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Abstract—Epidemic routing has been proposed to reduce the
data transmission delay in disruption tolerant wireless networks,
in which data can be replicated along multiple opportunistic
paths as different nodes move within each other’s communication
range. With the advent of network coding, it is intuitive that data
can not only be replicated, but also coded, when the transmission
opportunity arises. However, will opportunistic communication
with network coding perform any better than simple replications?
In this paper, we present a stochastic analytical framework
to study the performance of epidemic routing using network
coding in opportunistic networks, as compared to the use of
replication. We analytically show that network coding is superior
when bandwidth and node buffers are limited, reflecting more
realistic scenarios. Our analytical study is able to provide further
insights towards future designs of efficient data communication
protocols using network coding. As an example, we propose a
priority based coding protocol, with which the destination can
decode a high priority subset of the data much earlier than it can
decodeany data without the use of priorities. The correctness of
our analytical results has also been confirmed by our extensive
simulations.

I. I NTRODUCTION

Disruption tolerant wireless networks (DTN), oropportunis-
tic networks, represent a class of networks where connections
among wireless nodes are not contemporaneous, but inter-
mittent over time. Such networks usually have sparse node
densities, with short communication ranges on each node.
Connections among nodes may be disrupted due to node
mobility, energy-conserving sleep schedules, or environmental
interference.

In such networks, an opportunistic link may be temporarily
established when a pair of nodes “meet” — when they move
into the communication ranges of each other. A possible
data propagation path from the source to the destination,
referred to as anopportunistic path, is composed of multiple
opportunistic links, possibly established over time. Clearly,
more than one such opportunistic paths may exist.Epidemic
routing has been proposed [2] to utilize these opportunistic
paths to reduce the data transmission delay from a source to a
destination, by replicating packets whenever two nodes meet.
In essence, epidemic routing replicates data along multiple
opportunistic paths from the source to the destination. The
delay in delivering a data packet is hence the time to propagate
the packet along the opportunistic path with the shortest time.

This work was supported in part by Bell Canada through its Bell University
Laboratories R&D program. A preliminary version of this paper was presented
in ACM MobiOpp 2007 [1].

Randomized network coding[3]–[5] allows intermediate
nodes to perform coding operations besides simple replication
and forwarding. Using the paradigm of network coding in
epidemic routing, a node may transmit a coded packet —
as a random linear combination of existing data packets
— to another node when the opportunity arises. Intuitively,
when replication is used to minimize transmission delay, a
node should transmit a packet with the minimum number of
replicas in the network, since it is the packet with the longest
expected delay. Unfortunately, one does not have precise
global knowledge of which packet has the minimum number
of replicas in opportunistic networks. When network coding
is used, however, a node can transmitany coded packet, since
all of them can equally contribute to the eventual delivery of
all data packets to the destination with high probability.

Though intuition may point to the right direction, how
much better does network coding perform as compared to
replication, and in what particular scenarios? In this paper,
we seek to analytically address this question by presentinga
stochastic analysis of network coding in epidemic routing,as
compared to the case of replication. Our analysis shows that
the use of network coding delivers data with shorter delays
when bandwidth is limited, and such advantage may be further
magnified when the sizes of node buffers are constrained as
well. We show that network coding allows for less buffering
capacities than replication, with the same delays required. The
correctness of our analytical results has been further confirmed
by our extensive simulations.

We believe that insights from our analytical framework
are useful towards substantially better designs of new data
transmission protocols in disruption tolerant networks. As an
example, with network coding, one has to pay the price that
any useful data can be decoded only after the destination
receives a sufficient number of coded packets and is able to
decode all data altogether. That is, the destination may have to
wait for a long time before any useful data can be decoded. We
propose a priority coding protocol that decodes high priority
data much earlier than the time when the original network
coding protocol can decode any data. Utilizing our analytical
framework, we show that the priority protocol achieves such
a goal with low overhead.

The remainder of the paper is organized as follows. We dis-
cuss related work in Sec. II. In Sec.III, we present our stochas-
tic analysis of network coding and replication in epidemic
routing. In Sec. IV, our analytical framework is extended to
study the efficiency of resource usage in both protocols with
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different stopping mechanisms. Sec. V introduces our priority
coding protocol, and investigates its design tradeoffs using
our analytical framework. In Sec. VI, we present extensive
simulation results to show the effectiveness of network coding
and to confirm our analytical results. We conclude the paper
in Sec. VII.

II. RELATED WORK

A variety of routing protocols have been designed for
disruption tolerant networks, based on different sets of as-
sumptions. Some (e.g., [6]) assumea priori knowledge on
connectivity patterns, or that historical mobility patterns can
be used to predict future message delivery probabilities [7].
Others assume control over node mobility [8]. In this paper,
we seek a thorough and systematic understanding of the ben-
efits and performance gains when network coding is used in
epidemic routing, with neithera priori knowledge of network
connectivity, nor control over node mobility.

Previous studies have proposed to use erasure coding to
address network disruptions in opportunistic networks, with
no information of node mobility patterns [9], or with prior
knowledge of network topologies [10]. Chenet al. [11]
further showed a hybrid approach combining erasure coding
and replication. Unlike network coding, in such source-based
erasure coding approaches, different upstream nodes may
transmit duplicates of coded data to the same node, and may
unnecessarily consume additional bandwidth.

It has been shown that network coding can improve the
throughput in both unicast [12] and broadcast [13] wireless
communication, by exploring the broadcast nature of the
wireless medium. However, in disruption tolerant networks
considered in this paper, a node seldom has more than one
neighbors, and such wireless coding opportunities rarely occur.

Deb et al. [14] showed that a gossip protocol based on
network coding can broadcast multiple messages among nodes
with a shorter period of time, as compared to that without
network coding, by a logarithmic factor. With the same
spirit, the benefit of network coding in wireless broadcast
communication has been investigated in [15], [16]. In contrast
to their work, we show that network coding can efficiently
utilize multiple opportunistic paths in the case of unicast
communication in DTNs.

Epidemic routing based on replication has been analyt-
ically studied in an extensive set of existing work (e.g.,
[17]–[21]). We believe that the effects of using network
coding in epidemic routing should receive the same levels
of rigor and research attention, and the tradeoffs involved
with respect to resource consumption and delay should also
be carefully studied analytically. Chouet al. [5] considered
priority encoding in network coding on networks with known
topologies. In contrast, our proposed priority coding protocol
is designed specifically for opportunistic networks without
topology information.

Fluid modeling or differential equations are widely used
to model system dynamics, such as in queueing systems
[22], P2P networks [23], and DTNs [20], with the attractive
advantage of simplicity, as compared to Markov chains. In

fact, the system dynamics of one packet in DTN have been
modeled with Ordinary Differential Equations (ODEs) in [20]
with replication based epidemic routing. By contrast, utilizing
ODEs, we study the dynamics of a batch of packets in DTN
with both network coding and replication based epidemic
routing in this paper.

Zhang et al. [24] presented a simulation-based study of
the benefit of network coding in opportunistic unicast com-
munication. To our knowledge, this is the closest to our
work with respect to research objectives. Nevertheless, our
work on stochastic analysis of network coding is analytical
in nature, which benefits from the mathematical rigor that is
missing in previous work. Inspired by such analysis, we also
propose a priority coding protocol to combat the disadvantage
of decoding delay in the coding-based protocol. This is an
example in which our analytical framework can be used to
show how the proposed priority coding protocol is effective
with low overhead.

III. N ETWORK CODING VS. REPLICATION: AN

ANALYTICAL FRAMEWORK

A. Network Model

In this paper, we consider unicast communication from a
source to a destination in a disruption tolerant network with
N wireless nodes, moving within a constrained area. The
source hasK packets to be transmitted to the destination. A
transmission opportunity arises when a pair of nodes “meet,”
i.e., they are within the communication range of each other.
To facilitate the analysis without loss of generality, we assume
that when nodesi and j meet, the transmission opportunity
is only sufficient to completely transmit one data packet. It
is straightforward to extend this to the general case where an
arbitrary number of data packets can be delivered when the
opportunity arises, as sketched at the end of Sec. III-B. With
respect to the buffering capacities, while the source and the
destination are able to accommodate allK packets, we assume
that the buffer on each of the intermediate relay nodes is only
able to holdB packets, where1 ≤ B ≤ K.

We assume that the time between two consecutive trans-
mission opportunities (when nodes meet) is exponentially dis-
tributed with a rate ofλ. In the literature, the majority of pre-
vious work makes such an assumption, either explicitly [19],
[20] or implicitly [17], [18]. Although measurement-based
studies (e.g., [25]) have shown that such inter-meeting times
may follow heavy-tail distributions in some applications,more
recent studies have shown that the exponential distribution is
in fact more prevalent both in theory and in many practical
systems [26], [27]. Therefore, we opt for more mathematical
tractable models in our analysis, and believe that insights
obtained from our analysis are also useful under other realistic
mobility models. With a similar preference for mathematical
tractability, we assume there does not exist background traffic
beyond the unicast communication under consideration, and
leave the more general case with background traffic to our
future work.
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B. Epidemic Routing with Network Coding

We are now ready to develop an analytical model for net-
work coding in opportunistic networks with epidemic routing.
The following baseline protocol will be analyzed. When two
nodesa andb meet, they transmit coded packets to each other.
A coded packetx is a linear combination of theK source
packetsE1, . . . , EK in the form: x =

∑K
i=1 αiEi, whereαi

are coding coefficients. Suppose that nodea holds m coded
packets in its buffer, where1 ≤ m ≤ B. Nodea encodes all
coded packets in its buffer, namelyx1, . . . , xm, to generate a
coded packetxa:

xa =
m

∑

i=1

βixi, (1)

where all multiplication and addition operations are defined
on a Galois field (such as GF(28) when the operations are
performed on each byte), andβi is randomly chosen from the
field. It is easy to see thatxa is also a linear combination of the
K original packets, and the coding coefficients can be derived.
Node a then transmitsxa along with its coding coefficients
to nodeb. When nodeb receivesxa, it storesxa in its buffer
if space is available. Otherwise, nodeb encodesxa with each
packet in its buffer as follows:

x′
i = x′

i + αixa, (2)

wherex′
i represents theith coded packet in the buffer of node

b, andαi is randomly chosen from the Galois field.
The destination obtains a coded packet when it meets

another node, and attempts the decoding process to retrieve
K source packets as long asK coded packets have been col-
lected. Because the coding coefficients and the coded packet
are known, each coded packet represents a linear equation
with the K source packets as unknown variables. Decoding
theK source packets is equivalent to solving the linear system
composed ofK coded packets. Thedecoding matrixrepresents
the coefficient matrix of such a linear system. When the rank
of the decoding matrix isK, the linear system can be solved
and theK source packets are decoded. Otherwise, there exists
linear dependence among theK coded packets, and the node
will continue to obtain more coded packets until decoding is
successful.

With such a protocol using network coding, the ultimate
objective of our stochastic analysis is to compute the delivery
delay of all K packets from the source to the destination. If
there are more nodes with coded packets in their buffers, the
destination has a higher probability to obtain a useful coded
packet from a transmission opportunity with another node, and
proceeds towards the decoding of allK packets. Hence, to
compute the delivery delay of allK packets from the source
to the destination, we first compute the packet distributionon
relay nodes.

Recall thatB denotes the maximum relay buffer size. We
classify relay nodes in the network intoB + 1 types using
the number of packets a node has: nodes of typevi each has
i packets, where0 ≤ i ≤ B. For clarity, a node of typevi

is henceforth referred to asvi. We examine the transmission
opportunity when two relay nodes meet. We say that one node

can transmit aninnovativecoded packet to another node, if
the coded packet it transmits can increase the rank of the
decoding matrix on the other node. Clearly,vi can transmit
an innovative coded packet tovj , if i > j, assuming the
coded packets in the buffers are linearly independent with high
probability. We make the following important assumption in
the analysis:if i ≥ 1 andj < K, vi can transmit an innovative
coded packet tovj with high probability, even wheni ≤ j.
In the case of abundant buffers, Debet al. [14] have shown
that the probability that a coded packet is useful to another
node is1 − 1/q, where q is the size of the Galois field to
generate random coding coefficients. In practice,q is usually
sufficiently large such that1−1/q is very close to 11. Although
the relay buffer is limited in our protocol, we will see that our
stochastic analysis based on such an assumption is still very
close to the simulation result in Sec. VI.

We then define thenetwork state, the packet distribution on
relay nodes by a B-tuple{X1(t), . . . ,XB(t)}, whereXi(t)
denotes the number of typevi nodes in the network. We further
useX0(t) to represent the number of typev0 nodes and its
value isN −

∑B
i=1 Xi(t). In the following, we characterize

the network state using ODEs.
Let Di(t) denote the receiving rate ofvi, defined as the

expected number of innovative coded packets received in
a unit time interval, for0 ≤ i ≤ B. We further use
DB+1(t) . . . DK(t) to denote the receiving rate of the destina-
tion, when it has obtainedB +1, . . . ,K packets, respectively.
For v0, it can receive an innovative coded packet from any
relay node with at least one coded packet, namelyvj , where
1 ≤ j ≤ B, and the source node with probability1. For vi,
it can receive an innovative coded packet fromvj with high
probability, if j ≥ 1 as discussed previously, and from the
source with probability1. However, a node cannot transmit
an innovative packet to itself, and such quantity should be
excluded in the equation. This is the reason leading to the
difference between the first and second equation in (3). Similar
arguments also apply to the receiving rates of the destination.
Hence, we have

D0(t) = λ(
B

∑

j=1

Xj(t) + 1),

Di(t) = λ(

B
∑

j=1

Xj(t)), for i = 1, 2, . . . ,K − 1,

DK(t) = 0, (3)

whereD0(t), . . . ,DB(t) are applicable for both relay nodes
and the destination, whereasDB+1(t), . . . ,DK(t) are appli-
cable for only the destination since relay nodes can hold at
mostB packets and all packets in the relay buffer are linearly
independent with high probability. Furthermore,DB(t) is for
the destination in (3), whereasDB(t) = 0 for the relay nodes
as the relay buffer size isB.

Next, we consider the varying rate ofXi(t) within a
short time interval, which is composed of two parts. First,

1A byte is usually used to store a coding coefficient for the tradeoff among
ease of implementation, overhead, and sufficiently linear independence among
coded packets. Hence,q is 2

8
= 256.
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Di−1(t)Xi−1(t) number ofvi−1 becomesvi since they can
obtain one innovative coded packet with high probability.
Second,Di(t)Xi(t) number ofvi becomesvi+1 since they can
also acquire one innovative coded packet with high probability.
Therefore, we use the following ODEs to computeXi(t):

dXi

dt
= Di−1(t)Xi−1(t) − Di(t)Xi(t),

for i = 1, . . . , B − 1,

dXB

dt
= DB−1(t)XB−1(t), (4)

whereDi(t) is computed in (3) as a function ofXi(t). The
above ODEs can be solved with the initial valueXi(t) = 0
for i = 1, . . . , B.

We proceed to compute the distribution of the delivery delay
from the time that the source begins transmitting data to the
time that the destination obtains allK packets. We use the
random variableTi to denote the time that the destination
obtains i packets, fori = 1, . . . ,K. Hence, the delivery
delay for all K packets isTK . Let Fi(t) be the Cumulative
Distribution Function (CDF) ofTi. We deriveFi(t) with ODEs
by computing the derivative ofFi(t) over t. In particular, to
derive FK(t), i.e. Pr(TK < t) with ODEs, we compute the
value change of Pr(TK > t) within a small time interval
[t, t + δt]. Hence, we can compute the CDFFK(t) of the
delivery delay ofK packets by solving the following ODEs,
where details of the derivation are presented in Appendix A:

dF1

dt
= D0(t)(1 − F1(t)),

dFi

dt
= Di−1(t)(Fi−1(t) − Fi(t)), for i = 2, . . . ,K. (5)

The initial values of the above ODEs areFi(0) = 0, for i =
1, . . . ,K, andDi(t) is given in (3) by solving (4).

In the above analytical framework, we assume that the
bandwidth when two nodes meet is only sufficient to transmit
one packet. Here, we briefly outline how to extend the basic
analytical framework to the more general case where at most
b packets can be transmitted when two nodes meet, for the
network coding case. The extension for the replication caseis
similar. Because such an extension on the basic framework is
straightforward but complicated, and does not offer significant
new insight, we omit further details in the later parts of this
paper.

We use the same notationXi(t) to denote the number of
nodes withi coded packets in their buffers. Similarly, we focus
on the changing rate ofxi(t), which can be characterized by
the following equation:

dXi

dt
= λ(Xi−b

B
∑

j=b

Xj +

b−1
∑

j=1

Xi−b+jXb−j − Xi

B
∑

j=1

Xj)

(6)

(6) holds because oncevi−b meets vj with j ≥ b, this
vi−b will becomevi with b innovative coded packets. There-
fore, Xi(t) increases byλXi−b

∑B
j=b Xj . Furthermore, when

vi−b+j meetsvb−j , where 1 ≤ j ≤ b − 1, it becomesvi

by obtaining b − j innovative coded packets. Hence,Xi(t)

increases byλ
∑b−1

j=1 Xi−b+jXb−j . Finally, if vi meets any
node with a non-empty buffer, it will becomevl, wherel > i,
by retrieving innovative coded packets from the node that it
meets. Therefore,Xi(t) decreases byλXi

∑B
j=1 Xj . Note in

the above argument, we ignore the tedious details that the
source may transmit innovative packets and the node cannot
transmit to itself for presentation clarity. Based on (6), we are
able to construct the analytical framework in the similar way
as the above basic analytical framework.

C. Epidemic Routing with Replication

We now present a stochastic analytical model for epidemic
routing with replication, to serve as a comparison with our
analytical results in the case of network coding.

With epidemic routing using replication, when two nodesa
andb meet, nodea knows the set of packets in nodeb and vice
versa, through the exchange of packet identifiers. LetSa and
Sb denote the set of packets on nodea andb, respectively. In
the following, we describe the protocol for only nodea since
the protocol for nodeb is identical. Nodea chooses one packet
in the setSa − Sb to transmit to nodeb such that the packet
transmitted to nodeb is always new to nodeb. If Sa − Sb is
empty, nodea will miss this transmission opportunity.

We examine three policies in selecting which packet from
Sa −Sb is to be transmitted. First, in therandompolicy, node
a chooses a packet with the same probability for each packet
in Sa − Sb. Second, in thelocal rarest policy, nodea uses
a counter for each packet in the buffer to record how many
times that each packet has been transmitted and chooses the
packet with the smallest counter. Third, in theglobal rarest
policy, we assume that an oracle maintains global counters
for all K packets,i.e., the number of copies of each packet
in the network. Nodea chooses the packet with the smallest
counter to transmit. It is clear that the last two policies try to
maintain an even distribution of the copies of theK different
packets in the network. Although the global rarest policy is
impractical, by comparing it with the other two policies, we
will have a clearer understanding on the difference between
simulation and analytical results, as we will show in Sec. VI.

Upon receiving a packetPa from nodea, nodeb insertsPa

into its buffer if the buffer is not full. If the buffer is already
full, node b usesPa to replace a random packet in its buffer
in the random policy. In the local or global rarest policy, node
b compares the counter ofPa with the counter ofPb which
is the packet with the largest counter in nodeb’s buffer, and
drops the packet amongPa andPb with the larger counter.

We proceed to study the delivery delay of the above protocol
based on replication. Similar to our analysis in the case of
network coding, we first compute the packet distribution on
relay nodes. We similarly classify relay nodes in the network
by B + 1 types, denoted byvi, for i = 0, . . . , B. We make
the following assumption in our analysis.The i packets on
vi are uniformly distributed among theK original packets.
This assumption is reasonable if the global rarest policy
are employed since it maintains close to even proportions
of K packets in the network. We will show the accuracy
of this assumption on all three policies in our simulation-
based studies. We then examine the probability Pr(i, j) that
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vi obtains a new packet fromvj under such an assumption.
First, it is easy to see that, ifi < j, vi can always obtain a
new packet fromvj . Second, ifi ≥ j, vi cannot obtain a new
packet fromvj only if vi contains all packets onvj , which
has the probability

(

i
j

)

/
(

K
j

)

under the assumption of uniform

packet distribution. Hence, we have Pr(i, j) = 1−
(

i
j

)

/
(

K
j

)

in
such a case. In summary, we have

Pr(i, j) =

{

1 if i < j,

1 −
(

i
j

)

/
(

K
j

)

if i ≥ j.
(7)

We note that similar analysis has been applied to BitTorrent
like P2P file sharing systems (e.g., [28]).

Again, a B-tuple{X1(t), . . . ,XB(t)} is used to represent
the network state at timet. Let Di(t) denote the receiving
rate ofvi, for 1 ≤ i ≤ B. We further useDB+1(t) . . . DK(t)
to denote the receiving rate of the destination, when it has
obtainedB + 1, . . . ,K packets, respectively. Forv0, it can
receive a new packet from any relay node with at least one
packet, namelyvj where1 ≤ j ≤ B, and from the source with
probability 1. For vi, it can receive new packets fromvj with
probability Pr(i, j) and from the source with probability1.
However, a node withi packets can not transmit an innovative
packet to itself, and such quantity should be excluded in the
equation, causing the term−Pr(i, i) in the second equation of
(8). Similar arguments also apply to the receiving rates of the
destination. Hence, we have

D0(t) = λ(

B
∑

j=1

Xj(t) + 1),

Di(t) = λ(
B

∑

j=1

Xj(t)Pr(i, j) + 1 − Pr(i, i)),

for i = 1, . . . ,K − 1,

DK(t) = 0, (8)

where Pr(i, j) is computed in (7).D0(t), . . . ,DB(t) are ap-
plicable for both relay nodes and the destination, whereas
DB+1(t), . . . ,DK(t) are applicable for only the destination
since relay nodes can hold at mostB packets. Furthermore,
DB(t) is for the destination in (3), whereasDB(t) = 0 for
the relay nodes as the relay buffer size isB.

Finally, we can use the same set of ODEs in (4) and (5) to
obtainXi(t) andFK(t), the CDF of the delivery delay of all
K packets, by replacingDi(t) for the coding based protocol
in them with the values computed in (8) for the replication
based protocol.

IV. STOPPINGMECHANISMS AND RESOURCEUSAGE

ANALYSIS

We proceed to analyze the protocol resource usage under
different mechanisms to stop the packet transmissions.

A. Reactive Stopping Mechanisms

We first study the network resource usage under the recov-
ery schemes proposed in [17]. For replication based protocol,
if a relay node transmits a packet,e.g. packet i, to the

destination, this relay node can remove packeti from its buffer
to save buffer space since packeti is successfully delivered
to the destination. In addition, this relay node can record the
delivery information by carrying an “ACK” for packeti in its
buffer to keep it from receiving packeti from other relay nodes
again. Such scheme is referred to as IMMUNE in [17]. A more
efficient scheme, VACCINE [17], is to propagate ACKs among
relay nodes rather than only from the destination to relay nodes
as in IMMUNE. Since these mechanisms are activated only
after the destination has received data, we refer them to as
reactive stopping mechanisms.

Similar recovery schemes can also be designed for network
coding based protocol. Unlike the replication based protocol,
where K different ACKs are used to acknowledge theK
different data packets, only one type of ACKs exist in the
network coding based protocol for allK packets. The desti-
nation generates such ACKs after it has decoded allK source
packets.

We focus on two metrics of network resource usage: the
buffer consumption of relays nodes and the number of trans-
missions made by relay nodes. The network resource usage are
important if multiple sessions of network traffic compete for
limited resource. Furthermore, the number of transmissions by
relay nodes implies their energy consumption and is critical
for mobile nodes with limited energy.

1) Epidemic Routing with Network Coding:Before the
analysis for resource usage for the coding based protocol, we
first compute the probabilitySi(t) that the destination receives
i packets at timet from the CDFsFi(t) and Fi+1(t) of Ti

andTi+1, which are derived in (5). We have

Si(t) = Pr(Ti < t, Ti+1 > t)

= Pr(Ti < t) − Pr(Ti < t, Ti+1 < t)

= Pr(Ti < t) − Pr(Ti+1 < t)

= Fi(t) − Fi+1(t) (9)

for i = 1, . . . ,K−1, where the second equality holds because
the event{Ti+1 < t} implies the event{Ti < t} due to
Ti ≤ Ti+1. Similarly, we have

S0(t) = 1 − F1(t),

SK(t) = FK(t). (10)

We first consider the case for VACCINE, where the ACKs
are propagated among all relay nodes. We usevi to denote the
relay nodes withi coded packets in their buffer as in Sec. III-B,
and vR to represent the relay nodes that have received the
ACK. Let {Y1(t), . . . , YB(t), YR(t)} be the network state,
whereYi(t) denotes the number ofvi, for i = 1, . . . , B, and
YR(t) denotes the number ofvR. We then have the following
set of ODEs to describe the dynamics of the network state:

dY1

dt
= λY0(

B
∑

j=1

Yj + 1) − λY1(

B
∑

j=1

Yj + YR + SK), (11)

dYi

dt
= λYi−1(

B
∑

j=1

Yj) − λYi(
B

∑

j=1

Yj + YR + SK),

for i = 2, . . . , B − 1 (12)
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dYB

dt
= λYB−1(

B
∑

j=1

Yj) − λYB(YR + SK), (13)

dYR

dt
= λ(

B
∑

j=0

Yj)(YR + SK), (14)

whereSK(t) is derived in (10), andY0(t) = N − YR(t) −
∑B

i=1 Yi(t) represents the number of relay nodes with no
coded packets and the ACK. (12) holds because oncevi−1

meetsvj with j ≥ 1 or the source, and excluding itself, this
vi−1 will become vi with a new innovative coded packet.
Therefore, Yi(t) increases byλYi−1(t)(

∑B
j=1 Yj). On the

other hand, ifvi meets vj with j ≥ 1, the source, and
excluding itself, it becomesvi+1. Furthermore, ifvi meetsvR

or the destination withK packets, it will becomevR. Hence,
Yi(t) decreases byλYi(

∑B
j=1 Yj+YR+SK). Similar argument

applies for (11), (13), and (14). The initial values for the above
ODEs areYi(0) = 0 andYR(0) = 0, for i = 1, . . . , B.

For IMMUNE, a similar set of ODEs can be constructed to
characterize the network state as follows:

dY1

dt
= λY0(

B
∑

j=1

Yj + 1) − λY1(

B
∑

j=1

Yj + SK),

dYi

dt
= λYi−1(

B
∑

j=1

Yj) − λYi(

B
∑

j=1

Yj + SK),

for i = 2, . . . , B − 1

dYB

dt
= λYB−1(

B
∑

j=1

Yj) − λYBSK ,

dYR

dt
= λ(

B
∑

j=0

Yj)SK , (15)

with the same initial values as in (11), (12), (13), and (14).
Comparing the two sets of ODEs to describe VACCINE and
IMMUNE, we can see the factorYR + SK in the right of
equations is reduced toSK to reflect the fact that only the
destination can propagate ACKs.

By solvingYi(t) from the above ODEs, we have the buffer
consumption of the network: the expected number of total
coded packetsC(t) among all relay buffers is

C(t) =

B
∑

i=1

Yi(t) · i (16)

sincevi holds i coded packets in its buffer.
Furthermore, the number of relay transmissions in the

network can also be computed fromYi(t). Since anyvi for
i > 1 will transmit as long as they meet another node that
has not recovered, and the meeting rate of relay nodes isλ.
Hence, the expected number of relay transmissions is

D(t) = λ(

B
∑

i=1

Yi(t))(N − YR(t)) (17)

2) Epidemic Routing with Replication:Similarly, the prob-
ability Si(t) that the destination has receivedi packets can be
computed with (9) and (10), except whereFi(t) is replaced

with the delay distribution of the replication based protocol
derived at the end of Sec. III-C: the replication version of (5).

We first study VACCINE. Since the size of ACKs is much
smaller than data packets, we assume that an arbitrary number
of ACKs can be transmitted when two nodes meet. We
use {Z1(t), . . . , ZK(t)} to denote the state of ACKs in the
network, whereZi(t) represents the number of relay nodes
with i ACKs. When two relay nodes,e.g. nodea and node
b meet, suppose they haveca ACKs and cb ACKs in their
buffer, denoted byAa and Ab, respectively. It is easy to see
thatAa ⊂ Ab, if ca < cb, because all ACK are originated from
the same node, the destination. Therefore, after exchanging of
ACKs, nodeb will also haveca ACKs. When a node meets
the destination at timet, its ACKs will be increased toi
with probability Si(t), the probability that the destination has
obtainedi packets at timet. Hence, we have the following set
of ODEs to characterize the dynamics of ACKs in the network:

dZi

dt
= λ

i−1
∑

j=0

Zj(Zi + Si) − λZi

K
∑

j=i+1

(Zj + Sj),

for i = 1, . . . ,K − 1, (18)

dZK

dt
= λ

K−1
∑

j=0

Zj(ZK + SK), (19)

(18) holds sinceZi(t) increases if a relay node with less than
i ACKs meets a relay node or the destination withi ACKs.
Furthermore,Zi(t) decreases if a relay node withi ACKs
meets a node with more thani ACKs. Similar justification
applies for (19).

For IMMUNE, similarly, the set of ODEs to characterize
the dynamics of ACKs is as follows:

dZi

dt
= λ

i−1
∑

j=0

ZjSi − λZi

K
∑

j=i+1

Sj , for i = 1, . . . ,K − 1,

(20)

dZK

dt
= λ

K−1
∑

j=0

ZjSK , (21)

(20) holds sinceZi(t) increases if a relay node with less than
i ACKs meets the destination and the destination hasi ACKs
at time t. Furthermore,Zi(t) decreases if a relay node withi
ACKs meets the destination and the destination has more than
i ACKs at timet.

We proceed to derive the expected number of data packets
in relay buffers at timet, usingXi(t) (derived at the end of
Sec. III-C, the replication version of (4),under the assumption
that no ACKs are propagating) andZi(t) for both VACCINE
and IMMUNE. We make two modeling assumptions here.
First, we assume that data packet transmissions are not sig-
nificantly affected by the ACKs. In reality, ACKs do affect
data packet transmissions since a node that has obtained ACK
for data packeta will not involve in replicating packeta.
This assumption is sufficiently accurate for IMMUNE, but
is only an approximation for VACCINE, because the ACK
propagation for IMMUNE is much slower than VACCINE.
We confirm the accuracy of such an assumption for different
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mechanisms via simulations in Sec. VI-B. Second, we assume
the virtual data packets, the data packets in the buffer and
the data packets that have been removed by ACKs, are
transmitted independent of ACK transmissions on each relay
node, justified by the fact that the data packets may arrive
at the destination in any order, and the destination generates
ACKs for different data packets in any order as well. Hence,
for a particular nodea with i data packets (including the
packets that have been removed by ACKs) andj ACKs, since
ACKs and data packets are assumed to be independent on a
particular node, each of thei data packets hasj/K probability
to be acknowledged and removed from the buffer. Hence, the
expected number of data packets that have been removed is
ij/K, and the expected number of data packets remained in
buffer is i(1− j/K). Given a node withi data packets, it has
Zj(t)/N probability with j ACKs. Therefore, the expected
number of data packets in its buffer is

∑K
j=0

Zj(t)
N

i(1−j/K).
Hence, the total expected number of data packetsC(t) in all
relay buffers is

C(t) =

B
∑

i=0

Xi(t)(

K
∑

j=0

Zj(t)

N
i(1 −

j

K
)) (22)

Finally, the more involved analysis for the amount of relay
transmissions is presented in Appendix B.

B. Proactive Stopping Mechanism for Network Coding Based
Protocol

In the network coding based protocol described so far, two
nodes exchange coded packets whenever they meet until an
ACK from the destination indicating allK packets have been
received. Such protocol may have many transmissions and
consume a large amount of energy. In this section, we propose
an efficient variant of the network coding based protocol that
has significantly less amount of transmissions while increasing
packet delivery delay only slightly. Our protocol is based on
a proactive stopping mechanism, where counters are used to
stop the relay transmissions before the destination decodes all
data.

Our design is motivated by the following fundamental
question: what is the minimal number of transmissions that
should be made by the source and the relays to achieve the
minimal delivery delay? To deliverK data packets from the
source to the destination, it is easy to see from the information-
theoretical perspective that the source needs to transmit at
least K coded packets to either relay nodes or directly to
the destination. Furthermore, to achieve the minimal delivery
delay, the destination should decode all packets after obtaining
K coded packets. Hence, the minimal number of transmissions
made by relay nodes should disseminate and mix theK coded
packets from the source such that the destination can decode
all packets by obtainingK coded packets fromany K relay
nodes with high probability.

In the proposed protocol, the source transmits slightly more
thanK codedpackets into the network such that these coded
packets are sufficient to decode the original packets with
high probability. All these coded packets are referred to as
pseudo source packets. Each pseudo source packet is then

disseminated toL random nodes in the network in the same
spirit as “Binary Spraying” in [21]. Note that we also encode
them together during the dissemination whenever possible.
Spyropouloset al. [21] have shown that “Binary Spraying”
is the optimal spraying method with the minimal packet
delivery delay under a homogeneous random mobility model
such as ours. By adjustingL, referred to as themaximal
spray counterhereafter, we can tune the tradeoff between the
number of relay transmissions and packet delivery delay. The
question is whether there is a critical threshold such that the
protocol performance will degrade dramatically ifL is below
it. We delay such analysis after we describe the details of the
protocol.

The protocol proceeds as follows. The source maintains a
counter S with an initial value K ′ slightly larger thanK.
When the source meets a relay node, ifS > 0, it generates a
coded packet from its buffer (a pseudo source packet) using the
algorithm presented in Sec. III-B, and transmits the packetto
the relay node. We order the pseudo source packet from the
source with indices1, . . . ,K ′. Each packet from the source
carries its indexi and spray counterl, which is initialized to
the maximal spray counterL. The source decreasesS by one
after each transmission to a relay node and stops transmissions
if S = 0.

The relay nodes implement the “Binary Spraying” protocol
for each pseudo source packet, while encoding them together
whenever possible. Every relay node,e.g., nodea, keeps a list
of tuples:〈i, l〉, wherei and l denote the index of the pseudo
source packet and the value of its spray counter. Such lists are
referred to asspray list and are empty initially. When node
a meetsb, it checks the spray lists in both nodes. If nodea
finds a tuple〈i, l〉 with l ≥ 2 and there is no tuple withi as
the first element in nodeb, nodea transmits a coded packet
to nodeb; otherwise, nodea misses the transfer opportunity.
If node a decides to transmit, it generates a coded packet,
using the algorithm in Sec. III-B, and sets the packet indexi
and the new spray counter⌊l/2⌋ to be carried in the coded
packet. Nodea then updates its tuple with〈i, ⌈l/2⌉〉. Upon
receiving a coded packet, nodeb stores or encodes the coded
packet with the algorithm in Sec. III-B. Furthermore, nodeb
inserts a new tuple into its list:〈i, l〉, where i and l are the
packet index and spray counter carried in the incoming coded
packet, respectively. Note that the source and relay nodes
always generate a coded packet and transmit to the destination
regardless of the counterS or the spray list.

To analyze the amount of transmissions generated by this
protocol, we first state the following obvious fact: under the
homogeneous random mobility model, theL nodes selected by
the “Binary Spray” protocol are uniformly distributed among
theN relay nodes, which is easy to see since each node has the
same probability to meet another node. We then characterize
the asymptotical optimal bound ofL. Since the proactive
stopping mechanism is more useful when the amount of data
to be transmitted is large, we assumeK = Θ(N) throughout
this section. However, we emphasize that this assumption is
only relevant in the proactive stopping mechanism, and there
is no requirement on the relation betweenK and N in all
other modeling parts of this paper.
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{ }
c logK

}

K
αK = Nsource

pseudo source packets 

destination

Coded packets collected

 by destination 

Fig. 1. The network-flow formulation in Theorem 1, wherec and α are
constants.

Theorem 1:if each node has buffer sizeK, the maximal
spray counterL should beΘ(log K) in order for the desti-
nation to decode allK source packets withK coded packets
with high probability.

Proof: We reduce our problem to the problem studied
in [29] by a network-flow formulation as shown in Fig. 1.
The slightly more thanK coded packets from the source can
be equivalently considered asK linearly independent pseudo
source packets. With the coding based protocol, the coded
packets in relay nodes are the random linear combination
of the K pseudo source packets. Moreover, as we shown
previously, the information of a pseudo source packet is
disseminated toL uniformly random relay nodes by the trans-
missions corresponding to the spray counter indexed by this
pseudo source packet. Furthermore, because each relay node
has buffer sizeK, it is not hard to see that the transmissions
of different pseudo source packets to theirL relay nodes are
independent. Hence, Theorem 1 and 2 in [29] apply here.
They show that a source packet needs to be disseminated to
only Θ(log K) random nodes in the network in order for the
destination to decode all source packets withany K coded
packets from anyK nodes with high probability. Hence,L
should beΘ(log K).

We then have the following corollary and lemma on the
amount of transmissions made by the relay nodes. Therefore,
we conclude that the new protocol is asymptotically more
efficient than the original protocol in transmissions.

Corollary 1: In the efficient protocol with proactive stop-
ping, the relay nodes transmitΘ(log K) data packets.

Proof: There areK pseudo source blocks, each consumes
L transmissions. Hence, the total relay transmissions in the
network isKL = Θ(K log K) by Theorem 1. Because there
areN = Θ(K) relay nodes, each relay nodes needs to transmit
Θ(log K) times.

Lemma 1: In the original protocol, each relay node trans-
mits at leastΘ(K) data packets.

Proof: The destination needs to obtain at leastK coded
packets fromK meetings with other nodes to decode all data.
During such time period, each relay node behaves identically
to the destination and meet at leastK nodes on average. In
the original protocol, each relay node transmits a coded packet
whenever it meets another node. Hence, a relay node transmits
at leastK coded packets on average.

In Theorem 1, we assume each relay node has buffer sizeK
to ensure that the spreading of different pseudo source packets
are independent for ease of explanation. However, the buffer
size can be significantly smaller. As shown in Corollary 1,
each relay node transmitsΘ(log K) data packets. Therefore,
it is easy to see the buffer size of each relay nodes needs to be
only Θ(log K) to ensure all transmission from it are linearly
independent. Furthermore, the required relay buffer size can
be reduced further because the coded packets received by a
node arrive at different times. For example, suppose a node
has buffer size 1. If all coded packets arrive at this node at
the same time, it always generates linearly dependent coded
packets. On the other hand, if two packets arrive at different
times, e.g., packeta arrives earlier than packetb, the node
generates the coded packets linearly related to packeta before
packetb arrives, whereas it produces a linear combination of
packeta and b after packetb is received. The coded packets
before and after packetb arrives is hence linearly independent.
In the experiments of Sec. VI-C, we will show that the efficient
protocol requires relay buffers with size only slightly larger
than 12.

V. PRIORITY CODING PROTOCOL

In the network coding based protocol, the destination has
to wait for a sufficient number of coded packets before
decoding any useful data, despite its superiority over practical
replication based protocols under limited network resource.
In this section, we first introduce a simple priority coding
protocol such that a subset of data,i.e., the high priority data,
can be decoded much earlier than the time to decode all data.
We then use our analytical framework to study the trade-off
in designing such a protocol.

We assume theK packets in the source can be classified into
M different priority levels in descending levels of urgency —
the packets in theith level are more preferable and are decoded
before the packets in thejth level, if i < j. The number of
packets in theith level is denoted byKi, where1 ≤ i ≤ M .
We further assume through layered coding [31] or particular
application semantics, the number of packetsKi in each level
can be adjusted to improve the utility of the application under
our priority coding protocol. To make the analysis independent
of application details, we assume the sum of the number of
packets in all priority levels remains constant after adjusting
Ki.

Next, we describe our priority protocol.First, the source
transmits the data in the 1st level using the network coding
based protocol as described in Sec. III-B.Second, after the
destination decodes all data in the 1st level, the destination
propagates an ACK towards the source by replicating the ACK
whenever two nodes meet.Third, upon receiving the ACK,
the source starts to transmit the data in the 2nd level with the
same protocol as used in transmitting the data in the 1st level.
Since the data in the 1st level has arrived at the destination,
a node drops the data in the 1st level whenever the buffer is
full and new data in the 2nd level arrive.Finally, such process

2For the interested reader, further discussions on efficientnetwork coding
protocols can be found in [30].
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continues until the destination decodes the data in all priority
levels.

We proceed to investigate the effectiveness and overhead of
the above priority coding protocol by our analytical frame-
work. It is easy to see in the priority protocol that the
transmission process of the data in a priority level is identical
to the network coding based protocol described in Sec. III-B.
Therefore, we can use our analytical framework to compute
the expected delivery delay of the data within any priority
level. In particular, the delivery delay distribution ofKi

packets,FKi
(t), can be computed with (5) by replacingK

with Ki, and the expected delayE[τi] for the data in the
ith level can be computed fromFKi

(t). Next, we notice
that the expected delayE[τACK ] in transmitting an ACK is
equivalent to transmitting a packet, under the condition of
infinite bandwidth, infinite buffer, and the replication based
epidemic routing, which has been derived in [20]. Hence, we
have

E[τACK ] = ln(N + 1)/(λN), (23)

whereN is the total number of relay nodes, andλ is the inter
meeting rate of any pair of nodes in the network. Because the
delivery process is composed of the data transmissions forM
priority levels and theM − 1 ACK transmissions interleaved
among them, we can compute the total expected delayE[τ ]
to deliver all data as follows:

E[τ ] =

M
∑

i=1

E[τi] + (M − 1)E[τACK ], (24)

whereE[τACK ] is given in (23), andE[τi] is given in (5) by
replacingK with Ki.

In Sec. VI-D, we use numerical analysis to show the
effectiveness of the proposed priority coding scheme undera
particular set of parameters. More importantly, we believethis
simple scheme is effective in a wide range of parameters due
to the following reason. Although the network has the same
characteristic for both ACK and data packet transmissions,
the amount of transmission opportunities required to deliver
an ACK is much smaller than delivering all data packets
in a priority level. Furthermore, the network is indeed the
bottleneck, given the limited bandwidth when two nodes meet.
Therefore, the delivery delay for an ACK is much shorter than
the delivery delay of all data packets in a priority level. Hence,
the priority coding scheme incurs only a modest amount of
increased delivery delay due to the additional propagation
delay of ACK packets and the first data packet (with the similar
delay as ACKs) of each priority level as illustrated by the
numerical analysis in Sec. VI-D.

VI. M ODEL VALIDATIONS AND PERFORMANCE

EVALUATION

In this section, we use simulations to verify the accuracy of
our mathematical analysis. We show that our analytical results
can demonstrate the advantage of the network coding based
protocol over the replication based protocol, especially when
bandwidth and buffer are limited. We further demonstrate the
advantage of the proactive stopping mechanism in our efficient
variant of the network coding based protocol. Finally, we show

that the proposed priority coding based protocol is effective
and induces low delay overhead.

We have developed a discrete-event simulator with the
implementation of epidemic routing and network coding. To
mitigate randomness in simulations, we show, for each data
point in all figures, the average and the 95% confidence
intervals from 100 independent experiments. We set the node
meeting rateλ to 0.005 and the number of packetsK to
10 in most experiments unless explicitly pointed out. In all
simulations, we use GF(28) as the Galois field where network
coding is operated.

A. Delivery Delay

1) Validation for Delivery Delay Distribution:We first
validate the accuracy of our analysis on the distribution of
packet delivery delay. We set the number of data packets
K = 10, the number of relay nodesN = 200, the buffer
size B = 1, and conduct 1000 simulations with independent
random seeds for epidemic routing with both network coding
and replication. In this set of experiments, we chooseB = 1
because, as we will show in Sec. VI-A3, this is a reasonable
value to use for epidemic routing with network coding. We
observe similar results for other values ofB, which are omitted
to reduce redundancy. Fig. 2 plots the empirical and analytical
CDF of delivery delayFK(t), derived from (5). For clarity
in the figure, we show only the global rarest policy for the
replication case since it is the ideal replication strategyand
closest to the analysis. The local rarest and random policy
are discussed later in Sec. VI-A2 and Sec. VI-A3. We notice
that the analytical result is very close to the simulation result.
Furthermore, the analytical delivery delay is slightly shorter
than the empirical result since we have made several idealized
assumptions in the analysis of Sec. III.
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Fig. 2. CDF of delivery delay.

2) The Case for Limited Bandwidth:We then study the
impact of the number of relay nodes on the delivery delay of
K packets. The amount of bandwidth denotes the number of
packets that can be exchanged between two nodes when they
meet. It is easy to see that replication based epidemic routing
achieves the minimal delivery delay when the bandwidth and
buffer are sufficient to transmitK packets and holdK packets,
respectively. Therefore, there is no advantage of network
coding over replication when network resources are abundant.
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In this paper, we focus on studying the difference between
network coding and replication when the bandwidthb is only
sufficient to transmit one data packet when two nodes meet as
explained in Sec. II. The more general case when1 < b ≤ K
can be easily extended and is outlined at the end of Sec. III-B.

We setK = 10, and the relay buffer size to10 as well
such that the buffer is sufficient to hold allK packets on
each relay node. In Fig. 3, we plot the delivery delay as a
function of the number of relay nodes. The analytical curve is
the expected value computed from the CDFFK(t) of the delay
distribution derived in (5) of Sec. III. The simulation curve
is plotted from the average and confidence interval of 100
independent simulations as explained previously. We observe
that the analytical results are close to the simulation results
for both the network coding based protocol and the replication
based protocols with the global rarest policy.

The delivery delay of the random policy is larger than the
delivery delay of the global rarest policy since the assumption,
that the packets on a node are uniformly distributed among all
K packets, is less accurate in this case. The delivery delay of
the local rarest policy is much larger than that of the random
and global rarest policies. This shows that local counters do
not provide an accurate estimation of the proportion of packets
in the entire network. One may imagine if the nodes use the
average of the local packet counters of the last several nodes
it meets and its own counters, it could obtain a more accurate
estimation. In the following, we omit the experimental results
for the local rarest policy.

Fig. 3 also shows that the delivery delay of the network
coding based protocol and the replication based protocol
with the idealized global rarest policy are very close. This
illustrates that network coding can achieve an even distribution
of all packets as in the ideal replication based protocol. We
emphasize that the practical replication based protocols,i.e.,
with the random or local rarest policy, both have significantly
longer delivery delay than the network coding based protocol.

Finally, Fig. 3 confirms our expectation that the delivery
delay decreases as the number of relay nodes increases,
because more relay nodes can expedite more transmissions
from the source to the destination.
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Fig. 3. Delivery delay under different numbers of relay nodes.

3) The Case for Both Limited Bandwidth and Buffer:We
proceed to study the impact of the relay buffer size on the

delivery delay. We set the number of relay nodes to100
in this set of experiments and adjust the relay buffer size
from 1 to 10. Fig. 4 shows that our analysis agrees with the
simulation results for the network coding based protocol and
the replication based protocol with the global rarest policy.

In addition, we note that both the analytical and simulation
results demonstrate the benefit of network coding under lim-
ited buffer: the delivery delay of the network coding based
protocol is not influenced by the buffer size, whereas the
delivery delay of the replication based protocols increases
significantly when the buffer size decreases. Such performance
degradation of the replication based protocols is due to the
coupon collector effect [32]. If we consider the extreme case
that each buffer can store only one packet, assuming that
the packet in a buffer is uniformly randomly chosen from
the K packets, the coupon collector effect dictates that the
destination node needs to collectO(K lnK) packets in order
to obtain allK packets. On the other hand, under the same
setting, the destination in the network coding based protocol
can decode allK source packets fromK coded packets with
high probability.

Finally, we observe that the delivery delay of a practical
replication based protocol, with the random policy, increases
much more significantly than one with the global rarest policy
when the buffer size decreases. This is because under the
random policy, the packet distribution in node buffers deviates
from the uniform distribution. If the node buffer size isK,
such bias does not have as much impact after most nodes have
collected all packets. However, if the buffer size is very small,
such bias has a stronger influence throughout the delivery
process and degrades the protocol performance.
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Fig. 4. Delivery delay under different buffer sizes.

B. Reactive Stopping and the Network Resource Usage

In this section, we study the network resource usage for
both protocols under the reactive recovery schemes IMMUNE
and VACCINE. We set the number of packetsK = 10 and
the number of relay nodesN = 100. We further set the relay
buffer sizeB to 1 for the network coding based protocol and 8
for the replication based protocol since the performance ofthe
replication based protocol will degrade if the relay buffersize
is small. We trace the total number of buffered data packets
in the entire network and the amount of transmissions by all
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relay nodes over the duration of simulation. To present clean
figures, we show the simulation results of only the global rarest
policy for the replication based protocol.

Fig. 5(a) and (c) demonstrate that the analytical results
are very close to the simulation result for IMMUNE. For
VACCINE, as shown in Fig. 5(b) and (d), the analysis is less
accurate due to the well-known exponential amplification of
modeling errors introduced by ACK flooding [20]. However,
the analysis still captures the difference between the network
coding based and replication based protocols.

In general, our analytical and simulation results show two
observations. First, VACCINE is much more efficient than
IMMUNE to reduce the amount of transmissions and to clean
buffers. Second, the network coding based protocol requires
much smaller buffers than the replication based protocol does.
However, the amount of transmissions by the network coding
based protocol is slightly larger than that of the replication
based protocol, because at each node meeting, the network
coding based protocol transmits a coded packet as long as
there are coded packets in buffers, whereas the replication
based protocol transmits a packet only when a node has a
new packet that the other node does not possess. However, we
emphasize that the amount of transmissions by the network
coding based protocol can be drastically reduced by using the
proactive stopping mechanism as shown in Sec. VI-C.
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Fig. 5. (a) The buffer consumption of IMMUNE in time. (b) The buffer
consumption of VACCINE in time. (c) The number of relay transmissions of
IMMUNE in time. (d) The number of relay transmissions of VACCINEin
time.

C. Proactive Stopping: Validation of Protocol Efficiency

In the following, we use simulation to illustrate the effec-
tiveness of the more efficient network coding based protocol
with proactive stopping. We set the number of source packets
to 100, the number of relay nodes to 200, the number of
pseudo source packets to 105, and the maximal relay buffer
size to 100. We vary the maximal spray counter from 1 to

36 and compare the experimental results with the original
protocol described in Sec. III-B under the same experiment
settings. The results are shown in Fig. 6.

As expected, Fig. 6(a) shows that the amount of relay
transmissions increases linearly as the spray counter increases,
and that for the range of spray counter under consideration,
the efficient protocol significantly reduces the amount of
transmissions. More importantly, the efficient protocol can
achieve near optimal performance. From Fig. 6(b), we observe
that the packet delivery delay decreases significantly whenthe
maximal spray counter increases. This is because the number
of coded packets that the receiver needs to decode all data
decreases dramatically until it is close to the number of coded
packets required for decoding in the original protocol.

Next, we investigate the impact of the relay buffer size on
the packet delivery delay. We set the maximal spray counter
to 10 or 25 in two sets of experiments while varying the
relay buffer sizes from 1 to 100. All the other settings are
the same as the previous experiments. Fig. 7 shows that as
long as the relay buffer size is more than 2, the performance
of the efficient protocol is almost the same as the case with
buffer size 100. This confirms our analysis in Sec. IV-B that
the relay buffer sizes can be very small.

D. Priority Coding Advantage

In the following, we conduct numerical analysis on the
performance of the priority protocol proposed in Sec. V. We
study the simplest case, where only two priority levels exist.
We set the total number of relay nodesN to 200. We further
set the total number of packets to be transmitted to100. We
perform a set of numerical analysis by adjusting the number of
packets in the high priority level from 1 to 99, and compare the
delivery delay of the priority coding protocol with the original
network coding based protocol, where all100 packets are sent
through the network in one priority level altogether.

Fig. 8 shows that our priority coding protocol is effective.It
reduces the delivery delay of high priority packets while only
slightly increasing the total delivery delay. For example,if
the high priority level has 10 packets, the network delivers
them with delay 14.9473, which is much smaller than the
total data delivery delay, 104.3826, in the original protocol.
Furthermore, the total delivery delay, 114.6457, in the priority
coding protocol is only 10.26% larger than the data delivery
delay in the original protocol. We further study the overhead of
the priority coding protocol with more details in the following.

From Fig. 8, we observe that the delivery delay of high
priority data is almost in linear relation with the number
of packets with high priority. Such observation shows that
the delivery delay in the network coding based protocol is
composed of two types of components: the delivery delay of
the first packet (5.1928, the first dot of the “high priority”
curve in Fig. 8) and the delivery delay of the remaining
packets, where the delivery delay of each packet is almost
identical (about 0.9945) and much shorter than the delay of
the first packet. This is because the transmission of the first
packet incurs a delay with approximately the length of the
shortest opportunistic path. Afterwards, the delivery delay of
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Fig. 6. (a) Average number of transmissions by a relay node vs. maximal spray counter. (b) Packet
delivery delay vs. maximal spray counter.
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Fig. 7. Packet delivery delay under different sizes
of relay buffers.

each packet is around the expected timeE[Tm] in which the
destination meets another node because the destination can
obtain an innovative coded packet from each contact with
another node with high probability. We further confirm this
by noting thatE[Tm] = 1

λ
· 1

N+1 = 1/(0.005 ∗ 201) = 0.995,
since 1

λ
is the expected delay that two nodes meet. This is in

agreement with the value observed in Fig. 8.
Because the delivery delay of each packet (excluding the

first packet) is identical for both the priority protocol andthe
original network coding based protocol, it is easy to see that
transmitting data in two priority levels separately will induce a
delay overhead equaling the delivery delay of the first packet.
Hence, the overhead of the priority coding protocol consists
of two parts: the ACK propagation delay and the delivery
time of the first packet. Note that in the analysis, the ACK
propagation delay has similar delivery delay, 5.3033, as that of
the first packet because both of them incur transmission delay
as the length of the shortest opportunistic path approximately.
Therefore, the delay overhead is low when there are two
priority levels, because the ACK propagation delay and the
delivery delay of the first packet are much smaller than the
delivery delay of all packets. It can be expected that when
we increase the number of priority levels, the overhead of
the priority protocol increases. The quantitative relation of the
protocol overhead and the number of priority levels can be
easily estimated by our analytical framework. We omit the
results of such obvious analysis due to space constraint.

VII. C ONCLUSION

In this paper, we introduce a stochastic analysis frame-
work to study the performance of epidemic routing with
network coding in disruption tolerant networks. The analy-
sis also includes the degenerate case of simple replication
without network coding. Our analytical results quantify the
superiority of network coding over simple replication under
limited bandwidth and node buffer. Both reactive and proactive
stopping mechanisms are considered, and their impact on
the data delivery delay and network resource utilization are
analyzed. Our analytical models are sufficiently accurate for
examination of the tradeoffs involved in new protocol designs
for opportunistic networks. Noting the slow-start disadvantage
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Fig. 8. Delivery delay under different numbers of packets in the high priority
level. The plot labeled “only data” represents the sum of thedelivery delay
in two priority levels without the ACK packet.

of network coding and inspired by our analysis of the data
delivery delay, we propose a simple priority coding protocol,
which can decode urgent data with much smaller delay than
the baseline epidemic routing with network coding. Through
our analytical model, we show that the priority coding protocol
is effective and induces low delay overhead.
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APPENDIX A
DERIVATION OF ODES (5) TO COMPUTE THEDELAY

DISTRIBUTIONS

It is easy to see the event{Ti > t + δt} implies the event
{Ti > t}. Hence, we have{Ti > t + δt, Ti > t} = {Ti >
t + δt} and

Pr(Ti > t + δt) = Pr(Ti > t + δt, Ti > t)

= Pr(Ti > t)Pr(Ti > t + δt|Ti > t)

= Pr(Ti > t)(1 − Pr(Ti < t + δt|Ti > t)) .
(25)

Next, we derive Pr(Ti < t + δt|Ti > t) in (25). In a short
time interval δt, the probability that more than one packet
arrives can be ignored compared with the probability that
one packet arrives. Hence, the event{Ti < t + δt} that the
destination receivesi packets before timet+ δt happens only
if the destination receivesi−1 packets beforet, i.e., the event
{Ti−1 < t}. Therefore, we have

Pr(Ti < t + δt|Ti > t) ≃ δtDi−1Pr(Ti−1 < t|Ti > t), (26)

whereDi−1 ((3)) is the receiving rate of the destination when
it has i − 1 packets,i.e., the probability that the destination
obtains an innovative packet in a small intervalδt.

We then derive Pr(Ti−1 < t|Ti > t) as follows:

Pr(Ti−1 < t|Ti > t) = 1 − Pr(Ti−1 > t|Ti > t)

= 1 −
Pr(Ti−1 > t, Ti > t)

Pr(Ti > t)

= 1 −
Pr(Ti−1 > t)

Pr(Ti > t)
, (27)

where the third equality holds sinceTi ≥ Ti−1, the time to
receivei coded packets is always greater than or equal to the
time to receivei−1 coded packets. Substituting (27) into (26),
and (26) into (25), we get

Pr(Ti > t + δt) = Pr(Ti > t)(1 − δtDi−1(t)(1 −
Pr(Ti−1 > t)

Pr(Ti > t)
)) .

(28)

Therefore, we can compute the derivative ofFi(t) by

dFi

dt
= lim

δt→0

F (t + δt) − F (t)

δt

= lim
δt→0

−
Pr(Ti > t + δt) − Pr(Ti > t)

δt

= lim
δt→0

Pr(Ti > t)
δtDi−1(t)(1 − Pr(Ti−1>t)

Pr(Ti>t) )

δt
= Di−1(t)(Pr(Ti > t) − Pr(Ti−1 > t))

= Di−1(t)(Fi−1(t) − Fi(t)), (29)

where the third equality holds by substituting with (28).
Similarly, we can derivedF1

dt
= D0(t)(1 − F1(t)). Hence,

the CDFFK(t) can be computed by solving the ODEs in (5).
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APPENDIX B
DERIVATION OF RELAY TRANSMISSIONS FOR THE

REPLICATION BASED PROTOCOL

In this appendix, we analyze the amount of relay transmis-
sions in the network with the state of data packetsXi(t) and
ACKs Zi(t), derived in Sec. III-C for the replication based
protocol. We examine the details when two relay nodes meet,
e.g., nodea with i data packets andm ACKs meets nodeb
with j data packets andn ACKs. The number of data packets
refers to the number of original data packets including those
removed by ACKs. To derive the expected number of relay
data transmissions, we first compute the probability that node
a transmits a data packet to nodeb.

First, we investigate the case wherem ≤ n. As we discussed
previously in Sec. IV-A2, we haveAa ⊆ Ab, whereAa and
Ab refer to the ACK sets on nodea andb, respectively. Hence,
we first compute the expected remaining data packets in both
nodes that are removed by ACKs inAa. Let Da andDb denote
the remaining data packets in nodea and b, respectively. By
the discussion in Sec. IV-A2, we have the expected size ofDa

andDb, denoted asda anddb, respectively:

da = i(1 −
m

K
),

db = j(1 −
m

K
). (30)

We assume the remaining packets inDa, Db, andAb −Aa

are uniformly distributed among theK − m remaining data
packets (after removing the packets inAa), denoted asR.
If Da contains a new packet not inDb ∪ (Ab − Aa), i.e.,
Da − (Db ∪ (Ab − Aa)) 6= Φ, nodea will transmit a data
packet to nodeb. Based on this, we derive the probability that
a data transmission occurs at nodea.

Before computing the probability of the eventDa − (Db ∪
(Ab − Aa)) 6= Φ, we first compute the expected number of
packets inDb ∪ (Ab −Aa). As such computation will be used
multiple times, we calculate the general case: the expected
number of packets inX ∪ Y , where the packets inX and
Y are independently uniformly distributed amongZ, given
X ⊆ Z andY ⊆ Z. Without loss of generality, we assume that
|X| ≥ |Y |. Such computation can be further divided into two
cases. We first consider the case where|X| + |Y | ≤ |Z|. For
every packetp, wherep ∈ Y , it has probability(|Z|−|X|)/|Z|
not to be inX, because the uniform distribution assumption.
Hence on expectation, there are|Y |(|Z|− |X|)/|Z| packets in
Y −X. Therefore, the expected number of packets inX∪Y is
|X| + |Y |(|Z|−|X|)

|Z| . Similarly, we can compute the case when
|X|+ |Y | > |Z|. In summary, we have the following function
f(|X|, |Y |, |Z|) to obtain the expected number of packets in
the setX ∪ Y :

f(|X|, |Y |, |Z|) =

{

|X| + |Y |(|Z|−|X|)
|Z| if |X| + |Y | ≤ |Z|,

|X| + (|Z|−|X|)2

2|Z|−|X|−|Y | if |X| + |Y | > |Z|.
(31)

Hence, the expected number of packets in the setDb∪(Ab−
Aa) is

Ub = f(db, n − m,K − m) (32)

where db is given in (30), andf(·, ·, ·) is defined in (31).

Therefore, the probability that nodea transmits a data packet
to nodeb is the probabilityg(i,m, j, n) that nodeb can obtain
a new packet from nodea:

g(i,m, j, n) = Pr(Ub, da) (33)

where the function Pr(·, ·) is defined in (7), andUb is derived
in (32).

Because the data packets and ACKs are assumed indepen-
dent on a node as we discuss in Sec IV-A2, a node withi
packets has probabilityZm(t)/N to havem ACKs. Similarly,
a node withj data packets has probabilityZn(t)/N to have
n ACKs. Furthermore, the meeting rate of two nodes isλ.
Therefore, we can compute the expected numberD(t) of relay
transmissions by summing all cases as follows:

D(t) = λ

B
∑

i=0

K
∑

m=0

B
∑

j=0

K
∑

n=0

Xi(t)
Zm(t)

N
Xj(t)

Zn(t)

N
g(i,m, j, n).

(34)
For the second case wherem > n, similarly, we first remove

the data packets by ACKs in the smaller ACK setAb. Denoting
the remaining data packets on nodea andb with D′

a andD′
b,

respectively, we have the number of data packetsd′a andd′b in
them similarly as derived in (30). The probability that nodea
will transmit a data packet to nodeb is the probability of the
event thatD′

a has a new packet which is not in the setD′
b ∪

(Aa − Ab). Therefore, the expected number of transmissions
can be obtained similarly as in the first case wherem ≤ n. We
omit the details of the analysis here due to space constraint.
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