
Scaling Laws and Tradeoffs in
Peer-to-Peer Live Multimedia Streaming

Tara Small, Ben Liang, and Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Ontario, Canada

tsmall@eecg.toronto.edu, liang@comm.toronto.edu, bli@eecg.toronto.edu

ABSTRACT
It is well-known that live multimedia streaming applications oper-
ate more efficiently when organized in peer-to-peer (P2P) topolo-
gies, since peer upload capacities are utilized to support other peers,
and to alleviate the load and operating costs on the streaming servers.
To date, there have been a number of existing experimental propos-
als with respect to how such peer-to-peer topologies are organized
to support live streaming sessions. However, most of the existing
proposals resort to intuition and heuristics when it comes to the
design of such topology construction (i.e.,neighbor selection) pro-
tocols. In this paper, we investigate the scaling laws of live P2P
multimedia streaming, by quantitatively studying the asymptotic
effects and tradeoffs among three key parameters in P2P stream-
ing: server bandwidth cost, the maximum number of peers that can
be supported, and the maximum number of streaming hops experi-
enced by a peer. To further generalize our studies, we do not make
restrictive assumptions in our theoretical analysis of such scaling
laws: both peer upload capacities and peer lifetimes in a session
may come from arbitrary distributions. With the theoretical in-
sights we have developed, we proposeAffinity, a simple and re-
alistic heuristic to demonstrate the key benefits of our theoretical
analysis in dynamic P2P networks, as compared to the topology
construction algorithms in existing work.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems—
Distributed applications; H.3.5 [Information Systems]: On-line
Information Services—Data sharing

General Terms
Algorithms, Design, Theory

Keywords
Peer-to-peer, resource-performance tradeoff, scaling laws, multi-
media streaming

1. INTRODUCTION
With the advent of commercial live multimedia streaming ser-

vices from major ISPs and content providers, research towards

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010 ...$5.00.

live multimedia streaming has never been more promising and re-
alistic. It has been well-known in the community that peer-to-
peer (P2P) multimedia streaming from one or multiple multimedia
sources (i.e., streaming servers) to a group of participating peers
will help to relieve the bandwidth cost burden to the server. If the
individual peers contribute as much bandwidth as they consume,
the streaming session is scalable to a large number of peers in the
session. This observation is intuitive: without utilizing uploading
capacities on each peer to assist the downloading demand of other
peers, the load and bandwidth cost on the multimedia sources may
escalate beyond the operating capacities of streaming servers.

To date, we have observed a number of existing proposals to-
wards the construction of P2P topologies in live P2P streaming
sessions (also referred to asneighbor selectionin the literature).
However, they resort to intuition and heuristics when designing
such topology construction protocols, by using a tree-based, a ran-
domized, or a directed acyclic graph (DAG) strategy. Without a
doubt, devising protocols to construct a “good” or high-quality
peer-to-peer topology is critical towards the scalability and robust-
ness of a live P2P streaming session.

What, then, constitutes a P2P topology of high quality? Beyond
the basic requirement that the streaming bit rate be sustained on
each peer during the session, we are concerned with three impor-
tant metrics that collectively define the performance and cost of
a streaming session: (1)delay: the difference between the play-
back time and the time when live events occur in the original me-
dia stream (i.e., the number of hops that the streaming playback
must travel to propagate to all network peers); (2)server cost: the
bandwidth cost on streaming servers; and (3)scalability: the max-
imum number of peers that a session can support. One prefers P2P
streaming topologies that scale to a large number of peers, mini-
mizes server costs, and with a bounded delay on each of the peers.

At one extreme of the complete spectrum of topology construc-
tion, we consider the case where the multimedia source serves all
peers directly. This leads to almost immediate media streaming at
all peers (one hop delay for the single direct server connection), but
incurs tremendous bandwidth costs at the server. Such unbounded
server cost implies that the system is not scalable. At the other
extreme, the source could serve data to one peer only. This bounds
the server cost, but that one peer then needs to relay the data to
other peers, which in turn serves additional peers. In many cases,
the peers would not be able to playback the stream at the required
streaming rate; and in all cases the delay will be unbounded as the
number of peers scales up.

Towards the construction of high-quality P2P streaming topolo-
gies, it is natural to ask the following fundamental questions: (1)
Given a certain bandwidth cost when operating streaming servers
that serve as multimedia sources, what is the maximum number
of peers that can be supported in the session? (2) If the peers can
tolerate longer delay from the time that the session is first emit-
ted from the source (allowing more forwarding between peers),
how much can the server bandwidth cost be reduced? (3) Given a

certain bandwidth cost for the streaming servers in a dynamic en-
vironment with peer churn (dynamic departures and arrivals), what
is the probability that a peer wishing to enter the network would
be denied service? Last but not the least, can existing protocols
be further improved with answers to these questions, or do they
represent the best we can do?

Unfortunately, existing literature on live peer-to-peer streaming
fails to offer a comprehensive and analytical study on the charac-
teristics that govern the scalability and performance of live P2P
streaming topologies. In this paper, we seek to analytically study
the intricate dependencies among thescalabilityof the streaming
session, thebandwidth coston streaming servers, as well as the
maximum permitteddelaysat the peers. In particular, we theoret-
ically derive overlay formation that achieves the best performance
for DAG networks whose routing is not limited by the content de-
livery mechanism. For example in a P2P system with network cod-
ing, it has been shown that nearly every coded block forwarded by
a peer is innovative, so locations of particular data blocks do not
limit the network performance and all available upload bandwidth
can be used at the peers.

The original contributions of this paper are three-fold.First, we
systematically present the theoretical analysis of the scaling laws
of live P2P streaming in the context of directed acyclic graphs,
by quantitatively studying the asymptotic effects and tradeoffs of
scalability, server cost and delay.Second,we consider the dynamic
nature of peers in P2P DAG topologies, and propose an analytical
framework to estimate its effect on the peer service probability,
service waiting time, and disconnection period.Finally, while this
paper is largely theoretical, we are convinced that our theoretical
insights have important practical implications. We introduceAffin-
ity, a simple and realistic heuristic that can be readily implemented.
We then evaluate Affinity in the context of previously proposed
tree-based or randomized topology construction algorithms, with
the intent to show a proof-of-concept on how insights on scaling
laws can be used in the process of designing practical protocols.
Throughout our analysis, we do not make unreasonable or restric-
tive assumptions: both peer upload capacities and peer lifetimes in
a session may assume arbitrary distributions.

The remainder of this paper is organized as follows. Section
2 discusses related work. Section 3 studies the scaling laws of
live peer-to-peer streaming in DAG topologies. The effects of peer
dynamics are analyzed in Section 4. TheAffinity heuristic is pre-
sented in Section 5, and evaluated in the context of previously pro-
posed strategies. Section 6 concludes the paper.

2. RELATED WORK
Many existing work on constructing peer-to-peer topologies (i.e.,

neighbor selection) generally fall into two categories:tree-based
strategies, where each individual data block traverses one or multi-
ple trees, orrandomized strategies, where there is no global struc-
ture and neighbors are determined dynamically on the fly. Mesh-
based structures are based on trees, but add bidirectional links be-
tween peers to allow for more communication and greater flexibil-
ity; however, the locally-defined decisions of the meshes may lead
to suboptimal performance. Most recently, directed acyclic graphs
have imposed a partial-ordering on the network and show high re-
silience to failure, overcoming previous performance issues. The
peers in DAGs receive from multiple parents and improve graph
connectivity.

Early tree-based topologies, such as Overcast [1], form a single-
source multicast network that maintains global status at the root of
a changing distribution tree to efficiently adapt data distribution
to changing network conditions. Overcast leverages some caching
and server replication strategies, but is designed as an overlay net-
work that can be incrementally deployed. These networks typi-
cally scale to tens or perhaps hundreds of peers. Tree topologies
are unfair because the leaf peers will not serve any other peers at

all while others may serve many times the stream volume. With a
fairness goal that each peer should transmit the same volume that
it receives, multipath tree protocols were developed. Splitstream
[2] and Bullet [3] use multiple trees to form a mesh, so that peers
will be high in one tree for one substream, but lower in the tree
for another, thereby achieving fairness and more resilience under
churn.

More recent works propose neighbor selection strategies that
are more randomized in nature, with the hope of being more scal-
able. Chainsaw [4] and CoolStreaming [5] are excellent exam-
ples of heuristics in this category. Using either of these proto-
cols, each peer only maintains state for a small set of neighbors,
which are chosen at random (no explicit topology), and neighbors
request information from each other. They also assume that peers
are capable of uploading at the desired streaming rate, though this
is not necessarily the case. Gridmedia [6] extends this work to
achieve higher throughput rates by allowing peers to also “push”
data blocks (sending unsolicited blocks without being explicit re-
quested) once the local peer-to-peer topology is established.

More randomized tree-based strategies have been revisited by
Chunkyspread [7], which utilizes multiple trees to spread different
slices of the media stream. By designing parent selection and loop
avoidance algorithm, Chunkyspread constructs non-optimal trees
that iteratively improve themselves over time. Parents are swapped
using an algorithm called Swaplinks [8] that uses weighted random
walks to build random graphs, so that the parent-child relationship
are optimized with respect to load and relative latency. Rodriguez
et al. [9] seek to build and maintain topologies that optimize one
or several metrics at the same time, such as delay and cost. Since
this is an NP-hard problem, the constraints are typically ordered
according to their importance to the user.

Dagster [10] and DagStream [11] are examples of DAG pro-
tocols. Dagster uses an incentive-based mechanism to encourage
peers to contribute their upload bandwidth to the network by of-
fering lower service rejection probabilities and lower disruption.
Dagstream concentrates on locality awareness and connectivity to
prevent failure under churn.

Towards building large-scale peer-to-peer streaming sessions,
none of the existing work on live peer-to-peer streaming offers a
comprehensive study on the asymptotic and tradeoffs among key
elements of scalability, performance and cost of topology con-
struction. To the best of our knowledge, this paper represents
the first attempt to theoretically investigate the scaling laws of
constructing peer-to-peer topologies for live multimedia stream-
ing sessions.

3. SCALING LAWS OF LIVE P2P STREAM-
ING

Toward optimal P2P live streaming, we present a theoretical
analysis of the scaling laws for server cost, playback delay, and
the number of served peers. We first observe the optimal proper-
ties that are intrinsic to the construction of an optimal P2P stream-
ing session. We then analyze the asymptotic effects and tradeoffs
of scalability, server cost, and delay.

3.1 Notations and Preliminaries
Let Ns represent the number of peers in a peer-to-peer session.

Between each pair of peers(i, j) is a link lij that has capacitycij .
One of the peers is the multimedia server and the otherNs − 1 are
peers that receive the media, to be played at some playback ratep
Kbps. In this session, every peer has the ability to function both
as a media receiver and also as a sender that contributes its uplink
bandwidth to relieve the burden that would otherwise be imposed
on the multimedia server. We define the server costCs as the total
bandwidth provided to any peer by the multimedia source. We
further denote the propagation delay bydp and the queueing delay
by dq.

There are no restrictions on the number ofparentsthat serve a
given peer, or the number ofchildren that are served by that peer.
However, each peerai has a maximum upload capacity ofu(ai)

Kbps, from a distributionF (U) with meanU .1 Peers are expected
to upload with their entire upload capacityu, but they are able to
divide that bandwidth among as many children as they wish, in
any proportion.

We assume that each peer uploads with its maximum upload
bandwidthu at a constant bit rate.2 In an ideal system, there is
no variance in available bandwidth from the peers and that the ca-
pacitycij of link lij is sufficient to support any upload bandwidth
that the source or the peers provide. We further assume that the
transmissions are optimally scheduled so that all data blocks are
successfully received.

3.2 Characteristics of Optimal Peer-to-Peer
Streaming

In this section, we present in several propositions the intrinsic
characteristics of an optimal P2P streaming session. We define
an optimal session as one that achieves minimum server cost per
peer given that all peers receive the media at ratep within a certain
maximum tolerated delay without considering fairness to peers.
We first show in Proposition 1 that there is no queueing delay in an
optimal session. This has two implications. First, there is no need
to maintain a data buffer for optimal P2P streaming, and second,
givenCs andNs, an optimal session achieves minimum average
propagationdelay over all peers.

PROPOSITION 1. dq = 0 for an optimal session where play
length is unlimited.

PROOF. Queueing delays are incurred when data blocks build
up in the buffers of peers waiting to be relayed to another peer or
waiting to be played at that peer. If all peers are served at rate
p and packets can be routed optimally, then the buffers are not
needed. The peers would immediately play back the data they
receive. On the other hand, if any peers were served at an average
rate less thanp, then those peers would use some of the buffered
data blocks whenever they could not fulfill the playback rate based
on their received data. After some time, the peer’s buffer would be
empty and the peer would experience a disruption in service until
sufficient data was buffered. This means that in the optimal case
we need only considerdq = 0.

Consider the following model for an optimal streaming session
of Ns peers withCs bandwidth provided by the source. We label
theNs peersa1, a2, ..., aNs . We will attempt to serve the peers in
that order. Letd(ai) be the propagation delay from the source to
peerai, that is, the number of hops. Letu(ai) be the upload capac-
ity of peerai. A peer is served if the upload capacity of the source
and all of the existing served peers have sufficient bandwidth to
serve it at ratep while continuing to serve all previously assigned
peers. More formally,d(aj) = k + 1 if k ∈ {0, 1, 2, ...} is the
smallest value for which

Pj−1
i=1 u(ai) {d(ai) ≤ k}+ Cs ≥ j · p,

and is the indicator function, i.e. (x) = 1 if x is true, and
(x) = 0 otherwise. If the sum of upload capacities for peerai at

levelk and below and the server’s capacity is less then the required
total ratej · p, then the new peeraj must be at levelk + 1. Then,
the average propagation delay over all peers is1

Ns

PNs

i=1 d(ai).
Our goal in the optimal streaming session is to minimize the

cost to the server for a given delay constraint; that is, we reduce

1We assume that P2P traffic has precedence over all other traffic,
so all upload capacityu can be utilized.
2Clearly this is not realistic, and by adding small buffers at the
peers, we will be able to account for variance in the transmission
of streaming media from peers; however, we are first determining
bounds using an optimal scenario with perfect scheduling and link
usage.

the cost to the server per peer as much as possible and assure that
the maximum delay of any peer is not more than some maximum
delaydp. To accomplish this, we maximize the total upload band-
width contribution by the peers in the network. If there is a large
peer bandwidth contribution being utilized by other peers, then the
delay of each peer is low. In fact, maximizing the peer bandwidth
contribution is equivalent to minimizing the delay of each peer, or
equivalently minimizing the sum of all the propagation delays.

The next proposition provides a general guideline on how to
construct an optimal P2P streaming topology to minimize the av-
erage propagation delay based on the distribution of peer upload
capacities (which is the same as minimizing the sum). It is pre-
sented as a lemma, to be used in proving the main theorem on
scaling laws and performance tradeoff in Section 3.3.

LEMMA 1. In an optimal session withCs bandwidth available
from the source and peers with upload capacities following a dis-
tribution F (U), placing peers with higher upload capacity closer
to the source achieves optimal performance for the session (i.e.
minimum average delay for all peers).

PROOF. (by contradiction) Using the model above, consider a
session withNs peers each havingi.i.d. upload capacity taken
from the probability distributionF (U). Suppose that the peers are
ordered to make an optimal topologyT (with minimal average de-
lay); however, for at least one pair of peers(an1 , an2), the upload
capacity ofan1 , u(an1), is less than the upload capacity ofan2 ,
u(an2), butd(an1) < d(an2). The average delay for peers in this
session is

D(T) =
1

Ns

Ns
X

i=1

d(ai) =
1

Ns

8

<

:

an1
−1

X

i=1

d(ai) + d(an1)

+

an2
−1

X

i=an1
+1

d(ai) + d(an2) +

Ns
X

i=an2
+1

d(ai)

9

=

;

(1)

Form an alternate topologyT ′ that is identical toT , but swap
the positions of peersan1 andan2 so thata′

n1
is in the position

of an2 anda′
n2

is in the position ofan1 . Then if we letd′(ai)
represent the distance from peeri to the source,

D(T ′) =
1

Ns

Ns
X

i=1

d′(a′
i) =

1

Ns

8

<

:

an1
−1

X

i=1

d(ai)

+d′(a′
n2

) +

a′

n2
−1

X

i=a′

n1
+1

d′(a′
i) + d(an1) +

Ns
X

i=a′

n2
+1

d′(a′
i)

9

>

=

>

;

(2)

we can compare the difference between the average packet delays
for the two topologies

Ns[D(T) − D(T ′)] =

an2
X

i=an1
+1

d(ai) + d(an2) +

Ns
X

i=an2

d(ai)

−d′(a′
n2

) −

a′

n2
X

i=a′

n1
+1

d′(a′
i) −

Ns
X

i=a′

n2

d′(a′
i). (3)

Recall thatd(aj) = k + 1 if k is the smallest value for which
Pj−1

i=1 u(ai) {d(ai) ≤ k}+ Cs ≥ j · p. Sinceu(a′
n1

) > u(an1)
and u(a′

j) = u(aj), ∀j, j 6= n1, j 6= n2 by assumption, that
means

Pj
i=1 u(a′

i) >
Pj

i=1 u(ai) and

d(a′
j) ≤ d(aj) for anyj, n1 < j ≤ n2. (4)

We also know by assumption thatu(a′
n2

) < u(an2), but also
u(a′

n1
)+u(a′

n2
) = u(an1)+u(an2). This implies that

Pj
i=1 u(a′

i) =

Pj
i=1 u(ai) for j > n2. Equation (4) holds, however, and we re-

alize that{d(a′
i) ≤ k} is a superset of{d(ai) ≤ k}, so

d(a′
j) ≤ d(aj) for j > n2. (5)

With the relationship from (4) and (5), we can see that (3) gives
Ns[D(T) − D(T ′)] > 0, contradicting the optimality ofT .

Lemma 1 immediately implies that, in an optimal P2P streaming
session, no peer more than one hop away from the server should
receive any bandwidth from the server to make up for bandwidth
deficiency from its parents. This is stated as Corollary 1.

COROLLARY 1. In an optimal session (a network with mini-
mum server cost) withCs bandwidth available from the source,
the server will never contribute bandwidth to any peeraj with
d(aj) ≥ 2.

PROOF. Saving some of the server bandwidthCsavefor peers
with some later delay, saym, is equivalent to having a server with
bandwidthCs − Csaveand two peersas andam in the session
whereas has0 upload bandwidth, but is supposed to serve the
peers1 hop from the server andam hasCsavebandwidth but is
placedm hops away. In our notation, this means that a peer with
lower bandwidth is placed before a peer with higher upload band-
width, so swapping the positions ofas andam leads to better per-
formance. That is, the server should use all of its bandwidth to
serve the peers completely and not fill in bandwidth to peers that
are being served by other peers.

Finally, to provide a worse-case performance bound, Lemma 2
states that the largest average delay is incurred if all peers have the
same uploading capacity. Hence, we obtain a surprising conclu-
sion that, the heterogeneity in peer-device capabilities and network
connection quality, which is an prominent characteristic of today’s
Internet, actuallyimproves P2P streaming performance!

LEMMA 2. The constant upload capacity distributionF (U) =

U leads to the worst performance (largest average delay) in the
optimal session that has mean uploading capacity ofU per peer.

PROOF. Using the same model as earlier, let us compare the up-
load capacity distributionF (U) = U to any other distribution of
upload capacitiesFother(U). As described in Lemma 1, the peers
are arranged in decreasing order of upload capacity, so that the
peers with higher capacity are placed closer to the source. We can
label the peers in these orderings asa1, a2, ...aNs , for the peers
that all have constant upload capacity, andb1, b2, ...bNs , for the
peers that all have upload capacity taken from theFother(U) dis-
tribution. Since the upload capacity distributions have the same
mean, 1

Ns

PNs

i=1 u(ai) = 1
Ns

PNs

i=1 u(bi).
If Fother(U) has a non-constant distribution, then at least one

peer in thebi list has upload capacity larger than the mean, so
u(b1) > u(a1). The relative difference of the terms in the se-
quence of

PNs

i=1 u(bi) is always non-decreasing for a non-constant
upload distribution because thebi are non-negative. As we can
see in Fig. 1, this means that since the two curves must agree
at 1

Ns

PNs

i=1 u(ai) = 1
Ns

PNs

i=1 u(bi), they will not cross at any

other point and 1
Ns

PNs

i=1 u(ai) < 1
Ns

PNs

i=1 u(bi) at all interme-
diatei. Equivalently, this implies thatd(ai) ≥ d(bi) so the con-
stant upload capacity distribution experiences the greatest average
playback delay. In turn, this leads to the worst performance for the
P2P session because the server cost would need to be increased to
achieve the same maximum tolerated delay for all peers.

3.3 Resource-Performance Tradeoff
In this section, we quantify the tradeoff between the server cost

Cs, the delay bounddp, and the maximum number of peersNs

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

S
um

 o
f u

(n
od

e)

Nodes, ordered by greatest upload

CDF for constant density
CDF for non-constant density

Figure 1: Sum of total upload capacity
PNs

i=1 u(bi) and
PNs

i=1 u(bi) asi increases

that can be served. It then culminates to the main conclusion stated
in Theorem 1, where we express scaling laws relating these system
parameters for optimal streaming.

Suppose that there areNs peers that wish to be part of the P2P
session. Further assume that the peers all have upload distribution
F (U). Lemma 1 dictates that we must place the peers with higher
upload capacity closer to the source, so as to serve as many peers
as possible. Hence, the firstCs

p
peers with the highest upload ca-

pacities are served by the source. Call them the1-peers. If we can
write theF (U) distribution as a smooth, differentiable function
(to be relaxed later) andf(u) = F ′(u), then the amount of upload
bandwidth available from the1-peers is

A1 := Ns

Z ∞

F−1(h1)

uf(u)du, for h1 = 1 −
Cs/p

Ns
. (6)

Consider the components of this expression. TheCs

p
peers with

the highest upload capacity make up the largestCs/p
Ns

fraction of
the F (U) distribution curve. This explains why the integral in
(6) runs over the interval(F−1[1− Cs/p

Ns
],∞). The termNsf(u)

corresponds to the number of peers that have upload bandwidth ca-
pacity values in the small intervaldu under consideration. Finally,
theu factor is the upload capacity that the peers in thedu interval
are able to contribute to the combined upload of the1-peers.

Note that we have defined two quantities,h1 andA1. h1 =

(1 − Cs/p
Ns

) delimits a boundary because each peer with upload

bandwidth ofF−1(h1) or greater is exactly one hop from the mul-
timedia source.A1 quantifies the amount of capacity available
from the1-peers. Furthermore, we know thatA1

p
2-peers can be

supported because they are necessarily served by the collection of
1-peers.

Clearly since we know the number of2-peers, we can calculate

h2 = (1− Cs/p
Ns

− A1/p
Ns

) andA2 := Ns

R F−1(h1)

F−1(h2)
uf(u)du. This

process is continued to obtain(hi, Ai), for i = 2, 3, At some
point, this process will terminate for one of three reasons:

1. All Ns peers are used (i.e.,1 > Cs/p
Ns

− A1/p
Ns

− . . .− Ai/p
Ns

),

2. The maximum allowed number of hops,dp, is reached (be-
fore all of the peers have been placed), or

3. There is insufficient peer upload bandwidth from the last
group of peers to support any more peers (i.e.,Ai < p).

Consider these termination conditions separately. If the proce-
dure terminates by condition 1, then we are finished. All peers in
the P2P session is partitioned into hops based on their upload ca-
pacity. On the other hand, if the procedure terminates by condition
2, this implies that theNs chosen at the beginning of the procedure
was too large. As a result,Nsf(u) would be inflated and we would
assume there were more high upload peers than there truly were.

However, this gives us an upper bound onNs, so we could use
the bisection method to find the largest value ofNs that allows
the procedure to terminate by condition 1.3 An alternative is to
increase the server capacityCs to support theNs peers than are
desired. Again, the bisection method can be used to find the corre-
spondingCs. Similarly, if the procedure terminates by condition
3, then we must iterate the procedure to find the correctNs.

By defining thehi values as above, we partition theF (U)-axis
of the cumulative distribution function of upload capacities. The
peers with uploads betweenF−1(hi) and F−1(hi−1) are posi-
tioned i hops from the server. The total upload capacity of the
peersi hops from the server,Ai, is used to serve the peersi + 1
hops from the server.

Recall that even ifF (U) has jumps, that is,F (U) has point
masses of probability, the cumulative distribution function is de-
fined to beleft-continuous. Specifically,F−1(y) = inf{s : F (s) ≥
y}. In this case, we continue to use thehi variables to partition the
probability space to indicate the number of hops from different
groups of peers to the source, but theAi cumulative upload ca-
pacities must be defined slightly differently for every interval that
includes a point mass.

Without loss of generality, let[hj , hj−1] be the first upload in-
terval (interval with the largest upload values) that includes a jump
in the cumulative distribution function over[F−1(hj), F

−1(hj−1)].
If F [F−1(hj)] = hj , then all peers with uploadhj are included
in the interval, that is, both ends of the jump are mapped into
the interval[hj , hj−1]. Otherwise, some of the peers with upload
F−1(hj) can be served inj hops, but others will be farther from
the source because there is insufficient bandwidth to support them
at j hops.

WhenF [F−1(hj)] = hj , we obtain essentially the same def-
inition of Aj as before, except that the point masses at all non-
differentiable points must be included. No other intervals are af-
fected. For a set of non-differentiable pointsx1, x2, ..., xm,

Aj := Ns

Z x1

F−1(hj)

uf(u)du + . . . +

Z F−1(hj−1)

xm

uf(u)du

+x1P (U = x1) + ... + xmP (U = xm)) .

On the other hand ifF [F−1(hj)] 6= hj (which necessarily
means thatF [F−1(hj)] < hj), then the calculation ofAj and
subsequentAi for i > j are affected. The fraction of peers with
upload capacity that can be servedj hops from the source is

rj−hj

rj−lj
,

whererj = lim
x→hj

F [F−1(x)] is the limit value of the jump from

the right side, andlj = F [F−1(hj)] is the value of the jump from
the left side. Or for a set of non-differentiable pointsx1, x2, ..., xm

wherex1 has valueF−1(hj),

Aj := Ns

Z x2

x1

uf(u)du + ... +

Z F−1(hj−1)

xm

uf(u)du

+
rj − hj

rj − lj
P (U = x1) + ... + xmP (U = xm)

«

,

for rj and lj defined as above. Since
rj−hj

rj−lj
of the peers with

F−1(hj) peers are used inAj , there are still
hj−lj
rj−lj

of them avail-

able to be placed so they contribute toAj+1. If F [F−1(hj)] =
F [F−1(hj+1)], then all peers in the[hj+1, hj] interval have the

same upload capacity andAj+1 is simplyNs
(rj−hj)−hj+1

rj−lj
P (U =

F−1(hj)) andAj+2 will also be affected by the jump atF−1(hj).

3In the bisection approach, we first repeat the procedure using
Ns/2 peers and keep halving the intervals until we find a feasi-
ble Ns. We then successively half the interval between a feasible
Ns and the most recent over-estimation ofNs, until the interval
converges to the maximum feasibleNs.

Otherwise the[hj+1, hj] interval contains peers with upload ca-
pacity less thanF−1(hj) (less than the value of the jump) and
for a set of non-differentiable pointsx1, x2, ..., xm wherexm has
valueF−1(hj),

Aj := Ns

Z x2

F−1(hj+1)

uf(u)du + ... +

Z xm

xm−1

uf(u)du

+
rj − hj

rj − lj
P (U = x1) + ... + xmP (U = xm)

«

.

All jumps are treated in this way, where occasionally some peers
of the same upload capacity must be split so there are different
numbers of hops to the source.

Before stating the main theorem, we first illustrate, in the fol-
lowing example, how to obtainNs givenCs anddp, in a typical
streaming session.

Example 1

Suppose the upload capacities of the peers in a streaming
session follow a Zipf distribution with average data rate200
Kbps. Suppose the multimedia source can provide500 Mbps
of serving bandwidth, the download rate for the stream is
250 Kbps, and we expectNs = 80, 000 users. Notice
that the average upload bandwidth is lower than the aver-
age playback data rate, so it may not be possible to serve all
the peers in the network.

Using these parameters in the method described above, we
hope to organize the peers into an optimal topology and un-
derstand the average and maximal delay that would be ex-
perienced by these peers. We first truncate and scale a Zipf
distribution so that its corresponding mean value equals the
average peer upload data rate. In particular, for

f(U) =



k
u

if 0 ≤ u ≤ m
0 otherwise

we find k and m such that the integral off(U) over all
values ofu is 1 and the mean ofU is 200. In this case,
k = 0.1373 andm = 1458 Kbps, so we can writeF (U) =
0.1373 log(U).

Then, by direct calculations,h1 = 1− 500,000/250
80,000

= 0.975

andF−1(0.975) = e
0.975
0.1373 = 1215, so we can find

A1 = 80, 000

Z 1458

1215

u
0.1373

u
du = 2.67 × 106.

Similarly, we find pairs(hi, Ai) for i = 2, 3, 4, 5, 6 to be
(0.8417, 8.29×106), (0.4271, 4.81×106), (0.1868, 2.03×
105), (0.1766, 3063), (0.1764, 44). We see that even with
optimal peer arrangement, since the average upload capacity
of the peers is smaller than the playback rate they require,
we are unable to serve18% of the peers.

Note that the above calculation is based on the assumption
that only the peers with top82% of uploading bandwidth are
served, so it does not imply that the session can now serve
82% × 80, 000 = 65, 600 peers. Instead, we must repeat
same the procedure with smaller values ofNs. Using the
bisection method, we find that the maximum feasibleNs is
10, 000. Alternatively, we could repeat the procedure while
adjusting the server bandwidth cost to find the minimumCs

value necessary to support80, 000 peers.

THEOREM 1. Suppose the server bandwidth cost isCs = g(Ns)
in an optimal streaming session forNs served peers each with up-
load capacity chosen from some distributionF (U). If U > p,
then the number of peers that can be served is unbounded, and

the corresponding propagation delay to receive the data stream is

O

„

log“

U
p

”

Ns

g(Ns)

«

. If U = p, then the number of peers that can

be served is unbounded, and the corresponding propagation delay

to receive the data stream isO
“

pNs

Cs

”

. If U < p, then the number

of peers that can be served is bounded, regardless of the allowable
delay; however, the maximum number of served peers increases
linearly withCs.

PROOF. From Lemma 2 and Corollary 1, it is clear that to
bound the delay of an optimal network for any upload capacity
distribution we should consider the worst-case constant upload ca-
pacity at each peer and use all of the source’sCs bandwidth for the
peers one hop away. Also recall that when all peers have constant
upload capacity, there is no need to calculate the numbers of peers
with different uploads, so there would be no iteration to find the
maximum feasible value ofNs. Furthermore, we know by Propo-
sition 1 thatdq = 0. This means that each peer will be able to
serveU

p
additional peers, and we suppose it serves exactlyU

p
in

this optimal session, neglecting the potential suboptimality due to
rounding.

We observe fundamentally different performance whenU ≥ p
andU < p. In the first case, the number of peers increases as
the number of hops from the server increases. In the second case,
the number of peers decreases as the number of hops from the
server increases. These cases are considered separately to derive
the worst-case delay bound as follows.

Case 1:U > p
Since adding a peer introduces more bandwidth into the session

than it uses, we can express the following relation betweenNs and
the server bandwidth cost for any number of peersNs.

Ns(dp) =

dp−1
X

i=0

Cs

p

„

U

p

«i

=
Cs

p

rdp − 1

r − 1
for r =

U

p
, r > 1.

(7)
Rearranging (7), we see that

dp = log“

U
p

”



Nsp

Cs
[
U

p
− 1] + 1

ff

. (8)

Hence, the server bandwidth cost ofg(Ns) corresponds to a delay

dp of O

„

log“

U
p

”

Ns

g(Ns)

«

for any general upload capacity distri-

bution.
Case 2:U = p
In this case, it is easy to see thatdp = ⌈ pNs

Cs
⌉, because each

peer will entirely serve the next peer in the stream, and hence the
optimal session consists of⌊Cs

p
⌋ chains radiating from the server.

Therefore, the server bandwidth cost ofg(Ns) corresponds to a

delaydp of O
“

pNs

Cs

”

for any general upload capacity distribution.

Case 3:U < p
In this case, adding a peer introduces less bandwidth into the

session than it uses. Ifdp is large, then at some number hops,hb,
from the server, there will not be sufficient bandwidth to support
more peers, regardless of delay, i.e., the total upload bandwidth
provided by the peers farthest from the source is less thanp. In
particular,hb is the smallest value ofi such that

Cs

p

„

U

p

«i−1

< p ⇔ i > log“

U
p

”

»

p2

Cs

–

+ 1,

sinceloga(x) > loga(y) if a < 1 andx < y. This leads to the

number of supported peers

Ns =
P

⌈log„

U
p

«

»

p2

Cs

–

+1⌉

i=0
Cs

p

“

U
p

”i

< Cs

p

“

U
p

”

log„

U
p

«

»

p2

Cs

–

+3

−1
“

U
p

”

−1
=

„

U3

p2

«

− Cs
p

“

U
p

”

−1
,

and we haveNs >

„

U2

p

«

− Cs
p

“

U
p

”

−1
, similarly.

If dp is smaller so that the delay bound is reached before the
available bandwidth is entirely used, then the number of peers in
the network can be derived as in the previous case:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

„

U2

p

«

− Cs
p

“

U
p

”

−1
< Ns <

„

U3

p2

«

− Cs
p

“

U
p

”

−1

for hb = log“

U
p

”

h

p2

Cs

i

+ 1 < dp,

Ns = Cs

p

“

U
p

”dp
−1

“

U
p

”

−1
otherwise.

This theorem defines scaling laws that have important practical
implications. It allows us to describe the manner in which the de-
lay bound must grow as a function of the number of peers served
Ns and the server bandwidth costCs. If U ≥ p, an arbitrarily large
number of peers can be served because each peer can completely
support at least one new peer that enters the system; however, the
theorem shows that even in optimal circumstances, the delay nec-
essarily increases as a logarithm for any constant throughput. Al-
ternatively, we see that to achieve similar performance (that is, the
samedp) asNs increases, the server cost must increase linearly
with Ns. In practice, this could be achieved by offering users sim-
ilar performance at peak user times if they are willing to pay more
for the service.4 If U < p, then every new peer entering the sys-
tem needs either support from multiple other peers and/or support
from the server. The number of peers that can be supported is nec-
essarily limited because the need for serving bandwidth is higher
than the available bandwidth introduced by each peer. Hence, a
system designer’s only option to support more peers is to burden
the source with higher cost.

4. ANALYSIS OF PEER DYNAMICS
In the previous section, we derive the scaling laws of peer-to-

peer streaming assuming a static P2P topology. In practice, changes
and disruptions are experienced in the P2P network topology due
to the arrival and departure of peers, refereed to aschurn. In this
section, we consider churn induced peer dynamics and propose an
analytical approach to estimate its effect on the peer service proba-
bility, service waiting time, and disconnection period for optimally
constructed networks that can be rearranged at will.

To allow tractable analysis, we assume that the arrivals of peers
follow a Poisson process and the length of time the peers stay in the
session is exponential, which can be extended to an arbitrary life-
time distribution. Furthermore, we suppose the system is ergodic
and ignore the upload capacity of particular individuals. Our aim
is to calculate the average probability of acceptance of a peer in a
large-scale system, assuming that the distribution of upload capac-
ities for the peers in the topology is precisely the same as the prob-
ability distribution from which they are chosen5. We stress that we
are not calculating precise acceptance probabilities of peers into

4This type of strategy is used for cellular service plans, for exam-
ple.
5This is true asN becomes large by the Law of Large Numbers.

small networks, since those probabilities depend on the upload ca-
pacity of the incoming peer. When we bound P(accepted), this is
the average expected acceptance of a peer in a large system.

Recall in Section 3.3 that we define the optimal topology (and
hence the number of peers supported for a given delaydb) for any
number of peersNs that wish to participate in the session. Specifi-
cally, we can find thesaturation pointfor any upload capacity dis-
tribution. At the saturation point, the maximum number of peers
can be served at the desired Quality of Service level (within delay
bounddb for server costCs) and there are no other peers that wish
to join the session. Then, in our discussion of churn, we consider
the maximumNs and represent the topology as anM/M/Ns queue
of peers that are being served. This is a birth-death queue that is
described and solved explicitly in many introductions to queuing
theory such as Cooper [12].

4.1 Expected Service Probability
If the new peers wishing to enter the session are blocked, then

the queuing system described above is an Erlang Loss System.
Let Pj be the probability ofj peers being served (receiving media
signal) in the system. We have

Pj =

(λ/µ)j

j!
PNs

k=0
(λ/µ)k

k!

, for j = 0, 1, 2, ..., Ns ,

whereλ is the mean arrival rate of the peers and1
µ

is the mean
service time.

More importantly, we would like to compute the probability that
peers attempting to join the session are not served. In this model,
we assume that if a peer is refused admission to the session, it
leaves and does not retry. Therefore, we express the peerblocking
probability

B(Ns, λ/µ) =

(λ/µ)Ns

Ns!
PNs

k=0
(λ/µ)k

k!

. (9)

Note that these results hold for any service-time distribution with
finite mean (see Section 3.3 of [12]). In particular, the theory holds
true for the Zipf distribution, which has been shown to represent
the online lifetimes of human users [13].

Although we have a closed form expression in (9), it is difficult
to use this equation because of the need to take factorial for values
of k up to Ns. Instead, we bound the probability of a new peer
being served as follows. Consider 1

B(Ns,λ/µ)
. Writing out the

series backwards, we have

1
B(Ns,λ/µ)

= 1 + (λ/µ)Ns−1/(Ns−1)!

(λ/µ)Ns /Ns!
+

(λ/µ)Ns−2/(Ns−2)!

(λ/µ)Ns /Ns!
+ ... + 1

(λ/µ)Ns /Ns!

= 1 + Ns

(λ/µ)
+ Ns(Ns−1)

(λ/µ)2
+ ... + Ns!

(λ/µ)Ns

WhenNs > λ/µ, the first(Ns − λ/µ) terms of 1
B(Ns,λ/µ)

are
necessarily≥ 1. In other words,

P (accepted) = 1 − B(Ns, λ/µ) ≥ 1 −
1

Ns − λ/µ
.

If, on the other hand,Ns < λ/µ, then since there are more peers
on average than we expect to be able to serve, the probability of
being served is smaller. ClearlyNs ≥ (Ns − i), ∀i ≥ 0. Hence,

1

B(Ns, λ/µ)
≤

Ns
X

k=0

„

Ns

λ/µ

«k

=
1 −

“

Ns

λ/µ

”Ns+1

1 −
“

Ns

λ/µ

” ,

and therefore

P (accepted) ≤ 1 −
1 −

“

Ns

λ/µ

”

1 −
“

Ns

λ/µ

”Ns+1
.

The next example presents a case study for a typical peer-to-peer
live streaming session.

Example 2

Suppose the multimedia streaming session has roughly3
million participating peers. Each peer tunes in twice per day
following a Poisson distribution and continues streaming for
an average of30 minutes each time. Since the sum of Pois-
son distributions is also Poisson with intensity correspond-
ing to the sum of the component intensities, this corresponds
to a session where peers arrive according to a Poisson pro-
cess with average interarrival time1

λ
= 1

4167
minutes. If

a peer cannot be served, we assume that an “all servers are
busy” message is sent to the user and the request is cleared.
Suppose the upload capacity of each peer is constant at rate
300 Kbps. The download rate for the multimedia stream is
250 Kbps, and the users require a delay of no more than5
seconds≈ 16 hops. Furthermore, the multimedia source
can provide500 Mbps of serving bandwidth.

By Theorem 1, we find that the number of peersNs that can

be served in this session,Ns(16) = 500,000
250

· (300/250)16−1
(300/250)−1

=

174, 884. We are interested in finding the probability that a
user will be served in this session, and we can find this prob-
ability directly using Equation (9), or noting thatNs > λ/µ,
we have a lower boundP (accepted) ≥ 0.99998.

4.2 Service Waiting Time
Alternatively, we can consider a system where peers that find all

the server busy (cannot be served media within thedb constraint)
join a queue and wait as long as necessary for service.6 Then we
could represent the session as an Erlang Delay System. Again
representing the probability ofj peers being served asPj , we have

Pj =
(λ/µ)j

j!
P0, j = 1, 2, ..., Ns − 1

Pj =
(λ/µ)j

Ns!N
j−Ns
s

P0, j = Ns, Ns + 1, ...

for P0 =

Ns−1
X

k=0

(λ/µ)k

k!
+

∞
X

k=Ns

(λ/µ)k

Ns!N
k−Ns
s

!−1

.

Clearly, in this case we require thatλ/µ < Ns; otherwise the
queue length becomes infinite and the system becomes unstable.

In this system, we are interested in the waiting times for peers
in the queue. LetW be the waiting time for a peer. Then as shown
in [12], assuming no peer has priority over another, each peer has
probability1 − P{W > 0} of being served immediately, where

P{W > 0} =
(λ/µ)Ns

Ns!(1 − (λ/µ)/Ns)
P0. (10)

If we suppose that peers are added to the session in the order that
they arrived, then it is sufficient to calculate the waiting time given
that the peer was not served immediately,

P{W > t|W > 0} = e−[1−(λ/µ)/Ns]Nsµt. (11)

Hence, assuming that the arrival rateλ and average service dura-
tion 1

µ
are given, we can control the queue stability and the waiting

time in this system through the parameterNs. Recall thatNs is
the number of peers that can be served in the session and Theorem
1 gives expression for this number in terms ofCs anddb for the
worst-case upload capacities of the peers with mean upload rateU

6We assume that any number of peers can be in the queue awaiting
service.

and download ratep. In particular, we can adjust the server band-
width Cs to allow any arbitrary value ofNs so as to achieve the
desired service waiting time distribution.

From (10) and (11) we write an expression for the cumulative
distribution of the service waiting time

F (H ≤ t) =[1 − P (W > 0)]+

P (W > 0)[1 − P (W > t|W > 0)]

=[1 −
(λ/µ)Ns

Ns!(1 − (λ/µ)/Ns)
P0]+

(1 − e−[1−(λ/µ)/Ns]Nsµt)(
(λ/µ)Ns

Ns!(1 − (λ/µ)/Ns)
P0)

(12)

for P0 =
“

PNs−1
k=0

(λ/µ)k

k!
+
P∞

k=Ns

(λ/µ)k

Ns!N
k−Ns
s

”−1

.

With knowledge of the period a peer waits before it can be con-
nected, one could propose that a buffer of data blocks should be
stored at each peer to use some of the idle bandwidth available in
the session. The collected blocks could be used to begin streaming
at the new peer before it is able to join the session, or during sub-
sequent periods of disconnection, the blocks could be played back
from the buffer while the peers were searching for new parents.
This scenario would minimize playback disruption; however, this
type of buffering is limited in the optimal topology to minimize
playback delay. Recall that any peer in the middle of the optimal
P2P topology is already using all of its upload capacity to serve
other peers. The only available spare bandwidth is at leaf peers
whose delay is already approaching the maximum delay imposed
by the Quality of Service requirement; therefore, if the new peers
began streaming, they could not be supported by the leaf peers for
extended periods of time.

In a practical P2P topology, however, there might be other idle
bandwidth available. Alternatively, in the optimal topology, we
may allow leaf peers to serve and exceed the delay constraint.
Then, we could use the cumulative distribution function of (12) as
the service times and create a new (less severe) Quality of Service
level when the topology is approaching its total peer capacity.

5. AFFINITY: PRACTICAL HEURISTICS
AND EVALUATIONS

Although this paper is largely theoretical so far, we are fully
convinced that the theoretical insights brought forth by this pa-
per have important practical implications. To show how our an-
alytical framework may provide guidelines towards more practi-
cal designs, we seek to design and evaluate a simple and realistic
heuristic that only depends on local information. Our heuristic is
henceforth referred to asAffinity, as it is one of the many possi-
bilities of designing practical topology construction protocols that
seek to approximate theoretically optimal topologies. The name
also captures its essence of categorizing peers with similar upload
capacities into roughly the same hierarchy in the topology. The de-
sign of Affinity is inspired by our theoretical contributions made
so far in this paper. Though discovered independently, we note
that Affinity protocol is quite similar to the Dagster [10] protocol
in previous works. Dagster’s incentive mechanisms to place peers
with higher bandwidth closer to the source in the directed acyclic
graph indicate the practicality of our suggestions for more efficient
topology construction.

5.1 Affinity: a Theory-Inspired Heuristic
Intuitively, since peers with high upload capacities can con-

tribute more to serve other peers in the P2P session, they should
be placed closer to the source. In practice, a peerna that has just
joined the session may communicate with some random sampling
of existing peers in the session. Ifna has the highest upload capac-

ity of all the sampled peers,na could connect to the source directly
to receive the stream. Otherwise,na could choose a parent from
the sampled peers that has the smallest upload capacity that is still
greater than the upload capacity ofna. This procedure can be re-
peated at any time when the peerna is searching for new parents,
for example, if its parent goes offline or has insufficient bandwidth
to allow the media to be played at the desired playback rate. We
have imposed a general ordering on the collection of peers that is
not necessarily optimal, since only a subset of the peers are in-
cluded in the local tests performed by each peer; however, local
tests allow for scalability when the heuristic is implemented.

Although our intuitive placement strategy described above leads
to higher numbers of peers that can be served, it also introduces
weakness under churn. Since all the upload capacity is used from
peers that have more upload capacities to provide, the departure of
high-capacity peers can be disruptive to their many children and to
the overall performance of the session. One strategy to deal with
this problem is to allow each peer to take fewer children and serve
at a rate higher than the playback rate until their buffers are full,
then to continue sending only at the playback rate. This trades
optimality of the number of peers served for tolerance to churn
when the peers cannot redistribute themselves arbitrarily.

When a peer joins a P2P streaming session, its place in the
topology is found by calculating values of a new parameterδk. δk

is a collective measure of the peers that arek-hops from the mul-
timedia source: it represents the difference between the combined
upload capacity of thek-hop peers and the bandwidth needed to
serve peers that arek + 1 hops from the source. Placing the new
peer according to the largest|δk| value (as ak-peer ifδk ≤ 0 and
as a(k + 1)-peer if δk > 0), the new peer minimizes its burden
to the server when it is added to the topology. This strategy is in-
spired by Corollary 1, from which we learn that the source should
serveonly peers that are one-hop away (directly connected to it-
self) whenever possible, and by [14].

Further, we wish to place peers with higher upload capacities
closer to the source, as directed by Lemma 1. Rather than plac-
ing the peer according to the largest|δk| value from the strategy

above, we place the peer according to the largest|δk| · k
c1(U−un)

value, whereU is the mean peer upload capacity,un is the upload
capacity of the particular peer that has just joined the session, and
c1 is a constant value used to determine the importance of placing
higher capacity peers closer to the source.7 There is no explicit
topology maintenance in the Affinity topology. When peers fail in
the system, they automatically affectδk values, so the topology is
naturally maintained as new peers arrive into the system. We also
assume that there is no queueing delay, as stated in Proposition 1.

5.2 Affinity vs. Alternatives: Evaluation
We now proceed to evaluate Affinity, in the context of previ-

ously proposed strategies of neighbor selection and topology con-
struction. We evaluate two different categories of previous strate-
gies: randomizedneighbor selection strategies (e.g.,CoolStream-
ing [5]), andtree-basedneighbor selection strategies (e.g.,Grid-
Media [6]). Both CoolStreaming and GridMedia are excellent ex-
amples of operational live media streaming protocols.

Each peer in therandomizedstrategy (calledrandom) selects
M neighbors uniformly at random from all possible peers in the
session. In contrast, thetree-basedstrategy (calledtree) forms a
tree where every peer hasM − 1 children. The initial peer (the
source) hasM children and all other peers have one parent and
M − 1 children. In Affinity, however, a new peer is explicitly
placed in the topology at an appropriate location to minimize the

7If c1 is large, then the capacity of the peers will dominate and all
of the high capacity peers will be placed closer to the source; how-
ever idle bandwidth in the middle of the topology may go unused.
If c1 is smaller, the idle bandwidth in the topology is minimized,
but higher capacity peers may be placed lower in the topology.

 0.1

 1

 10

 100 120 140 160 180 200 220

C
os

t t
o

se
rv

er
 [M

bp
s]

Avg number of nodes

Strategy 1 (random)
Strategy 2 (tree)

Strategy 3 (Affinity)

Figure 2: Server cost achieved for different rates of insertion
λ, dp = 4 [hops], peers with exponential upload capacities

server cost, and also weights the decision so that peers with higher
upload capacities are placed higher in the tree.

With a C++-based simulation environment, we have performed
comparative evaluations of Affinity, in the context of its two alter-
natives. We include130 peers in a P2P streaming session at time
zero, each with a Zipf lifetime distribution. Therandomstrategy
allows peers to chooseM = 4 partners at random. The delay of a
peer is represented by the number of hops on the shortest path from
the peer to the source. If the delay of a peer is too long (> dp),
that peer must abandon all neighbors and search for new neighbors
at the next time-step in the discrete simulation. When peers have
no parents to serve them, it is assumed that the source will serve
them. Note that it is impossible for peers in therandomstrategy
to be more selective about the neighbors they choose, because the
distance from the source to a particular peer depends intimately
on the neighbors chosen by every other peer. In the simulation,
these distances are calculated at the end of a time-step. In reality,
it would also take time to perform a check with respect to such
distances.

Using thetreestrategy, each peer hasM − 1 = 3 children. The
topology is reconstructed instantaneously in response to churn, as-
suming that there is no time for peers to find parents. We wish all
peers to be served within the delay bounddp, so the cost to the
server is calculated asCs = p⌈ Ns(M−2)

(M−1)dp−1
⌉ for a session with

Ns peers.Affinity inserts new peers into the session according to
the weighting|δk| · k

(U−un) described earlier, but will only insert
peers at positions≤ dp.

Simulations are run over500 time-steps (83 minutes, if we as-
sume that a time-step is10 seconds), with new peers introduced
at rateλ and peers expiring according to a Zipf distribution with
mean22 minutes. Upload capacities of peers come from an ex-
ponential distribution with mean300 Kbps, and the playback rate
of the media is225 Kbps. By changingλ, we adjust the average
number of peers in the session.

Fig. 2 and Fig. 3 show the bandwidth cost to the server in P2P
sessions with different numbers of participating peers and different
delay bounds. Clearly, Affinity requires considerably less band-
width from the server than its alternatives, asrandomand tree
strategies are not able to take advantage of higher upload capac-
ities at some of the peers. Since the playback rate of the media
stream is225 Kbps and the average upload capacity at a peer is
300 Kbps, it is not surprising that a peer in thetree strategy is
not able to entirely support its three children and needs assistance
from the server to supply the remaining bandwidth. Therandom
strategy has the additional problem that for smaller values of the
delay bound, a large fraction of the peers cannot be supported by
the random neighbors they find.

Since the server costs in the optimal topology are not the same
order of magnitude as the practical strategies, we do not include
its values in Fig. 2 or Fig. 3. Instead, we present the server costs
in the optimal topology in Table 1. Small values are obtained with

 0.1

 1

 10

 3 4 5 6 7 8 9 10

C
os

t t
o

se
rv

er
 [M

bp
s]

Delay bound imposed [hops]

Strategy 1 (random)
Strategy 2 (tree)

Strategy 3 (Affinity)

Figure 3: Server cost achieved for differentdp Quality of Ser-
vice levels,λ = 0.15 [peers/second], peers with exponential
upload capacities

Table 1: Server cost of the optimal topology for Figs. 2 and 3
Ns [peers] Cs [Mbps] dp [hops] Cs [Mbps]

100 1.3 × 10−4 2 0.03505
130 1.69 × 10−4 3 0.00269
160 2.08 × 10−4 4 1.59 × 10−4

190 2.47 × 10−4 5 7.52 × 10−6

220 2.86 × 10−4 6 2.95 × 10−7

the optimal topology because the upload capacity distribution has
a tail, and all high capacity peers are placed close to the source,
so for the first few hops it appears as if the mean upload capacity
is greater than the playback rate. After that point, the number of
peers served decreases at each hop, but most of the peers have
already been served. Furthermore, we do not account for rounding
to an integer number of peers in the optimal topology. As a result,
theCs of the optimal scheme with the network conditions of Fig. 2
is less than1 Kbps. If the server was allocated as much bandwidth
as Affinity for 220 peers (roughly1.2 Mbps), then the optimal
topology would support approximately1 1

2
million peers, provided

that they could be ordered from the source according to the size of
their upload capacities regardless of churn.

Fig. 3 uses a constant peer arrival rate so that the number of
peers in the network has only small variations, but allows for longer
maximum delay as the media stream is delivered to a peer. As
we might expect, by relaxing the delay constraint, the server cost
can be reduced. The reduction in server cost as delay bounds are
relaxed is most prominent with the optimal scheme (by several
orders of magnitude), as all of the upload capacities of all the in-
termediate peers are fully utilized. The practical strategies are not
able to decrease as quickly as the optimal one, since it is not feasi-
ble for them to arrange all of the peers in precise decreasing order,
and they always have an integer number of peers at each hop from
the source. Still, when compared withrandomandtreestrategies,
Affinity performs significantly better.

5.3 Peer Dynamics with Bounded Server Cost
We now evaluate how new peers are admitted into the P2P stream-

ing session when a limited server bandwidth is imposed. In this
experiment, we assume that the server cannot provide more than
4 Mbps. If more bandwidth is requested from a peer, it is not ad-
mitted to the session. Furthermore, all peers have uniform upload
capacitiesu = 200 Kbps, and the playback rate for the media
is p = 225 Kbps. The arrival of new peers follows a Poisson
process with a combined rate of22.4 [peers/second], and the ser-
vice times follow the Zipf distribution with a mean service time
of 1

µ
= 5 [seconds/peer]. We vary the maximum permitted de-

lay db, which in turn changesNs, but Ns < λ/µ = 112 in all
cases. As discussed in Section 4, ifNs > λ/µ, the probability of
a peer being admitted into the session in the optimal topology is
close to1. Hence, it is more interesting to consider the case where

Table 2: Number of peers served in the P2P session
db [hops] actualNs [peers] optimalNs [peers]

2 33 34
3 47 48
4 59 60
5 69 71
6 78 81
7 86 90
8 93 98
9 99 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Delay bound imposed [hops]

Upper bound
Observed success

Figure 4: Probability that peers will be admitted into the P2P
streaming session given a limited server bandwidthCs = 4
Mbps.

Ns < λ/µ, in which peers are sometimes not successful to join
the session.

We tabulate in Table 2 the optimalNs calculated using (7). It is
compared with the actual number of peers that are served on aver-
age in simulation. Since all peers have uniform upload capacities,
the simulated session performs near-optimally. We observe a small
discrepancy between the optimal and simulated values due to the
requirement of an integer number of peers at any given number of
hops from the source in a practical session. Furthermore, Section
4.1 has described a conservative upper bound for the probability
of admission of peers in an optimal topology. Clearly it is also an
upper bound for the admission of peers in a practical session. In
Fig. 4, we compare the derived upper bound for the probability of
acceptance of a peer into the session with the actual probability
of new peer admission. This figure shows that the derived upper
bound follows the actual trend observed. In particular, this curve
would give a network designer insight into the maximum delay
that should be tolerated in order to achieve a desired success of
peer acceptance into a streaming session. As we have seen many
times before, by relaxing the delay constraint, better network per-
formance can be observed; however, the improvements are limited
as the delay constraint grows to higher values.

6. CONCLUDING REMARKS
In this paper, we seek to study the scaling laws of construct-

ing high-quality peer-to-peer DAG topologies for live multimedia
streaming. We have proposed a theoretical framework to con-
struct optimal peer-to-peer topologies that minimize bandwidth
costs on streaming servers, and to investigate the tradeoffs among
server costs, scalability and delay bounds in peer-to-peer stream-
ing sessions. We have considered arbitrary distributions of peer
upload capacities, and derived an explicit closed-form solution for
the resource-performance tradeoff in the worst case. As peer-to-
peer topologies are inherently dynamic as peers join and leave, we
have also proposed an analytical framework to estimate the effect
of peer churn on the peer service probability and service waiting
time. We are fully convinced that our theoretical insights intro-
duced in this paper have important practical implications. We in-

troduceAffinity as a proof-of-concept showcase of heuristics that
can be practically implemented yet influenced by our theoretical
conclusions. As simple as it is, Affinity is a better performer than
alternative tree-based or randomized topology construction strate-
gies in previous work in our evaluations. In our future work, we
are interested in studying the complete spectrum of realistic, effi-
cient and simple heuristics that further utilize our theoretical con-
clusions, and put them to good use in real-world live peer-to-peer
streaming implementations.

7. REFERENCES
[1] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,

and J. W. O. Jr., “Overcast: Reliable Multicasting with an
Overlay Network,” inProc. Operating Systems Design and
Implementation, pp. 292–301, October 2000.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh, “SplitStream: High-bandwidth
Content Distribution in a Cooperative Environment,” in
Proc. 2nd International Workshop on Peer-to-Peer Systems,
February 2003.

[3] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat,
“Bullet: High Bandwidth Data Dissemination using an
Overlay Mesh,” inProc. 19th ACM Symposium on
Operating Systems Principles, October 2003.

[4] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr, “Chainsaw: Eliminating Trees from Overlay
Multicast,” in Proc. 4th International Workshop on
Peer-to-Peer Systems, February 2005.

[5] X. Zhang, J. Liu, B. Li, and T. P. Yum,
“CoolStreaming/DONet: A Data-Driven Overlay Network
for Efficient Live Media Streaming,” inProc. INFOCOM,
March 2005.

[6] M. Zhang, L. Zhao, J. L. Y. Tang, and S. Yang, “GridMedia:
A Peer-to-Peer Network for Streaming Multicast Through
the Internet,” inProc. ACM Multimedia, November 2005.

[7] J. C. V. Venkataraman, P. Francis, “Chunkyspread:
Multi-tree Unstructured Peer-to-Peer Multicast,” inProc.
5th International Workshop on Peer-to-Peer Systems,
February 2006.

[8] V. Vishnumurthy and P. Francis, “On Heterogeneous
Overlay Construction and Random Node Selection in
Unstructured P2P Networks,” inProc. INFOCOM, April
2006.

[9] A. Rodriguez, D. Kostíc, and A. Vahdat, “Scalability in
Adaptive Multi-Metric Overlays,” inProc. 24th
International Conference on Distributed Computing
Systems, pp. 112–121, March 2004.

[10] W. Ooi, “Dagster: Contributor-aware end-host multicast for
media streaming in heterogeneous environment,” inProc.
SPIE Multimedia Computing and Networking (MMCN),
January 2005.

[11] J. Liang and K. Nahrstedt, “DagStream: Locality Aware and
Failure Resilient Peer-to-Peer Streaming,” inSPIE
Multimedia Computing and Networking (MMCN), January
2006.

[12] R. B. Cooper,Introduction to Queueing Theory. Elsevier
North Holland, Inc., 1981.

[13] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang,
“The Feasibility of Supporting Large-Scale Live Streaming
Applications with Dynamic Application End-Points,” in
Proc. SIGCOMM, pp. 107–120, September 2004.

[14] T. Small, B. Li, and B. Liang, “Outreach: Peer-to-Peer
Topology Construction towards Minimized Server
Bandwidth Costs,” inIEEE Journal on Selected Areas in
Communications, Special Issue on Peer-to-Peer
Communications and Applications, First Quarter, 2007.

