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ABSTRACT

This paper addresses the problem of optimizing the packet
transmission schedule in an ad hoc network with end-to-
end delay constraints. The emphasis is to determine the
proper relative weights assigned to the remaining distance
and the remaining lifetime in order to rank the urgency of a
packet. We consider a general class of transmission schemes
that represent such relative weights using a single lifetime-
distance factor, which includes, as special cases, schedules
such as Earliest-Deadline-First and Largest-Distance-First.
We propose an analytical framework, based on recursive
non-homogeneous Markovian analysis, to study the effect
of the lifetime-distance factor on packet loss probability in
a general multihop environment, with different configura-
tions of peer-node channel contention. Numerical results are
presented to demonstrate how various network parameters
affect the optimal lifetime-distance factor. We demonstrate
quantitatively how the proper balance between distance and
lifetime in a transmission schedule can significantly improve
the network performance, even under imperfect schedule im-
plementation.
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1. INTRODUCTION

As multimedia applications become more prevalent in wire-
less networks, it remains a challenging problem to ensure
the reliable transmission of multimedia data across multiple
hops of wireless links [28, 14]. In particular, an important
criterion for the successful decoding of multimedia streams
is the end-to-end transmission delay of packets [18]. Typi-
cally, if a multimedia streaming receiver has not completely
received an audio or video frame by its pre-defined playback
deadline, the frame is obsolete. Thus, multimedia communi-
cation imposes stringent requirements on the delay threshold
of packet transmission.

The efficient operation of ad hoc networks requires flexi-
bility and adaptation across the entire protocol stack. Re-
cent empirical data have shown that the performance of one
protocol layer in an ad hoc network is closely related to the
time-varying characteristics of the network at the other lay-
ers [6, 31]. Therefore, the cross-layer approach to ad hoc
network design, which allows the jointly adaptive optimiza-
tion of the protocol layers, is important to the successful de-
ployment of future large-scale multimedia ad hoc networks.

For multimedia applications in ad hoc networks, a ma-
jor contribution to the overall transmission delay is at the
Medium Access Control (MAC) layer, due to distributed
multi-node contention over radio channels. However, the
most commonly employed MAC layer protocols for ad hoc
networks [14] are not designed based on the multihop end-to-
end delay of a packet. Examples of these protocols include
RI-BTMA [33], MACA[19], MACAW[7], FAMA [11], IEEE
802.11 DCF [1], and DBTMA [13]. All of them mainly con-
cern the packet transmission within a confined local neigh-
borhood, without considering the accumulated effects over
the entire route traversed by a packet.

In this paper, we consider the problem of optimizing the
packet transmission schedule of an ad hoc network, through
MAC-layer scheduling while using routing and application
information from the upper layers. The ultimate goal is
to minimize the probability of packet loss due to excessive
end-to-end delay. We emphasize on finding the proper as-
signment of relative weights to the remaining distance and
the remaining lifetime in ranking the urgency of a packet.

The relative importance of the remaining distance and the
remaining lifetime can be summarized in a single lifetime-
distance factor. We term scheduling scheme that uses the
lifetime-distance factor to rank the transmission priority of
packets Multihop Latency Aware (MLA) scheduling . It is
a general class of schedules that contains several well-known
schemes, including for example the Earliest-Deadline-First



(EDF) schedule and the Longest-Distance-First (LDF) sched-
ule as special cases.

Hence, the central question we attempt to answer is how
to determine the optimal lifetime-distance factor in a multi-
hop environment. Toward this end, we propose an analyti-
cal framework, based on recursive non-homogeneous Marko-
vian analysis, to evaluate quantitatively the performance
of rank-based scheduling and study the optimization of the
lifetime-distance factor under different network parameters.
Furthermore, we investigate the effects of imperfect sched-
ule implementation on the optimal balance between distance
and lifetime.

The rest of this paper is organized as follows. In Section
2, we summarize prior work on distributed and multihop
scheduling. In Section 3, we give detailed description of the
network model and lifetime-distance factor-based schedul-
ing. In Section 4, we provide a numerical analysis frame-
work for computing the effect of the lifetime-distance factor
on the probability of packet loss. In Section 5, we validate
the analysis results and study schedule optimization given
various system parameters, including the effects of imper-
fect schedule implementation. Finally, concluding remarks
are given in Section 6.

2. RELATED WORK

Much existing work on distributed scheduling in the ad
hoc networking environment focuses on ensuring fair access
to the shared medium [5, 26, 24, 25, 32, 16, 4, 30, 17].
However, there is comparatively less work on scheduling to
ensure end-to-end delay for ad hoc networks.

Solutions were provided in [5, 17] to implementing dis-
tributed multiple-access schemes that approximate any given
schedule. These methods do not directly concern the end-
to-end delay guarantee. However, they can be employed
to implement a rank-based scheduling scheme, such as the
MLA schedule.

In [16], a priority index based multihop coordinated schedul-

ing scheme was proposed for ad hoc networks, with three
types of index assignments. In particular, as seen in Section
3, its Time To Live assignment scheme can be considered
within the general class of MLA schedules that neglects the
effect of hop count. Its Uniform Delay Budget scheme is
similar to a special case of MLA giving lifetime and hop
count the exact same weight, but this scheme considers the
average lifetime allowance per hop, instead of the remaining
lifetime.

Multihop scheduling was considered in wireline networks
to ensure end-to-end Quality-of-Service bounds [23, 20, 8,
2, 21]. The most commonly studied scheduling schemes are
First-In-First-Out (FIFO), where the first packet to enter
a transmission queue is given the highest priority, Global
Earliest-Deadline-First (EDF), where the packet with the
least remaining lifetime is given the highest priority, and
Longest-Distance-First (LDF), where the packet with the
largest remaining hop count is given the highest priority.
These schedules are within the general class of ML A schedul-
ing. As will be seen later, under most general conditions,
these schedules are out performed by a more balanced sched-
ule with an optimal lifetime-distance factor assigning the
proper relative weights to the remaining distance and the
remaining lifetime of a packet.

3. NETWORK MODEL AND THE
LIFETIME-DISTANCE FACTOR

We consider a cross-layer [6, 31] ad hoc network design
where the MAC layer is aware of the routing information
and application requirement of contending packets. We as-
sume the scheduling of each packet takes into account the
remaining distance in hops, denoted H, from the current
location of the packet to its destination, and the remaining
lifetime, denoted T, of the packet. Each packet is associated
with a ranking function y(H,T'), such that a smaller value
of v(H,T) denotes higher transmission priority.

Within each node, the values of H and T of all packets can
be made available to the MAC layer through cross-layer in-
formation exchange. The hop count information is recorded
in most of the routing protocols proposed for ad hoc net-
works [28, 14]. For example, all link-state, distance-vector,
and source-routing protocols require that a node stores the
exact hop count from itself to all active destination nodes.
Furthermore, each packet can be assigned an expiry time
based on the delay threshold set by the application [18].
We assume that this information is embedded within each
packet, so that a node can compare this value with the cur-
rent time to compute the remaining lifetime of the packet.’
Thus, within each node, the packets are queued and ranked
based on y(H,T), such that the head-of-line (HoL) packet
has the highest transmission priority.

Between nodes, each HoL. packet competes for access to
the shared medium with all other Hol. packets in its con-
tention area. For IEEE 802.11-typed MAC, the contention
area of a node may be defined as its two-hop neighborhood
[28, 14]. However, in general, the contention area depends
on many factors, such as the multiple access algorithm, sig-
nal modulation scheme, and receiver hardware design. In
this work, we consider different types of contention area con-
figurations and propose a general analytical framework for
performance evaluation. We assume that the nodes within
each other’s contention area can exchange the H and T
values of the contending HoL. packets through short con-
trol messages. These control messages may be piggy-backed
within the previously transmitted data packets [5], and, in
the case of IEEE 802.11 compliant protocols, within the
RTS/CTS/ACK control packets [17].

Clearly, the less remaining lifetime a packet has and the
more hops it has to traverse, the more urgent the packet is.
Therefore, the relative importance of these two quantities
can be summarized in a lifetime-distance factor, denoted «,
as follows:

Ta
AHT) = = (1)
where o can take any non-negative value. We study the
optimization of a to minimize the probability of packet loss
due to excessive end-to-end delay.

Note that (1) represents a family of ranking functions that
also include any function of the form %, where a > 0 and
b > 0. To see this, we let a = 7. Then, it is clear that,

!This is easily achievable if all nodes have synchronized
clocks; distributed clock synchronization protocols for multi-
hop wireless networks was proposed in [10, 29]. Alterna-
tively, if the remaining lifetime of a packet is embedded
within the packet, upon its transmission, the transmitting
node can update this value by subtracting from it the queu-
ing delay.



given any (Hq,T1) and (H2,T>) such that % < %, we
have v(H1,T1) < 7v(H2,T2), and vice versa, i.e., v(H,T)
gives the same ordering of packets as Z—Z does. Therefore,
a can be viewed as a single factor that represents the rel-
ative weights of the remaining distance and the remaining
lifetime in ranking the urgency of a packet. Furthermore,
(1) clearly defines a general class of ranking functions that
includes many well-known scheduling schemes. For exam-
ple, the Uniform Delay Budget scheme in [16] is similar to
a special case of MLA with a = 1, and the EDF and LDF
schemes are special cases of MLA with @ = co and a = 0,
respectively?.

We term the general class of rank-based scheduling schemes
using (1) Multihop Latency Aware schedules. Our goal in
this paper is to determine the proper value for the lifetime-
distance factor, so as to achieve optimal balance between
the remaining distance and the remaining lifetime in rank-
ing packets.

4. PERFORMANCE ANALYSIS OF
MLA SCHEDULES

In this section, we propose a recursive analytical frame-
work to study the effect of the lifetime-distance factor on
the performance of multihop scheduling. We are particu-
larly interested in computing pioss, the probability of packet
loss due to insufficient remaining lifetime.

4.1 Analysis Model

We consider a network where the transmission time of
each packet is constant. Furthermore, we discretize and
normalize all time durations such that the transmission time
represents one time unit. Table 1 lists the notations used
throughout the rest of this section.

We assume that, in the source node, a multimedia ap-
plication sends out data packets encoded with packet expiry
time. The packet is processed by the network layer, encapsu-
lating it with routing information, including the hop count
to its destination node. For a packet entering the trans-
mission queue of the source node, we denote its initial hop
count Hy and initial lifetime Tp, with a general distribution
Pr 0To (ha t) .

The packet is then forwarded successively along the nodes
within the predefined route, where its remaining hop count
H and remaining lifetime 7" are updated. At each hop along
this route, the packet’s ranking function v(H,T), as defined
in (1), is compared with the ranks of all packets within the
same node. The HoL packet with the highest rank (i.e.,
smallest y(H,T)) within the contention area is scheduled
to be transmitted immediately. We assume ties are broken
randomly.

A node periodically inspects the remaining life time of all
packets within its transmission queue. The node discards
any packet that cannot arrive at its destination before its
expiry time. This includes all packets that have T' < H.
Note that, since a packet’s remaining lifetime decreases as
the packet waits in the transmission queue, a packet can
be expunged during its waiting time, even though it had
adequate residual lifetime when it first arrived. In the anal-
ysis below, we assume that the network load is moderate
such that the amount of discarded packets is negligible. In

2The ranking function with o = oo can be implemented as
a=1and b=0.

Section 5.1, we study the effect of this assumption on the
accuracy of our analysis, and present simulation results for
a wide range of network load®.

We assume that new packets are generated independently
at each node with arrival rate A;. To allow tractable analy-
sis, we further approximate the network-queue length distri-
bution by assuming that packet arrivals into the contention
area of a node form a Poisson stream with arrival rate .
The value of A\ can be estimated from A\; or measured in
practice. The Poisson assumption is inaccurate in general,
but its value of approximation can be justified due to ran-
dom delays incurred under multiple-node contention and the
random choice of next-hop node to which a packet is for-
warded. In Section 5.1, we compare our analytical results
against simulation results obtained without this assumption.

4.2 Overview of Analytical Framework

Let He and T. represent the remaining hop count and the
remaining lifetime of a packet when it enters the transmis-
sion queue of a source or intermediate node. We denote
their joint probability function P, 7, (h,t). Let R(h,t) be
the amount of delay that a packet experiences at a node be-
fore it is transmitted, given that the packet enters the node
with H. = h and T. = t. We denote its probability function
Pr(n,4)(r). The proposed analytical framework recursively
computes the above statistics, which eventually leads to the
probability of packet loss. It has three components:

1. A recursive algorithm to compute Pgp,4)(r) given
Py, 1, (h,t).

2. Recursive updating of Py, (h,t) given Pg, 1) (7).
3. Post convergence absorption analysis to compute pioss.

The above recursions are guaranteed to converge by the er-
godicity of non-homogeneous scrambling Markov chains [15,
9]. The details of these components and their convergence
are presented in the following subsections.

4.3 Contention Area

The transmission probability of a packet depends on the
number of other packets that are contending for the same
transmission medium. For a network where packet trans-
missions between different nodes do not interfere with each
other, a packet contends with only the packets in the trans-
mission queue within the same node. In a general multi-hop
wireless network, however, multiple nodes that are near each
other may contend for the same radio channel.

Figure 1 illustrates examples of different contention area
configurations in a network where the nodes are placed on
a grid. The dotted lines represent potential communication
links. Figure 1(a) shows overlapping contention areas, where
each node contends with nodes within its two-hop neighbor-
hood. In this example, there are n. = 13 nodes in each
contention area. Figure 1(b) shows non-overlapping con-
tention areas. In this case, we assume that all nodes within
a contention area share the same transmission channel and

3Note that for highly congested networks, where many pack-
ets may be dropped, a selective admission control protocol
may be necessary, instead of attempting to transmit all pack-
ets. The optimal combination of MLA schedules with an
admission control protocol is outside the scope of this paper
and remains an open problem for future research.
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Ploss:
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packet loss probability

ranking function of an (h,t) packet
MLA ranking parameters, a =

per node source packet generation rate
rate of packets into contention area
number of nodes in a contention area
deviation from perfect scheduling
maximum initial hop count of a packet
maximum initial lifetime of a packet
initial hop count and lifetime of a packet
distribution of Hg and Ty

remaining hop count and lifetime of an
arriving packet

distribution of H. and T,

amount of delay until transmission of an
arriving packet with H. = h and T. = ¢
distribution of R(h,t)

probability that a packet with (h,t) is
transmitted

number of contending packets
distribution of N

probability generating function of N
number of packets with higher rank
probability that a contending packet
has higher rank than ~(h,t)

number of packets with equal rank
probability that a contending packet
has rank equal to v(h,t)

remaining hop count and lifetime of a
contending packet

distribution of H,; and T,

probability that a packet in state (h,t)
is eventually transmitted to its destina-
tion

probability that a packet in state (h,t)
is transmitted to its destination in the

next step
vector versions of Pg,1,(h,t) and
Py,7,(h,t)
transition probability —matrices of

Markov chains to compute p. and pq
vector versions of ps(h,t) and pa(h,t)
transient part of transition probability
matrix of Markov chain to compute ps

Table 1: Table of nomenclature

~ ~

Figure 1: Contention area configurations: (a) over-

(b)

lapping, n. = 13; (b) non-overlapping, n. = 4.

the transmission channels of any two contention areas are
independent, e.g., via different frequencies or codes [3].

The non-overlapping case can be further divided into two
subcases, distributed access and centralized access. In a dis-
tributed access scheme, the nodes within a contention area
forward packets in a peer-to-peer manner. In a centralized
access scheme, a central controller (e.g., clusterhead) resides
in each contention area and coordinates packet forwarding
from one contention area to another [22]. Hence, each con-
tention area in the centralized access scheme can be viewed
as a super-node, and the definition of a hop can be general-
ized to the forwarding of a packet from one central controller
to another. This is equivalent to the case of n. = 1, with no
contention between nodes.

Thus, the proposed analysis framework is applicable to a
wide range of contention configurations, from overlapping
contention areas to local zone-based medium access. Fur-
thermore, it considers the special case where there is no
contention between nodes, which can be used to model mul-
tihop wireline networks and mesh networks with directional
antennae.

4.4 Number of Contending Packets

Let N be the number of packets waiting to be transmit-
ted within the contention area of a node. Let Py (n) be its
probability function and Px*(z) be its probability generat-
ing function. We present next a method to estimate the
statistics of V.

Since each packet is forwarded Hp hops, the total packet
arrival rate per contention area is Asne + As E[Ho|n.. How-
ever, some of these packet arrivals are from nodes in the
same contention area and should be discounted. Let e;, be
the number of links between nodes within the contention
area and e.,: be the number of links between nodes in the
contention area and nodes outside of the contention area.
Then the proportion of forwarded packets that come from
outside of the contention area is

€out
ext = 5 - 2
Peat 2€in + €out ( )

For example, in Figure 1(a), pest = 1% for n. = 1, and in
Figure 1(b), pest = % for distributed access and n. = 4, and
Pext = 1 for centralized access or n. = 1. Furthermore, the
last-hop packets arriving at their destinations will not be
transmitted again and hence do not contribute to the trans-
mission queue of nodes in contention. Hence, the packet
arrival rate into the contention area is

A= Asnc + Aspezt(E‘[IJO] - l)nc . (3)

To model the packet departure process out of the con-
tention area, we note that, for all contention area configura-
tions discussed above, each node has transmission probabil-
ity ni at any transmission time slot. Hence, the total rate
of packet transmission in the contention area is 1. However,
each transmitted packet departs from the contention area
only with probability pey:. Hence, the net service rate for
packets within the contention area is pegt.

Therefore, to compute the total number of queued pack-
ets in the contention area, we use an M/G/1 queue* with
geometric service time at rate perz:. Then, as a special case

4Note that the time-varying priorities of packets in this
queue does not alter the queue length distribution.



of the Pollaczek-Khintchine formula [12], we have

. (Peat —A)(A = 2)
P -
N (2) Peat + (1 — Pewt)z — zer1=2) 7

(4)

where the time to transmit a packet has been normalized
to 1. Here, we have assumed that the amount of discarded
packets is small, as explained in Section 4.1.

4.5 Computing Pr, . (r) Given Py, r, (h,t)

To compute Pgp 1) (), we first need to determine p (h, ),
the probability that a packet with h remaining hops and ¢
remaining lifetime is transmitted at the current time step.

Given a packet of rank y(h, t), let M and U be the number
of packets within the contention area that has greater rank
and equal rank, respectively. The packet is transmitted from
a node at the current time step if M = 0 and at the same
time it is chosen among all U packets of the same rank.
It is easy to show that, regardless in which nodes these U
packets are distributed, the probability that any given one
of them wins the random tie breaking is % Therefore, the
probability that the packet is transmitted at the current
time step is

pa(h,t) = Pr{M =0,U = u|U > 1}%

“:11 . .
ST 2 M =0U =y

It can be shown that the z transform of Pr{M = 0,U =
u} taken over u is

PT{M = O7U = u} i’ PN*[l —pg(h7t) —pe(h,t)(l - Z)] )

(6)
where pg(h,t) and pe(h,t) are the probabilities that a packet
within the contention area has rank higher than v(h,t) and
equal to y(h,t), respectively, i.e.,

Pg (h7 t) = Z

y(R! ) <v(ht)

e (h, t) = Z

(Rt )= (h;t)

Py, (R, 1)

L (7
PHqTq(h 7t) )

where Pn,T,(h,t) is the steady-state distribution of the re-
maining hop count and lifetime of a packet waiting to be
transmitted within the contention area. Detailed derivation
of the above is presented in the Appendix.

Furthermore, we have

[e)

Pr{U>1} =1-> (1 —pe(h,t))"Pr{N = n}

n=0
=1—Pn"[1 —pe(h,t)] .
Hence, the transmission probability is
1

pz(h,t) = 1— Py [1 = pe(h,t)]

S 2P = py(ht) — pelh )1 2]}

u=1

9)

where Z7! denotes inverse z-transform. In general, the
above inverse z-transform does not have a closed from so-
lution. In this work, we compute its numerical solution by
inverse discrete Fourier transform.

Next, we present a recursive algorithm to compute the
contending packet state distribution P, 7, (h,t). Given the
arriving packet state distribution Py, 7, (h,t) and the prob-
abilities pz(h,t), we can construct a Markov chain whose
states consist all pairs of (h,t), for h < t, each representing
the remaining hop count and remaining lifetime of any given
packet as it awaits transmission within a node. Here, the
Markovian model provides close approximation because of
the random mixing effect of a quotient-form ranking func-
tion as h and ¢ are reduced over time.

For a packet in state (h,t) where ¢ > h+ 1, with probabil-
ity 1—pa(h,t), it will not be transmitted in the current time
step, and hence it will transit to new state (h,t — 1). With
probability ps(h,t), it will be transmitted. Since, in equilib-
rium, the rate of packets entering the node equals the rate of
packets leaving the node, we may simplify the Markov chain
by constructing a model where, with probability p,(h, t), the
packet is transmitted and a packet enters the system with
state probability distribution® Py, (h,t). When a packet
is in a state where t = h, if it is not transmitted immediately,
it will be discarded since it has zero probability of arriving
at the destination before its lifetime expires. Therefore, such
packets always leave the system in the next step, whether it
is transmitted or not. Thus, the transition probabilities of
this Markov chain can be summarized as follows:

Pr{(h,t) — (B, 1)} =

1 _pl(h’ t) +pz(h'7 t)PHeTe(hl7tl) )
t>h4 1,0 ) = (ht—1)
ps(hy ) Pu,r, (R, t') , t>h+1,(h,t') # (ht—1)
PHeTe(hlvt/) ) t=nh.
(10)

Let P, be the transition probability matrix of this Markov
chain. Let p,; be the vector version of Pu,r,(h,t). We
need to solve p; = pyP, for the steady-state distribution
of Pu,r,(h,t). However, as indicated in (7), pz(h,t) de-
pends on pg, and, hence, P, is a function of pg. There-
fore, the standard Markov chain steady-state analysis can
not be applied. Instead, the follow recursive algorithm on
Pr,1, (h,t) can be used:

Initialization: PHqTq<O)(h, t) = Pu.1.(h,t)

Step 1: Compute p, V) (h,t) following (7) and (9)
Step 2: Construct P,¥ following (10)

Step 3: Let pg Y = p, VP,

Repeat from Step 1

By the Markov chain construction in (10), ignoring the sin-
gleton closed sets {(h,t)|t < h}, the stochastic matrix P ")
is scrambling for all 4, i.e., for any two states j and k, there
exists a state [, such that [ is reachable from both j and
k. Then, it can be shown that the sequence {P,®} is er-
godic[15, 9]. Hence, the above recursion converges, in the
limit to the steady-state distribution Pm,r,(h,t), given the
distribution Pg, 7, (h,t) in the current step.

Also in the above recursion, pp ¥ (h,t) converges to pz(h,t).
Then, with the approximating assumption of independence

5 Alternatively, we can create a new reservoir state (0,0).
All packets leaving the system go into (0,0). While in (0, 0),
the Markov chain next transits into (h,t) with probability
distribution Pg,.7, (h,t). Clearly, this construction yields
the same solution.



between transmission decisions on a packet over time, we
can compute Pgp, ) (1) with the following recursion:

PR(h,t)(l) :px(ha t) ) (11)
and, for 2 <r <t—h+1,

PR(h,t)(T) = |:1 - i PR(h,t)(i):| p,c(h, t—r+ 1) . (12)

Furthermore, if we allow the notation Pg; ¢ (00) to repre-
sent the probability that the packet is discarded before it
can be transmitted, we have

t—h+1
Prgnay(00) =1= Y Pruy(i) - (13)
=1

4.6 Computing the Steady-State
Distribution Py 1 (h,t)

The previous section presents a method to determine
Prn,)(r) given Py, 1, (h,t). Next, we show how this can be
used in turn to compute Py, 7, (h,t).

Given the initial hop-count and lifetime distribution of
a packet, denoted Pp,1,(h,t), and the delay distribution
Pr(p,1)(r), we can construct a Markov chain whose states
consist all pairs of (h,t), for h < ¢, each representing the
remaining hop count and remain lifetime of a packet when
it enters a source or intermediate node. Suppose the state
of a packet when it enters the current node is (h,t), where
h > 1. With probability Pgrs,)(r), forall 1 <r <t—h+1,
the packet will be transmitted after r time units and, hence,
will enter the next node with state (h—1,¢t—7r). With prob-
ability Pg(s,¢)(00), however, the packet will be discarded. In
equilibrium, the rate of packets entering the system equals
the rate of packets leaving the system. Therefore, with prob-
ability Pr(p,+)(00), the Markov chain transits to a new state
with probability distribution® Pg,7,(h,t). When a packet
enters the node one hop away from its destination node,
it is in state (1,¢). It is either discarded with probabil-
ity Pr(1,+)(c0) or successfully transmitted to the destination
node with probability 1 — Pg1,)(c0). In either case, the
packet will leave the system in the next state transition.
Therefore, the transition probabilities of this Markov chain
can be summarized as follows:

Pr{(h,t) — (h,t)} =

Prnt) (1) + Prn,t)(00) Prgry (R, 1)

h > 1,t2h,(h,7t/) =h-1Lt—r),1<r<t—h+1
PR(h,t)(OO)PHOTO (h/,t/) R h>1,t>h, I #h—1
Pyt (B, 1), h=1.

(14)

Let P, be the transition probability matrix of this Markov
chain. Let p. be the vector version of Py,.r,(h,t). We
need to solve p. = p.P. for the steady-state distribution of
Py, 1, (h,t). However, from the last section, it is clear that
Pr(n,)(r) depends on p. and, hence, P, is a function of pe.
Therefore, again, the standard Markov chain steady-state
analysis can not be applied. Instead, the follow recursive
algorithm on Py, 1, ¥ (h,t) can be used:

SThis is equivalent to an alternative construction using a
reservoir state. See Footnote 5.

Initialization: Pu 7, (h,t) = Pug, (h,t)
Step 1: Compute Prp 1) (r) as in Section 4.5
Step 2: Construct P, following (14)

Step 3: Let p.tY = p,OP,®

Repeat from Step 1

Similarly to the computation in Section 4.5, it can be shown
that the stochastic matrix P.(® is scrambling, and the above
recursion converges. When convergence is reached, we ob-
tain the steady-state distribution Pg, 7, (h,t) and the corre-
sponding Prp 4)(T).

4.7 Probability of Packet Loss

After the values of Pr(y 4)(r) are computed, the probabil-
ity of packet loss can be determined using a Markov chain
similar to (14). In addition to the states (h,t), representing
the remaining hop count and remaining lifetime of a packet
when it enters a node, we introduce two absorbing states
success and loss, which represent the cases of a packet being
successfully transmitted to the destination and being lost
due to insufficient remaining lifetime, respectively. When a
packet arrives at its destination or is discarded, instead of
modelling its re-entry into the system, we let the Markov
chain go into one of the absorbing states. Hence, the new
Markov chain is expressed by

Pr{(h,t) = (h—1,t —71)} = Prnn(r) ,
h>1,t>h1<r<t—h+1

Pr{(h,t) — loss} = Pg(n,)(c0) , t>h

Pr{(1,t) — success} =1 — Pg(1 ¢)(00), t>h.

(15)

Since the values of Pg,4)(r) are already given at this
stage of the analysis, (15) represents a homogeneous Markov
chain. Therefore, standard techniques can be applied to
compute its absorption probabilities. In particular, let P,
be the transient part of the transition probability matrix
of the Markov chain. Let ps(h,t) be the probability that a
packet in state (h, t) is eventually successfully transmitted to
its destination (i.e., absorbed into the success state), and let
Ps be its vector version. Let pq(h,t) = Pr{(h,t) — success}
be the probability that a packet in state (h, t) is transmitted
to its destination in the next step, and let p, be its vector
version. It can be shown that [27]

Ps = (I - Ps)ilpa ) (16)

where I denotes the identity matrix.

Finally, the overall packet loss probability, given the initial
packet hop-count and lifetime distribution Pyt (h,t), is
given by

Pross = Y Pryro (h,t)[1 = ps(h,1)] . (17)

Rt

S. NUMERICAL ANALYSIS AND
SIMULATION

In this section, we apply the proposed analysis framework
to study how the relative weights assigned to the remaining
distance and the remaining lifetime of a packet affect the
packet loss performance in the class of MLA schedules as
defined in (1). The analysis results are validated by compar-
ison with simulation results. Through numerical analysis,
we determine the optimal lifetime-distance factor « given
various system parameters. We further demonstrate the
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performance gain achieved by optimizing « through com-
parison with systems employing LDF and EDF scheduling.
In addition, we also study the effect of imperfect schedule
implementation.

5.1 Simulation Model and Comparison

A simulation model has been developed in the OPNET
simulator. In this model, an ad hoc network of 100 nodes
are place on a square grid as shown in Figure 2, where a
node has direct connection only with its four neighbors. The
network area is wrapped top-town and left-right to form
a border-less network. Data packets are routed randomly
following the grid, such that the route length has a uniform
distribution between one and hyqe = 10 hops.

Each node generates data packets forming a Poisson stream.
Note, however, that the overall data packets arriving at any
contention area include both newly created ones and for-
warded ones and hence are not Poisson. This contrasts with
the queuing model in our analysis. As explained in Sec-
tion 4 and illustrated in this section, in general the overall
packet loss probability predicted by the proposed analysis is
a reasonably close approximation for a wide range of system
parameter values.

Each data packet is assigned a random lifetime, uniformly
distributed between its route length and a maximum value
tmaxz. A packet is lost and dropped from the transmission
queue if its remaining lifetime becomes shorter than its re-
maining hop count. Otherwise, we assume an ideal physical
layer is employed, so that no packet is lost during transmis-
sion.

To provide accurate insight into the effect of scheduling
independent of the other system factors, we first assume
perfect packet schedule implementation. Hence, a node has
exact ranking information of all nodes within its contention
area. The effect of imperfect packet scheduling is studied in
Section 5.4.

In order to eliminate transient effects, a sequence of data
collection windows are used such that on average each source
node generates 100 data packets in each collection window.
Data collection for each simulation run starts only after the
system has stabilized, such that the transmission queues at
each node are in steady state.

Figures 3 - 5 compare the simulation results with the an-
alytical results, where we plot the packet loss probability
against the contention-area external packet arrival rate A,
for a = 2 and various values of tmqe.. Figure 3 is based on
centralized non-overlapping contention, with n. = 1, as in
ad hoc networks with centralized hierarchical routing, mesh
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Figure 3: Comparison between analysis and simula-
tion. Centralized non-overlapping contention areas.
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Figure 6: Optimal lifetime-distance factor, for dif-
ferent values of t,,.. and ).

networks with direction antennae, and multihop wireline
networks. Figure 4 is based on distributed non-overlapping
four-node contention as shown in Figure 1(b). Figure 5 is
based on two-hop overlapping contention as shown in Figure
1(a).

We note that the analysis generally over estimates the
packet loss probability at high traffic load. This is due to
the pessimistic assumption in Section 4.5 that the transmis-
sion queue length N is not affected by the discarded pack-
ets. In reality, when packets are discarded, the transmission
queue is shortened, leading to shorter delays and, hence,
lower packet loss probability. This mismatch is the most
pronounced when the network load is high. In fact, the sim-
ulation results suggest that by simply dropping some pack-
ets, the queuing system is stable under heavy load, while the
analysis results based on a no-dropping policy predicts in-
stability (noting the log-scale on the y-axis). Optimal packet
dropping and selective admission control is outside the scope
of this paper and remains a topic of future research interest.

For moderate packet dropping rates, the proposed analysis
is accurate. Hence, we can use numerical analysis results to
study the optimization of MLA schedules.

5.2 Optimal Values for the Lifetime-
Distance Factor

We are interested in the probability of packet loss with
ranking function (1) for different values of «, using the cen-
tralized non-overlapping contention configuration of Figure
3(b) as an example. We set hmaz = 10. Given any source
and destination node pair, the initial lifetime of a packet is
randomly set such that it has uniform distribution between
the hop count and t.,q4.. For each set of parameter values
for A and tmmaz, We compute the probability of packet loss
for a series of a values, ranging from 0.1 to 4. The optimal
values of «a, denoted a,pt, which minimizes the probability
of packet loss, are presented in Figure 6. In these plots, tmax
ranges from 10 to 30, and A ranges from 0.1 to 0.9.

Figure 6 indicates that the optimal « increases as the traf-
fic load increases, and it decreases as the initial packet life-
time increases. For example, with ;42 = 15, when A = 0.4,
we have aop: = 1.2, and when the traffic load is increased to
A = 0.8, we have a,pt = 2.4. With A = 0.5, when tyqr = 10,
we have aopt = 1.5, and when the initial packet lifetime in-
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Figure 7: Probability of packet loss vs. A\, comparing
optimal « against LDF and EDF.

creases such that ¢4 = 20, we have aopr = 1.3.

The value of « represents the relative weight of the re-
maining distance and the remaining lifetime in ranking the
urgency of packets. The above suggests that the remaining
hop count is a more important factor (i.e., @ should be small)
when the network is lightly loaded and when packets have
long lifetimes. Likewise, the remaining lifetime is a more
important factor (i.e., a should be large) when the network
is heavily loaded and when packets have short lifetimes. In
particular, in the extreme case where the networks is highly
stressed, aopr = oo (i.e., the EDF scheduling scheme) should
be used. This matches the observed optimality of EDF in
previous literature. We further note that, for a wide range
of system parameter values, the optimal « is between 1.2
and 1.5.

5.3 Performance of Optimized Schedule

Next, we demonstrate the performance gain of the MLA
schedule using optimal « values, against the LDF (i.e., « =
0) and EDF (i.e., @ = oco) schemes, where either only the
remaining hop count or only the remaining lifetime is used in
ranking packets’. Figures 7 and 8 present the probability of
packet loss with the optimal «, and compare it with those
of the LDF and EDF schemes, where the same ranges of
values for A\ and t;q. as in Section 5.2 are used, but only
the data points for ¢4, = 10,20,30 and A = 0.2,0.4 are
shown, respectively.

These figures demonstrate that the optimized MLA sched-
ule always out performs LDF and EDF. In general, the per-
formance gain is consistently high until the network traffic
load, represented by A, becomes nearly full. Also, it de-
creases slowly as the packet lifetime, represented by tmaz,
decreases. This matches the observations made in Section
5.2.

For a wide range of system parameters, the performance
gain is significant. For example, in the cases where tmaz =
20 and A = 0.5, the probabilities of packet loss in LDF,
EDF, and the optimized MLA, are 0.16, 0.055, and 0.012,
respectively. In this case, the amount of loss packets in

"Previous studies have shown that EDF significantly out
performs FIFO in general. Therefore, the comparison results
with FIFO is omitted.
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Figure 8: Probability of packet loss vs. tmaz, cOm-
paring optimal o against LDF and EDF.

optimized MLA are 22% of that in EDF and only 7.5% of
that in LDF.

5.4 Imperfect Schedule Implementation

Due to the distributive nature of ad hoc networks, it is
usually impossible to achieve perfect scheduling. The ref-
erence [17] gives quantitative details on the imperfection of
distributed packet scheduling through RT'S/CTS/ACK con-
trol messages. Instead of repeating those results, in this
section, we study the effect of imperfect schedule implemen-
tation on the performance and optimization of scheduling.
For comparison, we use the same distributions of packet ini-
tial hop count and initial lifetime as in Section 5.2.

We capture the level of imperfection in schedule imple-
mentation with a schedule deviation parameter o as follows.
Let Ro(h,t) = 7o be the amount of delay of an arriving
packet if the schedule implementation were ideal. Then the
actual amount of delay R(h,t) is random around ro, and its
distribution depends on the schedule implementation details
[5, 17]. Here, for the purpose of illustration, we assume a
truncated normal distribution such that

_(r=rg)?
e 20?2
i—rn)2
Z fi . o= ( 258)

Figure 9 shows the probability of packet loss as a function
of o, for hmaz = 10, tmez = 20, and A = 0.4, and « is
assigned a value among 0, 1, 2, and co. Note that the cases
of @ = 0 and o = oo are equivalent to LDF and EDF,
respectively. For reference, we note that the o values of 0.2,
0.5, and 1 represent the cases where the actual scheduling of
a packet is the same as that given in the ideal schedule, for
approximately 99%, 80%, and 40% of the time, respectively.

This figure suggests that imperfect schedule implementa-
tion can significantly degrade the system performance. For
example, when o increases from 0.2 to 0.6, for all cases of
a, the packet loss probability increases faster than expo-
nentially in o. For large scheduling deviation (e.g., o > 1)
the performance of all schemes converges, since in this case
the packet schedule is essentially random regardless of the
intended scheduling scheme.

We further study the effect of moderate scheduling devi-

Prnt(r) = r=1,23,.... (18)
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Figure 9: Probability of packet loss vs. o, for hpe: =
10, tmaz = 20, and A = 0.4.
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Figure 10: Optimal lifetime-distance factor, for dif-
ferent values of t,,,, and A\, with imperfect schedule
implementation (o = 0.5).
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schedule implementation (o = 0.5).
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Figure 12: Probability of packet loss vs. tmaz, cOm-
paring optimal a against LDF and EDF, with im-
perfect schedule implementation (o = 0.5).

ation on the optimal value of a. Figures 10-12 correspond
to Figures 6-8, with the same system parameters, except
o = 0.5, i.e., for 20% of the time, the actual scheduling of a
packet is not as given by the intended schedule.

Figure 10 shows that, with imperfect schedule implemen-
tation, the optimal value of « is slightly larger than that
with perfect scheduling. For example, with ¢4, = 15 and
A = 0.4, we have aop: = 1.3, compared with a,pr = 1.2 as
shown in Figure 6. We have observed in Section 5.2 that apt
increases as the stress level of the network increases (i.e.,
having heavier traffic load and shorter packet lifetime). The
results shown in Figure 10 agree with this observation, since
imperfect schedule implementation increases packet delay,
which contributes to the overall stress level of the network.

Figures 11 and 12 demonstrate that scheduling with the
optimal «a can still significantly outperform LDF and EDF
even when the schedule implementation is imperfect. How-
ever, as expected from the trends in Figure 9, the perfor-
mance gain may be much reduced. For comparison, we again
take tmaes = 20 and A = 0.5. In this case, the probabilities
of packet loss in LDF, EDF, and the optimized MLA, are
0.20, 0.11, and 0.071, respectively. Thus, the amount of loss
packets in optimized MLA are 65% of that amount in EDF
and 36% of that amount in LDF.

Furthermore, the performance gain reduction is the most
severe when A is small or when t,,4. is large. These are also
the cases where, under perfect scheduling, the performance
gain is the largest. Hence, imperfect schedule implementa-
tion, even when the scheduling deviation is moderate (i.e.,
o = 0.5), can effectively undermine the advantage of optimal
scheduling. This underlines the significance of designing ro-
bust schedule implementation schemes for ad hoc networks.

6. CONCLUSIONS

In this paper, we have considered the optimization of
a lifetime-distance factor, «, which represents the relative
weights assigned to the remaining distance and the remain-
ing lifetime of a packet to determine its priority in a multi-
hop transmission schedule. The optimal a minimizes, over
all MLA schedules, the probability of packet loss due to ex-
cessive end-to-end delay. Our investigation is based on a nu-

merical analysis framework utilizing a double recursive con-
struction of scrambling non-homogeneous Markov chains.
The numerical evaluation results are shown to provide ac-
curate representation of actual system performance when
the packet loss probability is moderate. Furthermore, the
proposed analysis framework is applicable to a wide range
of overlapping and non-overlapping contention area config-
urations in ad hoc networks, mesh networks, and multihop
wireline networks.

Our numerical results show that the remaining distance is
a more important factor (i.e., a should be small) when the
network is lightly loaded and when packets have long life-
times. Likewise, the remaining lifetime is a more important
factor (i.e., o should be large) when the network is heavily
loaded and when packets have short lifetimes. We also ob-
serve that, for a wide range of system parameter values, the
optimal « differs from common heuristics.

Finally, our study demonstrates quantitatively that op-
timizing the lifetime-distance factor can lead to significant
performance gain, under low to moderate levels of imper-
fect schedule implementation. However, scheduling inaccu-
racy in ad hoc networks can considerably degrade the per-
formance of a scheduling scheme. This suggests the impor-
tance of robust schedule implementation in future multihop
wireless multimedia networks.
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APPENDIX

Deriving --Transform of Pr{\ =0,U = u}
Given M = 0, we have
Pr{N =n|M = 0}
__Pr{M =0|N =n}Pr{N =n}

Pr{M =0} (19)
_ [ =pg(h,t)]"Pn(n)
Pr{M =0} '

Therefore, the probability generating function of N given
M =0is
Pyin=o0"(2)
neoll = Pg(h,t)]" Pn(n)2"
Pr{M =0} (20)
P[0 — py(h,1)7]
Pr{M =0} '

Let pu(h,t) be the probability that a contending packet has
rank equal to y(h,t) given M = 0. Then

pulh,t) = % . (21)

We have
Pr{U =u|N =n, M = 0}
n , _ (22)
= <u> pu(h, t)u[l = pu(h, t)]n v

The z-transform of the above, taken over u, is [1—py (h, t)(1—
z)]". Thus, we have the probability generating function

Pyiv=0"(2)

= (1= pulh,t)(1 = 2)]" Prjas=o(n)

—Piaico™[1 — pulhy (1 - )] (23)
Py (11— py(hyD][1 — pulhy (1 = 2)]
Pr{M =0}
Py (L= py(ht) — pelh H)(1 — 2)
Pr{M =0} ‘

Finally, the z-transform of Pr{M = 0,U = u} is
PU|]\/I:0* (Z)PT{M = 0}

—Pe [ py(ht) —peh )12 Y



