1998.

[4] S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley,
“Online Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Trans.
Multimedia, vol. 2, no. 1, pp. 37–48, Mar 2000.

[5] P. Thiran, J.-Y. Le Boudec, and F Worm,, “Network Calculus Applied
to Optimal Multimedia Smoothing,” in Proc. IEEE Infocom, Apr 2001.

[6] V. Varsa and I. Curcio, “Transparent End-to-End Packet Switched
Streaming Service (PSS); RTP Usage Model (Release 5),” 3GPP TR
26.937 V1.4.0, 2003.

[7] T. Stockhammer, H. Jenkac, and G. Kuhn, “Streaming Wideo over
Variable Bit-Rate Wireless Channels,” IEEE Trans. Multimedia, vol. 6,
no. 2, pp. 268–277, Apr 2002.

[8] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Media Playout for
Low-Delay Video Streaming Over Error-Prone Channels,” IEEE Trans.
Circuits and System for Video Technology, vol. 14, no. 6, pp. 841–851,
Jun 2004.

[9] E. N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell Syst. Tech. J.,
vol. 39, no. 5, pp. 1253–1265, Oct 1960.

[10] E. O. Elliott, “Estimates of Error Rates for Codes on Burst-Noise
Channels,” Bell Syst. Tech. J., vol. 42, pp. 1977–1997, 1963.

[11] L. Xu and J. Helzer, “Media Streaming via TFRC: An Analytical Study
of the Impact of TFRC on User-Perceived Media Quality,” in Proc.
IEEE INFOCOM 2006, Apr 2006.

[12] E. Biersack, A. Jean-Marie, and P. Nain, “Open-Loop Video Distribution
with Support of VCR Functionality,” Performance Evaluation, vol. 49,
no. 1-4, pp. 411–427, 2002.

[13] Guanfeng Liang and Ben Liang, “Jitter Free Probability Bounds for
Video Streaming over Random VBR Channel,” in Proc. the Third
International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks, Aug 2006.

[14] H. Sanneck, G. Carle, and R. Koodli, “A Framework Model for Packet
Loss Metrics Based on Loss Run Length,” in Proceedings of SPIE/ACM
SIGMM Multimedia Computing and Networking Conference, Jan 2000.

[15] A. Papoulis and S. U. Pillai, Probability, Random Variables, and
Stochastic Processes, Fourth ed. McGraw-Hill, 2002.

[16] F.H.P. Fitzek and M. Reisslein, “MPEG-4 and H.263 Video Traces for
Network Performance Evaluation,” IEEE Network, vol. 15, no. 6, pp.
40–54, November 2001.

