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Abstract—In the near future, demand for Heterogeneous
Wireless Networking (HWN) is expected to to increase. QoS
provisioning in these networks is a challenging issue considering
the diversity in wireless networking technologies and the existence
of mobile users with different communication requirements. In
HWNs with their increased complexity, “the curse of dimension-
ality” problem makes it impractical to directly apply the decision
theoretic optimal control methods that are previously used in
homogeneous wireless networks to achieve desired QoS levels.
In this paper, optimal call admission control policies for HWNs
are considered. A decision theoretic framework for the problem
is derived by a dynamic programming formulation. We prove
that for a two-tier wireless network architecture, the optimal
policy has a two-dimensional threshold structure. Further, this
structural result is used to design two computationally efficient
algorithms, Structured Value Iteration and Structured Update
Value Iteration. These algorithms can be used to determine the
optimal policy in terms of thresholds. Although the first one
is closer in its operation to the conventional Value Iteration
algorithm, the second one has a significantly lower complexity.
Extensive numerical observations suggest that, for all practical
parameter sets, the algorithms always converge to the overall
optimal policy. Further, the numerical results show that the
proposed algorithms are efficient in terms of time-complexity
and in achieving the optimal performance.

Index Terms—Stochastic optimal control, quality of service,
markov processes.

I. INTRODUCTION

Heterogeneous Wireless Networking (HWN) is a major
next-generation networking architecture to support ubiquitous
wireless communications [1]. Current wireless communication
technologies can generally be classified into two groups:
local and global. Local services provide high-bandwidth and
low latency communication services over a small area, while
global services provide lower data rates to a wider area [2].
No single wireless communication technology is capable of
simultaneously providing high bandwidth to a large number of
mobile users over a wide area. HWN is a wireless networking
paradigm to overcome this limitation. Such networks consist
of several layers of different overlapping wireless networking
technologies such as WiMAX/WiFi integration.
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QoS provisioning in HWNs is a challenging issue con-
sidering the diversity of wireless networking technologies.
Conventionally, call admission control (CAC) schemes are
used in wireless networks to achieve a desired QoS level.
A CAC algorithm decides to accept or reject call or handoff
requests or to reserve resources in a resource-sharing systems.
CAC schemes for homogeneous cellular networks have been
extensively studied. These schemes can be classified into
near-optimal heuristics [3] [4] and decision-theoretic optimal
methods [5]–[7]. Furthermore, Dynamic Programming (DP)
and Markov Decision Processes (MDP) [8] are used in the
design of optimal CAC algorithms.

However, for almost all realistic modelings of networking
systems, the computational load of finding an optimal policy
by MDP algorithms is very high. Also, the size of state
space grows exponentially with system capacity. Numerical
methods [8] to solve MDP problems are iterative and as
reported in [9], there is no known strongly-polynomial time
algorithm to solve them. This can hinder the application of
optimal CAC schemes in practical scenarios. As a remedy,
one common modeling approach is to isolate one cell from
the rest of the network to avoid excessive complexity in state
space [10].

A more effective use of DP-based methods is to obtain
structural results for optimal control problems [11]–[15]. In
structural results, a DP formulation is used to characterize
the structure of possible optimal policies. Then, knowledge of
the policy structure can be exploited to design very efficient
numerical methods to find the optimal policy. As an example,
in [5], it is shown that the optimal control policy for a single
cellular Base-Station (BS) is the well-known guard-channel
policy. Then, knowing that the guard-channel policy is fully
determined by a single threshold, the authors of [5] propose an
efficient method to find it. It has been shown in the literature
that for a large class of optimal control problems the optimal
policy is threshold-based [5] [15].

To the best of our knowledge, there is no existing study
on optimal CAC schemes for heterogeneous networks. Due
to the increased complexity in HWN, direct application of
MDP algorithms is impractical. In this paper, optimal CAC
policies for HWNs are considered and some structural results
are presented. We base our algorithms on theories in optimal
control where dynamic programming methods are used to find
the optimal policy to control a random process over time
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Fig. 1. Cluster traffic arrival and departure.

to achieve a certain optimization goal. A decision theoretic
framework for the problem is derived by dynamic program-
ming formulation. In this paper, we limit our focus to a two-
tier wireless network architecture. With some modifications,
this model can be applied to more complex scenarios. We
prove that for this architecture the optimal policy has a two-
dimensional threshold structure. Further, this structural result
is used to design two computationally efficient algorithms,
Structured Value Iteration (SVI) and Structured Update Value
Iteration (SUVI). These algorithms can be used to determine
the optimal policy in terms of thresholds. Although the first
one is closer in its operation to the conventional Value Iteration
(VI) algorithm, the second one has a significantly lower
complexity. Extensive numerical observations suggest that, for
all practical parameter sets, the algorithms always converge to
the overall optimal policy.

The rest of the paper is organized as follows. In Section II,
the system model and assumptions are presented. Section III
presents the structural results and discussion on the complexity
of algorithms to solve optimal CAC problems. In Section IV,
the proposed algorithms are explained, and numerical results
are given in section V, followed by concluding remarks in
Section VI.

II. NETWORK MODEL

A HWN can possibly have a complex configuration, in-
volving many different wireless service layers. It is generally
difficult to analytically tract such complicated scenarios to
provide insight into the optimal control of resources in HWNs.
In this work, we assume a two-tier heterogeneous wireless
network architecture consisting of an overlay and an underlay.
This basic 2-tier entity will be called a Cluster. An example
cluster is shown in Fig. 1. There are also neighboring clusters
from which horizontal handovers are possible to this cluster.
We assume tight coupling between different layers of wireless
network [16] in a cluster. In the tight coupling architecture, the
management of different layers is centralized. In what follows,
we assume that there exists a control unit which makes the
CAC decision for the underlay and overlay BSs, and that
clusters act independently and can measure the rate of external
arrival processes such as hand-overs from neighbor clusters.
Note that our mathematical analysis and control algorithms

are independent of underlying wireless technologies as long
as they satisfy some general technical requirements. However,
in the simulation section parameters are chosen with respect
to IEEE 802.16 WiMAX and IEEE 802.11 WLAN standards.

Service requests (more specifically calls in this work) arrive
according to a memoryless Poisson process, and also service
times are memoryless. Average service times are µc and
µw for calls inside overlay and underlay. We also assume a
memoryless mobility pattern where calls move to neighbor
clusters or different layers at exponentially distributed times
with rates given in Table I. It is clear that these assumptions
result in exponential channel holding times [17]. This is an
essential requirement in the application of MDP methods. In
this paper, we focus on call-level QoS, which is common in
CAC literature. Further, the fixed channel allocation (FCA)
scheme is used and Cc and Cw denote the capacity of overlay
and underlay in terms of the maximum number of calls they
can accommodate. FCA easily applies to various wireless
technologies with channel being frequency, time-slot or code
assignment. Based on the results in [18] and [19], we consider
the case where the number of available voice/multimedia
channels in underlay/overlay can be quantized.

In our event-based DP, we associate costs to undesirable
control decision events. These costs correspond to the drop-
ping or blocking of arriving calls, and they are incurred when
a call admission request is rejected by the cluster control
unit. They reflect the degradation in the QoS from the service
provider’s perspective or the inconvenience of service denial
perceived by users. The call and handoff arrival rates and their
corresponding rejection costs are shown in Table I. Throughout
the rest of this paper, every call type is called a class.

In the study of CAC schemes several optimality criteria are
considered. The most common ones are minimization of a
total cost (objective) function and minimization of the blocking
probability given some hard constraints on dropping probabili-
ties. In [5], these are refereed to as MINOBJ and MINBLOCK,
respectively. The main advantage of MINBLOCK lies in
the fact that it can guarantee some upper bounds on the
dropping probabilities. This can also be achieved by MINOBJ
by adjusting cost ratios. Furthermore, MINBLOCK has the
drawback of not taking into account how much resource is
wasted in reservation to achieve those bounds [10]. In this
paper, we focus on MINOBJ for its flexibility. We can formally
define MINOBJ as

MINOBJ : min gπ =
∑L

k=1 C
(k)
R λkP

(k)
B

(1)

where C
(k)
R is the cost of rejecting a call request of class k,

λk is the arrival rate of class k calls, P
(k)
B is the blocking

(dropping) probability for that class and L is the total number
of call classes.

III. OPTIMAL CAC POLICY

Decision theoretic optimization for Markovian processes is
a well-known stochastic control method [20]. The Markov
property allows significant reduction in tabular programming
complexity and in some cases makes it possible to obtain
structural results. An MDP is determined by four components:
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# Rate Rejection Cost Description

1 λc CNBC New calls to Overlay

2 λw CNBW New calls to Underlay

3 ηhcc CHDCC Handoff to Overlay from Overlay

4 ηhcw CHDCW Handoff to Overlay from Underlay

5 ηhwc CHDWC Handoff to Underlay from Overlay

TABLE I
CALL ARRIVAL/HANDOFF RATES AND REJECTION COSTS.

state space S, action space A, state transition probabilities
P (.), and a cost function C(.). The performance criteria can
be formulated with respect to finite or infinite horizons and
for average-cost or discounted-cost problems. The solution to
an MDP is called a policy or rule. A policy maps the state
space to actions π : S → A, such that the optimization goal
is achieved. A large class of policies, in which the decision is
independent of time, are called stationary policies.

In this work, we wish to minimize the average expected cost
for an infinite-horizon problem. This reflects our concern about
long-run QoS performance. We start with a finite-horizon
optimal cost function and we show that the solution to the
infinite-horizon problem has the same structure. Let us denote
by Vk(i, j) the optimal cost function for a k-stage problem
with the initial state (i, j) where i is the number of calls in
overlay and j is the number of calls in underlay at the start of
the decision epoch. Using the uniformization technique [21],
we can write Vk+1(i, j) recursively as

Vk+1(i, j) =
λc

vmax
min(Vk(i, j) + CNBC , Vk(i + 1, j))

+
λw

vmax
min(Vk(i, j) + CNBW , Vk(i, j + 1))

+
λin

hcc

vmax
min(Vk(i, j) + CHDCC , Vk(i + 1, j))

+
iηhcw

vmax
min(Vk(i− 1, j) + CHDCW , Vk(i− 1, j + 1))

+
jηhwc

vmax
min(Vk(i, j − 1) + CHDWC , Vk(i + 1, j − 1))

+
iµc

vmax
Vk(i− 1, j) +

jµw

vmax
Vk(i, j − 1)

+
λout

hcc

vmax
Vk(i− 1, j) + (1− vout(i, j)

vmax
)Vk(i, j) (2)

where vout(i, j) is the rate of going out of state s = (i, j),

vout(i, j)=λc + λw + λin
hcc + λout

hcc + iηhcw

+ jηhwc + iµc + jµw, (3)

λout
hcc = iηhcc, and vmax is the uniformization parameter such

that vmax ≥ vout(i, j) for every (i, j) pair. Since vout(i, j) is
increasing in i and j, we choose vmax = vout(Cc, Cw). Equa-
tion (2) consists of nine terms, each reflecting one possible
event; the first three terms reflect arrivals to the cluster, the
fourth and fifth terms account for vertical handovers, the next
three terms are for departure events and the last term is due to
the uniformization technique where staying in the same state

is possible. We also assume the following boundary conditions

Vk(Cc + 1, j) = ∞ and Vk(−1, j) = 00 ≤ j ≤ Cw

Vk(i, Cw + 1) = ∞ and Vk(−1, j) = 00 ≤ i ≤ Cc. (4)

A. Optimality of Threshold-Based Policy

We show that the optimal policy to minimize the average
cost for the system model given in Section II is a 2D threshold-
based policy. In a single threshold system, that threshold is
independent of the system state. When the system state is more
complex, such as in the HWNs case, the threshold for the
operation of one system component might depend on the state
of another one. In our scenario, it gives rise to a 2D threshold
structure.

From (2), it can be seen that when a call of class L arrives,
it is only admitted if Vk(i′, j′) − Vk(i, j) ≤ CL

R, where state
s = (i, j) is the current state, state t = (i′, j′) is the next state
if we admit the call, and CL

R is the rejection cost for class L.
Let us define two difference operators for Vk(i, j),

∆iVk(i, j) = Vk(i, j)− Vk(i− 1, j)

∆jVk(i, j) = Vk(i, j)− Vk(i, j − 1). (5)

For every fixed j there is a sequence of ∆iVk(i, j) for i =
1 . . . Cc, and vice versa. In what follows we claim that the
sequences of ∆iVk(i, j) and ∆jVk(i, j) are increasing in i
and j, respectively. For the proof refer to the Appendix.

Lemma 1: Vk(i, j) is convex and monotonically non-
decreasing in i (or j) for every fixed j (or i).

It has been shown in [21] that for average-cost problems
with finite S and A, the optimal policy is stationary. Further,
we are only interested in stationary policies which result in
irreducible chains. The chain defined by Vk(i, j) is also aperi-
odic since it contains loops into the same state. According to
Theorem (6.6.2) in [21], for irreducible and aperiodic markov
decision processes the difference of upper and lower bounds
of Vk+1(i, j)− Vk(i, j) converges to the optimal average cost
per unit time when k → ∞. Also, Theorem (6.6.1) in [21]
implies that the optimal per-unit-time average cost function has
the same structure as Vk(i, j) defined in (2). Hence, structural
results on Vk(i, j) would directly hold for the infinite-horizon
per-unit-time cost function.

Theorem 1: A 2D threshold-based policy is an optimal
solution to the control problem with the system model given
in (2).

Proof: Without loss of generality, let us assume that a
call of class L arrives to overlay when the system state is
s = (i − 1, j0). The proof for arrivals to underlay is similar.
If the call is admitted, increase in the optimal cost function is
∆iVk(i, j0). We show that the CAC decision can be expressed
in terms of thresholds determined by ∆iVk(i, j0) and CL

R.
From Lemma 1, we know that the sequence of ∆iVk(i, j0)

is increasing in i. If there is an î for which ∆iVk (̂i, j0) ≤ CL
R

and ∆iVk (̂i+1, j0) > CL
R, then î is the threshold for admission

to overlay when there are j0 calls in underlay. Otherwise, if
for every î ∈ {1, . . . , Cc} we have that ∆iVk (̂i, j0) ≤ CL

R

then that call is of high priority and it is only rejected when
the system is full. Also, if for every î, ∆Vj0 (̂i, j) > CL

R then
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that call class is of low priority and it is never admitted to the
system.

Note that for every call class of L, threshold î depends on
∆iVk (̂i, j0) which in turn depends on j0. This implies that the
threshold for overlay operation depends on the underlay state.
Therefore, the optimal control policy has to be 2D threshold-
based to account for this correlation.

B. CAC Algorithm

We denote by π = 〈Thc[Cw,M ], Thw[Cc, N ]〉 the class
of threshold-based polices. Here, M is the number of call
classes entering overlay and N is the number of call classes
entering underlay. Every class within M or N would be called
a subclass. In our scenario M is 3 and N is 2. The CAC
algorithm when system state is s = (i, j) at the arrival epoch
and policy π is employed is given in Algorithm 1. When a
call of subclass L′ arrives to overlay (underlay), it is only
admitted if the number of active calls in overlay (underlay)
is less than the threshold for that call-type. This threshold is
a function of call subclass and number of calls in the other
network underlay (overlay).

A CAC algorithm is fully determined given policy π in
terms of thresholds. However, finding these values is a non-
trivial problem. Efficient computation of these thresholds is
considered in the next section.

Algorithm 1 2D Threshold-Based CAC
Input: π = 〈Thc[Cw,M ], Thw[Cc, N ]〉

A Call of class L arrives
It belongs to subclass L′

Output: Admission Decision
1: if Arrival to overlay then
2: if i < Thc(j, L′) then
3: return Admit
4: else
5: return Reject
6: end if
7: else {Arrival to underlay}
8: if j < Thw(i, L′) then
9: return Admit

10: else
11: return Reject
12: end if
13: end if

C. Finding Policy π

A major requirement for CAC algorithms is their adaptivity
to network traffic dynamics. Since this is generally achieved
by periodically updating the admission policy, the algorithm
computational load has to be minimal. Depending on the
system size, the computation cost of solving a general MDP
can be very high. Several methods such as Value Iteration (VI),
Policy Iteration (PI) and Linear Programming (LP) methods
are developed to solve general MDP problems [8].

According to [9], no strongly-polynomial algorithm is
known for solving MDPs. Although MDPs can be solved by

conversion to LP problems, polynomial-time algorithms for
LP are inefficient and impractical. On the other hand, practical
LP algorithms can result in exponential time-complexity in the
worst case when used to solve MDPs. Consequently, there are
no efficient and practical polynomial-time algorithms to solve
MDPs. Therefore, the computation cost of finding thresholds
for the optimal policy can be a burden if we use any of
these techniques. However, when we know about the optimal
solution structure, we might be able to exploit this knowledge
to solve the problem more efficiently.

Generally, either direct or indirect methods can be employed
to find the CAC parameters, i.e., policy thresholds. Direct
methods require calculating the average cost for a given
policy π1. This can be done by modeling the system as
a continuous markov chain (CTMC). Note that every MDP
problem given a policy π1 can be analyzed as a Markov
chain. Then Gaussian elimination-like methods can be used
to find state probabilities and to calculate the average cost.
Once we have the average cost we can use methods such as
multidimensional bisection search [22] to find the parameters
that minimize it. The problem with this method is that for a
two-tier network each having capacity n, the size of Markov
chain state space would be O(n2) and Gaussian elimination
would take O((n2)3) = O(n6).

However, as explained previously, CAC algorithms have to
be light weight to be of any practical use. In indirect methods
we avoid a direct evaluation of cost function. Instead we use
an iterative approximation. Along with that, we use our prior
knowledge of optimal policy structure to further improve the
algorithm time-complexity.

IV. EFFICIENT COMPUTATIONAL ALGORITHMS

In this section, we introduce efficient computational algo-
rithms to find the optimal CAC policy. We first describe the
conventional Value Iteration (VI) algorithm. We then propose
two efficient algorithms called Structured Value Iteration (SVI)
and Structured Update Value Iteration (SUVI). The basic
principle of these algorithms is similar to VI. However, we
use our prior knowledge of the optimal solution structure to
eliminate unnecessary computations.

A. Conventional VI Algorithm

Conventional Value Iteration (VI) algorithm is based on the
Bellman-Ford iterative equation [8],

Vn(s) = min
a∈A(s)

{cs(a) +
∑

t∈S

Pst(a)Vn−1(t)}. (6)

Note that this equation is backward in time, such that V0(.) is
the cost at the end of the process. In every iteration Vn(s) is
calculated for ∀s ∈ S. Here, S is the state space, and A(s) is
the set of possible actions at state s. Pst(a) is the transition
probability of going form s to t having taken action a, and
cs(a) is the cost of taking action a in state s. In our model,
the system state has two components, the number of calls in
overlay i and the number of calls in underlay j; s = (i, j). For
every incoming call, either new or hand-off, at any state two
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actions are possible: accept (denoted by 1) or reject (denoted
by 0); A(s) = {0, 1}.

To find the state transition probabilities Pst(a), we use
fictitious decision epochs [21]. The computational load of
evaluating the cost function in every step highly depends
on the density of the Pst(a) matrix. When times between
decision epochs are exponentially distributed we can reduce
the computation cost by introducing fictitious decision epochs
at which no real decision has to be made. These correspond to
departure events when no action is taken. By this technique,
at every decision epoch either real or fictitious, the system
state can only change to adjacent states, making many terms
in Pst(a) zero. However, to keep track of the epoch type
we have to extend the state space by one dimension. The
increased computation cost due to this enlarged state-space
is compensated by the reduction in the Pst(a) density.

We define the new state variable to be a triple s = (i, j, k).
Here, k is the departure or arrival type. We already have 5
call types from Table I. We add a fictitious call event type
of 0 which corresponds to call departures with a fictitious
decision of a = 0 to be taken at departure events. In addition,
since the decision epochs can be at any randomly distributed
time, a Semi-Markov Decision Process (SMDP) model need
to be used [21]. Again, we take the uniformization rate to be
vmax = vout(Cc, Cw). Also, we have to determine vs(a), the
rate of going out of state s having taken action a. Here we
give the transition probabilities for some of the state-action
combinations in terms of transition rates with Pst(a) = qst(a)

vs(a)

and s = (i, j, k):

qst(a = 1) =





(i + 1)(ηhcc + µc) t = (i, j, 0)
jµw t = (i + 1, j − 1, 0)
λc t = (i + 1, j, 1)
λw t = (i + 1, j, 2)
λin

hcc t = (i + 1, j, 3)
(i + 1)ηhcw t = (i + 1, j, 4)
jηhwc t = (i + 1, j, 5)

(7)
for k ∈ {1, 3} and vs(a = 1) = vout(i + 1, j) and vout(i, j)
given in (3). Another example for k = 4 is

qst(a = 0) =





(i− 1)(ηhcc + µc) t = (i− 2, j, 0)
jµw t = (i− 1, j − 1, 0)
λc t = (i− 1, j, 1)
λw t = (i− 1, j, 2)
λin

hcc t = (i− 1, j, 3)
(i− 1)ηhcw t = (i− 1, j, 4)
jηhwc t = (i− 1, j, 5)

(8)
with vs(a) = vout(i−1, j). Note that in the above, a hand-off
request from overlay to underlay was initially rejected (a = 0)
leaving only i− 1 calls in overlay at the start of the decision
epoch. We specify the boundary conditions by defining

Vn(Cc + 1, j, k) = ∞ for all j and k
Vn(i, Cw + 1, k) = ∞ for all i and k

Vn(−1, j, k) = 0 for all j and k
Vn(i,−1, k) = 0 for all i and k (9)
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Fig. 2. SVI algorithm operation; AR, BR and RR for calls coming to underlay
and D = 1.

For SMDP, (6) needs to be modified to reflect the semi-Markov
state transition rates. We define operator TV [V (.), s, a] as

TV [V (.), s, a]=cs(a)vs(a)

+
vs(a)
vmax

∑

t∈S

Pst(a)V (t)

+
(

1− vs(a)
vmax

)
V (s). (10)

Given this operator we can rewrite (6) for SMDPs as

Vn(s)= min
a∈A(s)

{TV [Vn−1, s, a]}. (11)

B. SVI Algorithm

Theorem 1 states that the optimal solution is a 2D threshold
policy, implying that the admission region for any call type
should be a closed area. An example of this is shown in Fig. 2.
For any given policy π1 and call subclass, we can partition
the state space into three disjoint areas, called Accept-Region
(AR), Border-Region (BR), and Reject-Region (RR). We define
the region indicator function IR(s, p) for state s = (i, j) and
call request of subclass p as

IR(s, p) =




AR i− Thc(j, p) < −D
BR |i− Thc(j, p)| ≤ D
RR i− Thc(j, p) > D.

(12)

If a state is within distance D of the threshold level then
it is in BR. D acts as a tuning parameter, determining the
size of area we are willing to re-evaluate in every iteration.
An example of IR(s, p) classification is shown in Fig. 2 for
D = 1, where dotted states correspond to the threshold levels.
The indicator function for the underlay subclasses is similar.
Given the indicator function IR(s, p), we can redefine the
action space A(s) as A′(s),

A′(s) =




{0} if IR(s, p) = RR
{1} if IR(s, p) = AR
{0, 1} if IR(s, p) = BR.

(13)

Here, we are limiting the set of possible actions. The idea
is that for states inside the admission region it would be
unnecessary to consider a possible reject action if they are
not close to the border. Note that the cost function evaluation
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is done iteratively until an optimum policy is reached. Thus,
it can be expected that if an optimum action is not currently
taken in a state, the algorithm will eventually reach that state
and would choose the appropriate action. As we will see in the
next section, extensive numerical observations suggest that, for
all practical parameter sets under consideration, the algorithm
always converges to the overall optimal policy.

Finally, the proposed SVI algorithm is given in Algorithm 2
as an extension to VI [21]. As in the VI algorithm, ε deter-
mines the desired accuracy. Note that in Algorithm 2 the new
action space A′(s) is used to improve the algorithm efficiency.

Algorithm 2 Structured Value Iteration Algorithm
Input: π, Pst, cs(a), D, vmax, ε
Output: Optimal Admission Policy

1: Initialize V0(s)
s.t. ∀s ∈ S : 0 ≤ V0(s) ≤ mina{cs(a)vs(a)}
n := 0
∀s π0(s) = 1

2: n := n + 1
3: Find ∀s ∈ S

Vn(s) = mina∈A′(s){TV [Vn−1, s, a]}
πn(s) = arg mina∈A′(s){TV [Vn−1, s, a]}

4: Compute
mn = mint∈S{Vn(t)− Vn−1(t)}
Mn = maxt∈S{Vn(t)− Vn−1(t)}

5: ∀j, l Thn
c [j, l] = arg mini{πn(i, j, l) = 0}

∀i, l Thn
w[i, l] = arg minj{πn(i, j, l) = 0}

Recompute A′(s) based on Thn
c and Thn

w

6: if Mn −mn ≤ εmn then
7: Policy πn is optimal and Thn is the threshold set
8: Stop
9: else

10: Go to step 2
11: end if

C. SUVI Algorithm
The intuition behind SVI was that it is not necessary at every

point to evaluate the optimal cost function for all possible
actions when some actions are very unlikely to be the optimal
decision. In SVI, we assign a default action to every such point
based on the region it belongs to, and then in every round of
iteration the cost function for that point is updated according
to that default action. However, we believe that some of these
default updates might be non-necessary if there has not been
a major decision or cost change in their neighborhood. Also,
under the operation of a numerical algorithm similar to SVI,
in every iteration the changes in cost or decisions can only
happen within the border region. Therefore, it might be more
efficient if we limit the scope of the cost function update to
a neighborhood of the border region. More formally, let us
define the Update Region (UR) indicator function IU (s, p) as

IU (s, p) =
{

1 |i− Thc(j, p)| ≤ Du

0 otherwise. (14)

A state belongs to the UR if it is within distance Du (Du ≥ D)
of the threshold levels. An example of IU (s, p) classification
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Fig. 3. SUVI algorithm operation; AR, BR, UR and RR for calls coming
to underlay when D = 1 and Du = 2.

Parameter Value Parameter Value

Cc 50 calls µc 0.01 sec−1

Cw 20 calls µw 0.01 sec−1

λc 0.5 calls/sec CNBC 5

λw 0.1 calls/sec CNBW 3

ηhcc 5× 10−3 sec−1 CHDCC 50

ηhcw 0.01 sec−1 CHDCW 10

ηhwc 0.02 sec−1 CHDWC 30

TABLE II
ARRIVAL RATES AND REJECTION COSTS USED IN SIMULATION.

is shown in Fig. 3 for D = 1 and Du = 2. We define the
action space A′′(s) as

A′′(s) =





{0} if IR(s, p) = RR and IU (s, p) = 1
{1} if IR(s, p) = AR and IU (s, p) = 1
{0, 1} if IR(s, p) = BR
∅ otherwise.

(15)

The algorithm proposed for SVI in the last section can be used
in conjunction with this new action space A′′(s) to find the
optimal policy.

V. NUMERICAL RESULTS

The performance of the proposed methods is studied in
this section. We use a combination of a C++ discrete event
simulator and a MATLAB numerical program for that purpose.
First, an optimal policy is found through iterative numerical
calculations in MATLAB. Then, it is fed into the discrete-
event simulator to find the resultant QoS performance. All
parameters take their default values shown in Table II unless
otherwise stated. For the rest of this section, we define the
rejection cost vector CR = {C(1)

R , .., C
(5)
R }, where C

(k)
R is

the rejection cost for call requests of class k as classified in
Table I.

A. The Optimal Policy

The quality of the control policies obtained by using the
proposed algorithms and their abilities to achieve the optimal
performance is considered in this section. We conducted an
extensive number of experiments to compare the result of
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Fig. 4. ARRs for class 2.

0 10 20 30 40 50
0

5

10

15

20

Overlay State  i

U
nd

er
la

y 
S

ta
te

  j

 

 

Admission Region
Rejection Region

Fig. 5. ARRs for class 2; increased mobility.

SVI and SUVI with conventional VI. All comparisons of the
threshold levels obtained by using SVI/SUVI and VI showed
complete matching. These observations suggest that, for all
practical parameter sets, the algorithms always converge to
the overall optimal policy. Hence, they can be considered as
reliable methods to perform CAC for HWNs.

Figure 4 illustrates the ARRs for the optimal policy obtained
from SVI. It is assumed that Cc = 50 and Cw = 20. The
ARRs for call class of 2 (new arrival to underlay) are depicted.
Figure 5 shows the same results for another configuration in
which the mobility rate ηhwc has increased from 0.02 to 0.08.
Comparison of these figures shows that at the lower mobility
rate, the rejection of calls is more evenly distributed over the
set of states. Also, it can be observed that in both figures
nearly the same percentage of states are in the rejection area.
This is due to the fact that the prioritization of calls in SVI is
mostly based on cost ratios defined in Table I, rather than the
mobility pattern.

B. Convergence Speed

In section III, we explained that the complexity of CAC
algorithms can impose limitations on their practicality. We
compare the convergence speed of SVI and SUVI against
VI for different values of D and Du. Figures 6 and 7 show
the Time Gain, TX

Gain = TV I/TX , for SVI and SUVI over
VI for a range of network capacities. The run time of each
algorithm is obtained by using MATLAB to record its CPU
time. In this experiment, Cc varies from 20 to 100 while
maintaining Cw = 1

3Cc. For every Cc, λc is chosen such that
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Fig. 6. SVI convergence speed gain TGain for D = 1, 2, 3.
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Fig. 7. SUVI convergence speed gain TGain for D = 1, 2, 3 and Du =
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the nominal overlay utilization , ρc = λc

Ccµc
, is equal to 1, and

λw = 0.2× λc. Also, we assume ε = 10−3.
As the network capacity increases, the ratio of BR area,

in which full optimization is performed, relative to the area
of AR/RR regions, in which a default action is evaluated,
decreases. This accounts for the increased efficiency with the
increase in network capacity. Figure 7 shows TGain for the
SUVI algorithm. Each curve gives the time gain of the SUVI
over VI for different network capacities for a given D and Du.
It can be observed that smart selection of update points can
significantly improve the convergence speed. It is interesting
to note that the best-performing parameters are D = 1 and
Du = 2, while the algorithm always converges to the optimal
policy regardless of the selected tuning parameters.

C. Optimal Policy vs. Complete Sharing (CS)

A Complete Sharing (CS) policy refers to the admission
policy in which π(s) = 1, regardless of the system state
as long as it remains within system capacity boundaries; in
our scenario s = (i, j) ≤ (Cc, Cw). In what follows, we
compare the performance of the optimal policy obtained from
SUVI (with D = 1 and Du = 2) with the CS policy. CS
policy essentially represents the performance of a system in
which no proactive resource allocation scheme is employed
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Fig. 9. Optimal and CS policy costs versus underlay area.

and call request are satisfied as long as there are enough
resources. Comparing the optimal policy with the CS policy
shows how effective the control algorithm is and what degrees
of performance gain can be expected by adopting a non-trivial
policy.

Figure 8 shows the result of this comparison for two
different cost vectors, CR, when λc varies from 0.5 to 1.0.
λc is chosen such that the nominal overlay utilization, ρc,
ranges from 1.0 to 2.0. Also, we have Cc = 50, Cw = 20
and λw = 0.2×λc. In this experiment, we consider two cases
having different cost vectors of CR1 = {5, 3, 50, 10, 30} and
CR2 = {5, 3, 20, 10, 20}. First, the optimal policies, π1 and
π2, are computed for each cost vector for the given system
parameters, and then a discrete event simulation is performed
to obtain the resultant average cost gπ . The system is then
exposed to the same load/cost settings under a CS policy to
find the corresponding gcs. Note that gπ =

∑5
k=1 C

(k)
R λkP

(k)
B .

Several insights can be gained from this figure. Let us define
the cost improvement difference as Q(λ) = gcs(λ)−gπ(λ) and
the cost reduction as Y (λ) = gcs(λ)

gπ(λ) . First, Q(λ) invariably
increases when system is exposed to higher loads, which
implies the control algorithm is more useful at higher loads.
An interesting observation is that the cost reduction, Y (λ),
is higher for CR1 compared to the cost reduction for CR2.
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Fig. 10. Optimal and CS policy costs versus rejection cost ratio.

This is due to the fact that CR1 assigns a more diverse set of
rejection costs to call classes. The closer the rejection costs
are, the lower the cost reduction is going to be, and in the
extreme case of having equal rejection costs, i.e., C

(k)
R = C0

for k = 1, ..., 5, both CS and optimal policy yield the same
average cost and Y (λ) will have its minimum value of 1.

Figure 9 shows the comparison results for the case when
the area ratio Ra of the underlay to overlay increases from
0.05 to 0.5. Let us assume that the total arrival rate to the
cluster, consisting of overlay and underlay, is λT = λc + λw,
and depending on the area’s expanse covered by each layer, a
fraction Ra of λT is assigned to the underlay while 1 − Ra

goes to the overlay. Under user assignment strategies in which
a user is initially assigned to the underlay if it is within the
double-coverage area (overlap of underlay and overlay), Ra

is directly proportional to the underlay expanse. Two cases
are considered in this experiment. Policy π3 is obtained for
λT = 0.5 and π4 is obtained for λT = 1, and also CR =
{5, 3, 20, 20, 20}.

It can be observed from Fig. 9 that the cost difference
Q(Ra) is higher when the load is higher. One notable ob-
servation is that the average cost for the optimal policy π4

decreases when Ra increases. This can be associated with
the lower rejection cost for new arrivals to the underlay.
When Ra increases, a larger number of incoming calls are
assigned to underlay which if rejected accumulate a lower
cost as compared to their rejection cost at the overlay. The
non-monotonic trend in the average cost for CS policy πCS4

can be explained similarly.
Another set of average cost results is shown in Fig. 10. The

cost ratio Rc used in this figure is defined as Rc = CHDCW

CNBW
.

Also, the rejection cost vector is CR1 = {5, 5, 20, 5×Rc, 20}.
Policy π5 is computed for λc = 0.5 and policy π6 is computed
for λc = 1, while maintaining λw = 0.2 × λc. Again, the
higher the load, the larger is the difference between the average
cost induced by the optimal and CS policies. A trend in this
figure which requires explanation is the difference in rates at
which average costs for the optimal and CS policies increases
when Rc increases. In contrary to the expectation that the cost
reduction Y (Rc) should have remained fixed, as it was the case
in Fig. 8, we see that Y (Rc) is increasing in Rc. The reason is
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that when we increase Rc the blocking/dropping probabilities
which constitute gπ remain constant under the CS policy, and
hence, the average cost grows proportionally, whereas under
the optimal policy these probabilities are adaptively changing
to achieve the minimum possible average cost for any given
Rc. The overall result is that the optimal control scheme does
not allow for a linear change in system rejection costs to be
reflected severely in the average cost.

D. QoS Performance

In this section, the control policy generated by SUVI is
used to find the resultant performance. We use the policy
obtained in the last section for ηhwc = 0.02. The system
is exposed to an increased mobility rate ηhwc to study its
response. Figure 11 shows the results. It can be observed that
the dropping probabilities for calls of classes 3 and 4, PDCC

and PDWC , are increasing. The increase of total incoming
load to overlay has also elevated the blocking probability for
new arrivals PBC . More interestingly, the change in PDCW is
not monotonic, and it initially decreases and then increases.
The initial decrease happens when the increase of ηhwc results
in lowered levels of load in the underlay while overlay load
has not significantly changed. The increasing part can be
correlated to the situation in which many calls in overlay,
including previous handovers from underlay, try to handover
to the underlay.

VI. CONCLUSION

In this paper, optimal CAC for HWN is considered. A
decision theoretic framework for the problem is derived by a
dynamic programming formulation. Structural results on the
optimal cost function for a two-tier HWN architecture are
presented. It is shown that for such networks the cost function
is convex. This is used to prove that the optimal CAC policy
is two-dimensional threshold based. Then, efficient numerical
methods called Structured Value Iteration (SVI) and Structured
Update Value Iteration (SUVI) are proposed to determine the
optimal admission policy. Although the first one is closer in
its operation to the conventional Value Iteration algorithm, the
second one has a significantly lower complexity.

Extensive simulation and numerical studies show that SVI
and SUVI are both reliable and effective. Firstly, they always
converge to the optimal policy in much less time compared to
conventional numerical methods used to solve MDPs. Also,
discrete-event call-level simulations confirm that the obtained
policy is effective in maintaining the desired QoS performance.

The proposed method is a new framework for systems
with complex state descriptions. It can potentially be used in
stochastic control of queuing systems. In general, under some
minor technical assumptions, the same method can be applied
to many problems involving optimal control for stochastic
systems with multidimensional state-space.
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APPENDIX

Proof of Lemma 1: Vk+1(i, j) as shown in (2) consists of
9 terms, T1 . . . T9. Here for clarity, we factor out the common
1/vmax term and label the costs by their class number. We
define

Dm(i, j) = Tm(i, j)− Tm(i− 1, j) (16)

Vk+1(i, j) =
1

vmax

9∑
m=1

Tm(i, j) (17)

∆iVk+1(i, j) =
1

vmax

9∑
m=1

Dm(i, j). (18)

We use induction on k to prove Vk+1(i, j) is convex and
monotonically non-decreasing in i for every fixed j (proof
for convexity in j is similar). This is equal to showing
∆iVk+1(i + 1, j) ≥ ∆iVk+1(i, j) and ∆iVk+1(i, j) ≥ 0.
The induction hypothesis is the following: Vk(i, j) is (I)
monotonically non-decreasing in i and j and (II) convex in i(or
j) for every fixed j(or i).

Proof of (I): We show ∆iVk+1(i, j) ≥ 0 by evaluting each
Dm term individually. The basis step is trivial since ∀(i, j) ≤
(Cc, Cw) : V0(i, j) = 0 and ∀j : V0(C + 1, j) = ∞. Consider
D1(i, j), when λc is factored out. Let

D′
1(i, j) = [(T1(i, j)− T1(i− 1, j)]/λc

= min(Vk(i, j) + C1, Vk(i + 1, j))
−min(Vk(i− 1, j) + C1, Vk(i, j))

= min(C1, Vk(i + 1, j)− Vk(i, j))︸ ︷︷ ︸
≥0 by hypo.(I) for Vk

+Vk(i, j)

−min(C1, Vk(i, j)− Vk(i− 1, j))− Vk(i− 1, j)
≥ Vk(i, j)− Vk(i− 1, j)
−min(C1, Vk(i, j)− Vk(i− 1, j))

≥ 0 (by hypo.(I) for Vk). (19)

The same method can be applied directly to T{2,3,5,7}.
However, the rest of the terms have to be considered altogether.
We first extend D9(i, j) as follows,

D9(i, j) = T9(i, j)− T9(i− 1, j) (20)
= (vmax − vout(i, j))Vk(i, j)
− (vmax − vout(i− 1, j))Vk(i− 1, j)
= (Cc − i)ηhccVk(i, j)− (Cc − i + 1)ηhccVk(i− 1, j)
+ (Cc − i)ηhcwVk(i, j)− (Cc − i + 1)ηhcwVk(i− 1, j)
+ (Cw − j)ηhwcVk(i, j)− (Cw − j)ηhwcVk(i− 1, j)
+ (Cc − i)µcVk(i, j)− (Cc − i + 1)µcVk(i− 1, j)
+ (Cw − j)µwVk(i, j)− (Cw − j)µwVk(i− 1, j).

Although it is straight forward to show that the 3rd and 5th
terms above are non-negative, for other terms it is not trivial.

We show that every of these terms in D9(i, j) if combined with
other terms in ∆iVk(i, j) can be proved to be non-negative.
As an example, consider the first term which we can rewrite
as

Dηhcc

9 = (Cc − i)ηhccVk(i, j)− (Cc − i + 1)ηhccVk(i− 1, j)
= (Cc − i)ηhcc {Vk(i, j)− Vk(i− 1, j)}︸ ︷︷ ︸

∆iVk(i,j)≥0

−ηhccVk(i− 1, j).

(21)

Equation 21 contains ηhcc, and from ( 2) we see that term T8

has ηhcc as well, so we will use D8(i, j). We consider the
sum of them:

Dηhcc

9 + D8(i, j) =
(Cc − i)ηhcc {Vk(i, j)− Vk(i− 1, j)} − ηhccVk(i− 1, j)

+ iηhccVk(i− 1, j)− (i− 1)ηhccVk(i− 2, j)
= (Cc − i)ηhcc {Vk(i, j)− Vk(i− 1, j)}

+ (i− 1)ηhcc {Vk(i− 1, j)− Vk(i− 2, j)}
= (Cc − i)ηhcc∆iVk(i, j) + (i− 1)ηhcc∆iVk(i− 1, j)
≥ 0. (22)

The other two terms in D9(i, j) can be matched with T4 and
T6 similarly. Hence, ∆iVk+1(i, j) =

∑9
m=1 Dm ≥ 0.

Proof of (II): We need to show ∆iVk+1(i + 1, j) ≥
∆iVk+1(i, j). This is equal to

∑9
m=1[Dm(i + 1, j) −

Dm(i, j)] ≥ 0. Similar to the last part, the basis step is trivial
since ∀(i, j) ≤ (Cc, Cw) : V0(i, j) = 0 and ∀j : V0(C +
1, j) = ∞. Let us define Ym(i, j) = Dm(i, j)−Dm(i− 1, j).
Again, we prove terms are non-negative either individually or
when combined with other terms. Let us start with Y1, having
factored out λc:

Y ′
1(i + 1, j) = [D1(i + 1, j)−D1(i, j)]/λc

= min(C1, Vk(i + 2, j)− Vk(i + 1, j)) + Vk(i + 1, j)
− min(C1, Vk(i + 1, j)− Vk(i, j))− Vk(i, j)
− min(C1, Vk(i + 1, j)− Vk(i, j))− Vk(i, j)
+ min(C1, Vk(i, j)− Vk(i− 1, j)) + Vk(i− 1, j)

= min(C1, ∆iVk(i + 2, j))−min(C1,∆iVk(i + 1, j))︸ ︷︷ ︸
≥0 by hypo.(II) for Vk

+ ∆iVk(i + 1, j)−∆iVk(i, j)
− [

min(C1,∆iVk(i + 1, j))−min(C1, ∆iVk(i, j))
]

≥ ∆iVk(i + 1, j)−∆iVk(i, j)
− [

min(C1,∆iVk(i + 1, j))−min(C1, ∆iVk(i, j))
]

≥ 0 (by hypo.(II) for Vk). (23)

Again, the proof for Y{2,3,5,7} is the same as for Y1. For other
terms, we have to take an approach similar to the last part.
Let us extend Y9, focusing on the terms containing ηhcc:

Y9(i + 1, j) = D9(i + 1, j)−D9(i, j)
=

(
vmax − vout(i + 1, j)

)
Vk(i + 1, j)

− (
vmax − vout(i, j)

)
Vk(i, j)

− {(
vmax − vout(i, j)

)
Vk(i, j)
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− (
vmax − vout(i− 1, j)

)
Vk(i− 1, j)

}

= (Cc − i− 1)ηhccVk(i + 1, j)− (Cc − i)ηhccVk(i, j)
− (Cc − i)ηhccVk(i, j) + (Cc − i + 1)ηhccVk(i− 1, j)
+ . . . . (24)

Separating the terms with ηhcc, we obtain

Y ηhcc

9 (i + 1, j) =
(Cc − i− 1)ηhccVk(i + 1, j)− (Cc − i)ηhccVk(i, j)
− (Cc − i)ηhccVk(i, j) + (Cc − i + 1)ηhccVk(i− 1, j)
= (Cc − i− 1)ηhcc {Vk(i + 1, j)− Vk(i, j)}
− (Cc − i− 1)ηhcc {Vk(i, j)− Vk(i− 1, j)}
− 2 ηhccVk(i, j) + 2 ηhccVk(i− 1, j). (25)

This term has to be evaluated along with Y8(i + 1, j) in
order to show that the sum of both terms is non-negative.
For Y8(i + 1, j) we have

Y8(i + 1, j)
= (i + 1)ηhccVk(i, j)− iηhccVk(i− 1, j)
− iηhccVk(i− 1, j) + (i− 1)ηhccVk(i− 2, j)

= (i− 1)ηhcc {Vk(i, j)− Vk(i− 1, j)}
− (i− 1)ηhcc {Vk(i− 1, j)− Vk(i− 2, j)}
+ 2 ηhccVk(i, j)− 2 ηhccVk(i− 1, j), (26)

and the sum of these two terms is

Y ηhcc

9 (i + 1, j) + Y8(i + 1, j) =
= (Cc − i− 1)ηhcc {Vk(i + 1, j)− Vk(i, j)}
− (Cc − i− 1)ηhcc {Vk(i, j)− Vk(i− 1, j)}
+ (i− 1)ηhcc {Vk(i, j)− Vk(i− 1, j)}
− (i− 1)ηhcc {Vk(i− 1, j)− Vk(i− 2, j)}

= (Cc − i− 1)ηhcc

{
∆iVk(i + 1, j)−∆iVk+1(i, j)

}
︸ ︷︷ ︸

≥0 by hypo.(II) for Vk

+ (i− 1)ηhcc

{
∆iVk(i, j)−∆iVk−1(i, j)

}
︸ ︷︷ ︸
≥0 by hypo.(II) for Vk

≥ 0. (27)

It is similar to show non-negativity for the other terms of Ym.
Since we have ∀m : Ym ≥ 0, the inequality ∆iVk+1(i+1, j) ≥
∆iVk+1(i, j) holds, and hence, the cost function is convex.


