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ABSTRACT
In multi-tier heterogeneous wireless networks (HWNs), both
horizontal and vertical handoffs impact the signaling over-
head and quality of service in the system. However, they are
difficult to analyze due to the diverse and irregularly shaped
cells in HWNs. The causes of this irregularity are three-fold:
(1) small-cell base stations (BSs) tend to be deployed with
a high level of spatial randomness; (2) BSs are likely to ag-
gregate around highly populated geographical regions; (3)
various transmission power levels in different tiers further
create diverse cell sizes and shapes. In this work we present
a new stochastic geometric analysis framework on user mo-
bility in HWNs. Each tier of BSs is modeled as either a
Poisson point process (PPP) or a Poisson cluster process
(PCP), to capture their spatial randomness and their non-
uniform and dependent aggregation in space. Flexible user
association is also taken into consideration, such that various
scales of cell sizes are accommodated. We derive analytical
expressions for the rates of all handoff types experienced by
an active user with arbitrary movement trajectory. We also
demonstrate an example application of the proposed ana-
lysis, in optimizing the multi-tier BS selection by users, to
balance the tradeoff between data rate and handoff over-
head. Finally, extensive simulation is conducted to validate
the correctness and usefulness of our analysis.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords
Mobility; handoff; stochastic geometry; analytic geometry;
Poisson cluster process

1. INTRODUCTION
Traditional single-tier macro-cellular networks provide wide

coverage for mobile user equipments (UEs), but they are
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insufficient to satisfy the exploding demand for high band-
width access driven by modern mobile traffic. One effective
means to increase network capacity is to provide more serv-
ing stations within a geographical area, i.e., installing a di-
verse set of small-cells such as femtocells and WiFi hotspots,
overlaying the macrocells, to form a multi-tier heterogeneous
wireless network (HWN). Each small-cell is equipped with
a shorter-range and lower-cost base station (BS) or access
point (AP), to give nearby UEs higher-bandwidth network
access with lower power usage, and to offload data traffic
from macrocells.

In the presence of multiple tiers of cells, however, mobil-
ity management of the UEs becomes more challenging. In
particular, HWNs introduce vertical handoffs, i.e., handoffs
made between two BSs in different tiers [30]. Compared with
horizontal handoffs, i.e., handoffs made between two BSs in
the same tier, vertical handoffs impact both the UEs and
the overall system in more complicated ways. For example,
extra traffic latency and additional network signaling are
incurred during channel setup and tear down when a verti-
cal handoff is made; more UE power may be consumed due
to simultaneously active network interface to multiple tiers;
call drops or degraded quality of service (QoS) could also be
experienced by UEs due to the lack of radio resource after
handoff.

We define the handoff rate as the expected number of
handoffs experienced by one UE per unit time. It is closely
related to the signaling overhead in the system and the QoS
of UEs. As a prerequisite to performance evaluation and
system design in HWNs, it is essential to quantify the rates
of different handoff types. However, the analysis on hand-
off rates in HWNs is complicated by the irregularly shaped
multi-tier network topologies introduced by the small-cell
structure. First, small-cell BSs are often installed incremen-
tally and irregularly, with a high level of spatial randomness.
Second, BSs are likely to aggregate around some highly pop-
ulated geographical regions (e.g., urban areas, attractions,
etc.), which further complicates the spatial pattern of the
network. Third, different tiers of BSs communicate at dif-
ferent power levels, causing various scales of cell sizes, and
non-polygon cell shapes. As a consequence, it is difficult to
characterize the cell boundaries and to track boundary cross-
ings made by UEs (i.e., handoffs) in the system. Fig. 1(a)
shows an example topology with two tiers of BSs. Previous-
ly developed analytical techniques in the literature, using
queueing theory [3, 5, 10, 13, 15, 21], regular grids [2, 17, 28],
or homogeneous Poisson point processes (PPPs) [6, 9, 23],
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(a) The UE experiences two
vertical handoffs.
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(b) Same UE trajectory
with one horizontal hand-
off.

Figure 1: An example of a two-tier HWN. Tier-1 and
2 BSs are represented by “◦” and “2” respectively.
Tier-2 BSs are clustered in four disk regions. Blue,
red, and green curves show cell boundaries within
tier-1, between tier-1 and tier-2, and within tier-
2, respectively. The magenta arrow represents the
trajectory of an active UE.

are insufficient to accurately model the complex handoff
patterns in HWNs.
In this work, we establish a new analytical framework to

quantify the rates of horizontal and vertical handoffs in H-
WNs with more general cell topologies and general UE move-
ment patterns. In order to capture the spatial randomness,
conventional stochastic geometric analysis on HWNs usually
models each tier of BSs as a homogeneous PPP. However,
the PPP cannot capture the non-uniform and dependent ag-
gregation of BSs in, for example, popular regions of the net-
work where more BSs tend to be installed, as the positions
of the points in PPP are independent of each other. Instead,
we accommodate the non-uniform and dependent aggrega-
tion by modeling some BS tiers as Poisson cluster processes
(PCPs) [32]. Each BS cluster includes multiple nearby BSs,
and multiple BS clusters are randomly distributed in space.
Furthermore, to model flexible scaling of cell sizes in dif-
ferent tiers, we consider the biased user association scheme
(also called flexible user association) [7,20,29], in which each
tier of BSs is assigned an association bias value, and a UE
is associated with a BS that provides the largest biased re-
ceived power. In this case, the resultant cell splitting is a
tessellation generated by both PPPs and PCPs (see Fig. 1(a)
for an example). Through our proposed stochastic and ana-
lytic geometric analysis, we derive exact expressions for the
rates of all handoff types experienced by an active UE with
arbitrary movement trajectory.
Our characterization of the handoff rates also provides

important guidelines for system design. One example is the
open problem of optimal tier selection. Consider the exam-
ple in Fig. 1(a), where an active UE’s trajectory is indicated
by the magenta arrow. By choosing to access both tier-1 and
tier-2 cells, the UE experiences two vertical handoffs. In con-
trast, as shown in Fig. 1(b), by choosing to access tier-1 cells
only, it experiences one horizontal handoff only. However,
in the latter case, the UE gives up the opportunity to access
a tier-2 BS, which potentially has higher bandwidth and re-
quires lower power consumption. Thus, a UE may choose to
access small-cell BSs to improve data rate and power con-
sumption, but this may also lead to more frequent vertical
handoffs, which potentially deteriorates the service quality.
The proposed handoff analysis can be used to provide design

guidelines for optimal tier selection, where the handoff rate
plays a key role.

The rest of this paper is organized as follows. In Section
2, we discuss the relation between our work and prior works.
In Section 3, we describe the system model. In Section 4,
we present theoretical analysis on different types of handoff
rates. In Section 5, we study the optimal tier selection prob-
lem as an application scenario of handoff rate analysis. In
Section 6, we validate our analysis with simulation. Finally,
conclusions are given in Section 7.

2. RELATED WORKS
In this section, we survey the related prior works on mo-

bility modeling and handoff analysis. We first summarize
two categories of mobility modeling techniques, based on ei-
ther abstract queueing formulations or actual geometric cell
patterns. We then discuss relevant handoff and association
decision algorithms in the literature.

2.1 Mobility Modeling with Queueing Systems
One classical category of mobility analysis techniques in

cellular networks employ queueing formulation, without ex-
plicitly modeling the geometric patterns of cell shapes in
the networks. In these works, cells are modeled as queues
containing active users, and handoffs are modeled as unit
transfers between queues. For example, Ghosh et al. [15] s-
tudied the single-cell scenario using an M/G/∞ queue. Kir-
sal et al. [21] studied one WLAN cell overlaying one 3G cell,
and a two-queue model was proposed accordingly. For more
general multicell networks, queueing network models have
been proposed and analyzed in [3, 5, 10, 13]. In contrast, we
explicitly model the cell geometry in this work.

2.2 Mobility Modeling with Cell Geometry
In mobility analysis techniques that consider cell geome-

try, non-random regular grids are commonly employed for
mathematical convenience. Traditional one-tier cellular net-
work is commonly modeled as a hexagonal grid [27]. For
HWN analysis, Anpalagan and Katzela [2] studied a two-
tier network by modeling small-cells as hexagons, and each
macrocell as a cluster of neighbouring small-cells. Shenoy
and Hartpence [28] studied a two-tier network by model-
ing WLAN small-cells as squares, and macrocells as larger
squares, each covering 5× 5 WLAN cells. Hasib and Fapo-
juwo [17] studied a two-tier cellular network including one
hexagonal macrocell and a predetermined number of circular
microcells.

To further capture the spatial randomness of network topo-
logies, Lin et al. [23] conducted a pioneering study on the us-
er mobility in a one-tier cellular network with randomly dis-
tributed BSs, where the BSs were modeled as a homogeneous
PPP, and cell splitting was modeled as a standard Poisson
Voronoi. In [6,9], we extended the above study to the multi-
tier case, where each tier of BSs was modeled as a homoge-
neous PPP, and the resultant cell splitting was modeled as
a weighted Poisson Voronoi. The studies in [6, 9, 23] follow
conventional stochastic geometric analysis of HWNs, where
the PPP is commonly used to model the distribution of BSs
to capture their spatial randomness (e.g., [1, 11, 12]). How-
ever, in reality, often a higher density of BSs are installed
in more populated regions. The PPP assumption does not
apply in such a scenario. In order to resolve this issue, the
PCP has been adopted as an alternative to capture the non-



uniform and dependent aggregation of BSs [16, 19, 33]. We
thus use the PCP model in our work. Note that previous
studies [16, 19, 33] only focused on the average throughput
and outage performance for randomly placed but station-
ary UEs. In contrast, in our work we consider moving UEs
and their handoff between PCP BSs, which is essential to
performance analysis in a mobile network but has not been
addressed in the existing literature.

2.3 Handoff and Association Decisions
Orthogonal to the scope of our work, there is also a large

body of previous works that study handoff timing algorithm-
s, without considering the random geometric patterns of
UEs and BSs. One type of handoff decision algorithms em-
ploy threshold comparison of one or several metrics (e.g.,
received signal strength, network loading, bandwidth, etc.)
[22,25,26]. Another type uses dynamic programming [31] or
artificial intelligence techniques [18] to improve the effective-
ness of handoff procedures. In our work, we do not explic-
itly specify the handoff timing. Instead, we derive handoff
rates and the corresponding optimal tier-selection decisions
through stochastic geometric analysis.
The optimization of tier association in HWNs has been

studied using stochastic geometric analysis [7,20,29]. These
works assume that the UEs are randomly placed but sta-
tionary. They focus on average performance metrics such as
the mean data throughput or outage probability. They ig-
nore the movement of UEs and the effect of handoffs, which
are the main focus of our work.

3. SYSTEM MODEL
In this section, we describe the multi-tier network under

consideration, along with how the UEs are associated with
BSs and are handed off between BSs as they move.

3.1 Multi-tier Network
We consider an HWN with randomly distributed K tier-

s of BSs. It includes KP Poisson tiers (P-tiers) and KC

Poisson cluster tiers (C-tiers), so that K = KP + KC . Let
KP = {1, . . . ,KP } denote the set of P-tiers, and KC =
{KP + 1, . . . ,KP + KC} denote the set of C-tiers. Let
K = {1, . . . ,KP +KC}.
Let Φk denote the point process representing the locations

of tier-k BSs. If k ∈ KP , Φk is a homogeneous PPP with
intensity of λk on the two dimensional space R2. If k ∈ KC ,
Φk is a PCP defined as follows: First, cluster centers are
generated as a parent point process Θk, which is a homoge-
neous PPP with intensity µk on the two dimensional space
R2. Second, for each parent point (cluster center) x in Θk,
a cluster of BSs form a child point process Ωk(x), which
is a PPP with intensity νk in the region B(x, Rk), where
B(x, R) is defined as the disk region centered at x with ra-
dius R throughout this paper. The overall PCP Φk is the
union of all child point processes, i.e., Φk =

∪
x∈Θk

Ωk(x).
Note that Φk does not include parent points Θk. Given the
location of some BS xBS in a tier-k PCP, let C(xBS) denote
the cluster center of the BS. Thus Ωk(C(xBS)) is the cluster
it belongs to.

3.2 Biased User Association
Different tiers of BSs transmit at different power levels.

Let Pk be the transmission power of tier-k BSs. These power
levels are fixed and given. If Pt(x) is the transmission power

from a BS at location x and Pr(y) is the received power at

location y, we have Pr(y) = Pt(x)
|x−y|γ , where |x − y|γ is the

propagation loss function with γ > 2.
We consider a general biased user association rule as fol-

lows [20, 29]. Given that a UE is located at y, it associates
itself with the BS that provides the maximum biased received
power as follows:

BS(y) = arg max
x∈Φk,∀k

BkPk|x− y|−γ , (1)

where BS(y) denotes the location of the BS chosen to serve
the UE, Pk|x− y|−γ is the received power from a tier-k BS
located at x, and Bk is the association bias, indicating the
power preference of UEs toward tier-k BSs.

As an example, the cell splitting resultant from biased
user association is shown in Fig. 1(a) (a two-tier scenario

including one P-tier and one C-tier). Let T(1) denote the

set of overall cell boundaries, and let T
(1)
kj denote the set

of boundaries between tier-k cells and tier-j cells, which is
also referred to as the set of type k-j cell boundaries in this

paper. Note that T
(1)
kj and T

(1)
jk are equivalent.

Note that for B1, B2, . . . , BK , their effects remain the
same if we multiply all of them by the same positive constan-

t. For presentation convenience, we define βkj =
(

PkBk
PjBj

)1/γ

.

Clearly, βkj = 1
βjk

, and βkk = 1.

3.3 UE Trajectory and Handoff Rate
We aim to study the rates of all handoff types of some ac-

tive UE moving in the network. Let T0 denote the trajectory
of the UE, which is of finite length. In this paper, a handoff
made from a tier-k cell to a tier-j cell is called a type k-j
handoff. The total number of type k-j handoffs along T0 is

denoted by Nkj(T0,T
(1)
kj ).

Note that if j ̸= k, a type k-j (vertical) handoff is not
equivalent to a type j-k handoff. When the UE crosses some
type k-j boundary, either a type k-j or a type j-k handoff
is made, depending on its direction of movement. Thus, the
number of type k-j plus type j-k handoffs is equal to the

number of intersections of T0 and T
(1)
kj , which is denoted

by N (T0,T
(1)
kj ). In other words, we have N (T0,T

(1)
kj ) =

Nkj(T0,T
(1)
kj ) + Njk(T0,T

(1)
kj ). If j = k, N (T0,T

(1)
kk ) =

Nkk(T0,T
(1)
kk ) indicates the number of type k-k (horizon-

tal) handoffs. We obtain the overall number of handoffs by
adding the numbers of all types of handoffs.

4. HANDOFF RATE ANALYSIS
The proposed analysis of handoff rates consists of a pro-

gressive sequence of four components, which are described
in the following subsections.

4.1 Length Intensity of Cell Boundaries
Handoffs occur at the intersections of the active UE’s tra-

jectory and cell boundaries. In order to track the number
of intersections, we need to first study the length intensity

of different types of cell boundaries T
(1)
kj , which is defined as

the expected length of T
(1)
kj in a unit square.

The set of cell boundaries T
(1)
kj is generated by all K tiers

of BSs Φ1,Φ2, . . . ,ΦK . It corresponds to the set of points
on R2 where the same biased power level is received from



a tier-k BS and a tier-j BS, and this biased received power
level is greater than those from any other BS in all tiers.

Mathematically, T
(1)
kj is expressed as

T
(1)
kj =

{
x

∣∣∣∣∣∃x1 ∈ Φk,x2 ∈ Φj ,x1 ̸= x2, s.t. Pr =
PkBk

|x1 − x|γ

=
PjBj

|x2 − x|γ , and ∀i ∈ K,y ∈ Φi, Pr ≥ PiBi

|y − x|γ

}
. (2)

A main challenge in this work is in characterizing handoff
rates across the highly irregular cell boundaries generated
by BSs that form PCPs. If we consider the cell boundaries
within tier-k, and tier-k is a C-tier (i.e., k ∈ KC), then

we can further classify the set of cell boundaries T
(1)
kk into

the set of intra-cluster cell boundaries (i.e., the two BSs
that provide the largest biased received power belong to the

same cluster), which is denoted by T
(1)
kk,in, and the set of

inter-cluster cell boundaries (i.e., the two BSs belong to two

different clusters), which is denoted by T
(1)
kk,out. We formally

express

T
(1)
kk,in =

{
x

∣∣∣∣∣∃x1 ∈ Φk,x2 ∈ Φk,x1 ̸= x2, C(x1) = C(x2),

s.t. Pr =
PkBk

|x1 − x|γ =
PjBj

|x2 − x|γ ,

and ∀i ∈ K,y ∈ Φi, Pr ≥ PiBi

|y − x|γ

}
. (3)

Similarly, by replacing C(x1) = C(x2) by C(x1) ̸= C(x2) in

(3), we have the expression of T
(1)
kk,out.

Note that we have T
(1)
kk = T

(1)
kk,in

∪
T

(1)
kk,out. Also, if k, j ∈

KC and k ̸= j, we cannot classify T
(1)
kj in the same way,

as the cell boundary is surely formed by two BSs in two
different clusters in two different tiers.
Let µ1

(
T

(1)
kj

)
denote the length intensity of T

(1)
kj , which

is the expected length of T
(1)
kj in a unit square. Because

Φ1, . . . ,ΦK are stationary, T
(1)
kj is also stationary, and thus

the unit square could be arbitrarily picked on R2. Hence,
we have

µ1

(
T

(1)
kj

)
= E

(∣∣∣T(1)
kj

∩
[0, 1)2

∣∣∣
1

)
, (4)

where |L|1 denotes the length of a collection of curves L
(i.e., one-dimensional Lebesgue measure of L). Similarly, if
k ∈ KC ,

µ1

(
T

(1)
kk,x

)
= E

(∣∣∣T(1)
kk,x

∩
[0, 1)2

∣∣∣
1

)
, (5)

where the subscript “x” indicates either “in” or “out”. Note

that µ1

(
T

(1)
kk

)
= µ1

(
T

(1)
kk,in

)
+ µ1

(
T

(1)
kk,out

)
.

4.2 ∆d-Extended Cell Boundaries
It is difficult to directly quantify the one-dimensional mea-

sures µ1

(
T

(1)
kj

)
, µ1

(
T

(1)
kk,in

)
, and µ1

(
T

(1)
kk,out

)
on the two-

dimensional plane. Instead, we first introduce the set of ∆d-
extended cell boundaries, which extends the one-dimensional
measures to two-dimensional measures.

The ∆d-extended cell boundaries of T
(1)
kj , denoted by T

(2)
kj

(∆d), is defined as

T
(2)
kj (∆d) =

{
x
∣∣∣∃y ∈ T

(1)
kj , s.t. |x− y| < ∆d

}
. (6)

In other words, T
(2)
kj (∆d) is the ∆d-neighbourhood of T

(1)
kj .

A point is in T
(2)
kj (∆d) if and only if its (shortest) distance to

T
(1)
kj is less than ∆d. Similarly, T

(2)
kk,in(∆d) and T

(2)
kk,out(∆d)

are defined as the ∆d-neighbourhoods of T
(1)
kk,in and T

(1)
kk,out

respectively.

The area intensity of T
(2)
kj (∆d) is defined as the expected

area of T
(2)
kj (∆d) in a unit square:

µ2

(
T

(2)
kj (∆d)

)
= E

(∣∣∣T(2)
kj (∆d)

∩
[0, 1)2

∣∣∣) , (7)

where |S| denotes the area of some region S (i.e., two-dimensional
Lebesgue measure of S).

Because Φ1,Φ2 . . . ,ΦK are stationary and isotropic, T
(2)
kj (∆d)

is also stationary and isotropic. As a result, given a refer-

ence UE located at 0, the area intensity of T
(2)
kj (∆d) is equal

to the probability that the reference UE at 0 is in T
(2)
kj (∆d).

µ2

(
T

(2)
kj (∆d)

)
= P(0 ∈ T

(2)
kj (∆d)). (8)

Similarly, if k ∈ KC ,

µ2

(
T

(2)
kk,x(∆d)

)
= P(0 ∈ T

(2)
kk,x(∆d)), (9)

where the subscript “x” indicates either “in” or “out”.
We observe that the probabilities in (8)-(9) are analytical-

ly tractable, which will be presented in the next subsection.

4.3 Derivation of Area Intensities
In this subsection, we present the derivation of P(0 ∈

T
(2)
kj (∆d)). It consists of a progressive sequence of four step-

s. In the first step, we recall a few important properties of
two intersecting circles, which will be frequently used in the
subsequent steps. In the second step, we study the distribu-
tion of the distance from the reference UE at 0 to the BS
it is associated with, which is referred to as the reference
BS throughout the rest of this paper. In the third step, we

study the conditional probability of 0 ∈ T
(2)
kj (∆d) given the

distance from the reference UE to the reference BS. Based
on step two and step three, we derive the unconditioned

probability of 0 ∈ T
(2)
kj (∆d) in the fourth step.

4.3.1 Geometric Patterns of Two Intersecting Circles
We first recall a few important properties of two inter-

secting circles (as shown in Fig. 2), which will be frequently

used in the subsequent steps to derive P(0 ∈ T
(2)
kj (∆d)). Let

r1 and r2 be the radii of these circles, and r be the distance
between their centers. We assume |r1 − r2| ≤ r ≤ r1 + r2.

As labeled in Fig. 2, let C(r1, r2, r) denote the area of the
overlapping part of the two circles, L(r1, r2, r) denote the
arc length of circle 1 covered by circle 2, and θm(r1, r2, r)
denote the half central angle corresponding to the arc. The
expressions of C(·), L(·), and θm(·) are all in closed form,
which are shown in Appendix 8.1.

4.3.2 Distance Distribution of Reference UE-BS Pair
Let Rk denote the distance from 0 to the nearest tier-k

BS. If k ∈ KP , i.e., Φk is a PPP, by the Markovian property
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Figure 2: Geometric patterns of two intersecting cir-
cles.

of PPPs, it is straightforward to derive the complementary
cumulative distribution function (ccdf) and probability den-
sity function (pdf) of Rk:

ccdfRk (R0) =P(Rk > R0) = exp
(
−πR2

0λk

)
, (10)

pdfRk
(R0) =2πR0λk

(
−πR2

0λk

)
. (11)

If k ∈ KC , the ccdf of Rk is more complex due to the
dependent and non-uniform aggregation of points in PCP.
It can be shown that

ccdfRk(R0) , P(Rk > R0) = (12)

exp
[
− π(R0 −Rk)

2µk

(
1− e−πR2

kνk

)
−
∫ R0+Rk

R0−Rk
2πrµk

(
1− e−C(R0,Rk,r)νk

)
dr

]
,

if R0 ≥ Rk,

exp
[
− π(R0 −Rk)

2µk

(
1− e−πR2

0νk

)
−
∫ Rk+R0

Rk−R0
2πrµk

(
1− e−C(R0,Rk,r)νk

)
dr

]
,

if R0 < Rk.

By taking the first derivative, we find the pdf of Rk as

pdfRk
(R0) = (13)

exp
[
− π(R0 −Rk)

2µk

(
1− e−πR2

kνk
)
−∫R0+Rk

R0−Rk
2πrµk

(
1− e−C(R0,Rk,r)νk

)
dr

]
·µk

∫R0+Rk
R0−Rk

2πre−νkC(R0,Rk,r)νkL(R0, Rk, r)dr,

if R0 ≥ Rk,

exp
[
− π(R0 −Rk)

2µk

(
1− e−πR2

0νk
)
−∫Rk+R0

Rk−R0
2πrµk

(
1− e−C(R0,Rk,r)νk

)
dr

]
·µk

[
2π2(Rk −R0)2R0e−πR2

0νkνk

+
∫Rk+R0
Rk−R0

2πre−νkC(R0,Rk,r)νkL(R0, Rk, r)dr
]
,

if R0 < Rk.

We note that the reference UE is placed at 0. Hence, Rk

is also the distance from the reference UE to its nearest BS
in tier-k. However, the reference UE is associated with the
BS providing the largest biased received power (i.e., the ref-
erence BS), which may not be the nearest BS. Let R denote
the distance between the reference UE and the reference BS.
The probability that the reference BS is a tier-k BS and R
is greater than some R0 is derived as follows:

P[R > R0, tier = k] = P[R > R0|tier = k]P[tier = k]

=

∫ ∞

R0

K∏
i=1,i̸=k

P[Ri > βikr]pdfRk
(r)dr. (14)

The last equality reflects the fact that the biased received
power from the nearest BSs in all other tiers should not
exceed that from the reference BS.

Let pdfR|k(R0) denote the pdf of R given that the refer-

ence BS is in tier-k, and let fR,k(R0) , pdfR|k(R0)P[tier =
k], we have

fR,k(R0) =

K∏
i=1,i ̸=k

ccdfRi(βikR0) · pdfRk
(R0). (15)

4.3.3 Conditional Probability of 0 ∈ T
(2)
kj (∆d)

In this subsection, we study the conditional probabilities

that the reference UE at 0 is in T
(2)
kj (∆d), given that it is

associated with a tier-k BS (reference BS) at a distance of R0

from it, which is denoted as P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier = k

)
.

By employing both analytic geometric and stochastic geo-
metric tools, we derive the probability in different cases, giv-
en in Theorems 1-4 below. We note that the handoff rates
for P-tiers are already known in the literature (e.g., [6,9,23]).
These theorems additionally address boundaries between P-
tiers and C-tiers, boundaries between different C-tiers, and
inter-cluster and intra-cluster boundaries within a C-tier.

For brevity, we define the following quantities that will be
used extensively in the rest of this section:

F(β) , 1

β2

∫ π

0

√
(β2 + 1)− 2β cos(θ) dθ, (16)

and

Hkj(R0) ,
1

π
F(βkj)βkj

pdfRj
(R0βjk)

ccdfRj (R0βjk)
. (17)

Theorem 1. If tier-j is a P-tier, i.e., j ∈ KP , for all
k ∈ K (k = j is allowed), we have

P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier = k

)
=2λj∆dR0F(βkj) +O(∆d2). (18)

Proof. See Appendix 8.2 for the proof.

Theorem 2. If tier-j is a C-tier, i.e., j ∈ KC , for all
k ∈ K, k ̸= j, we have

P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier = k

)
=Hkj(R0)∆d+O(∆d2). (19)

Proof. See Appendix 8.3 for the proof.

Theorem 3. If tier-k is a C-tier, i.e., k ∈ KC , we have

P
(
0 ∈ T

(2)
kk,out(∆d)|R = R0, tier = k

)
=Hkk(R0)∆d+O(∆d2). (20)

Proof. Given the reference tier-k BS located at xBS, we
know that xBS belongs to some BS cluster Ωk(C(xBS)). Be-
cause the point process of cluster centers Θk is a PPP, by
the Slivnyak Theorem [4], the set of all cluster centers other
than C(xBS) remain a PPP with the same statistics as Θk.
Consequently, if we denote the set of all tier-k BSs other
than the cluster Ωk(C(xBS)) as Φ

′
k, then Φ′

k remains a PCP
with the same statistics as Φk. Because the set of inter-
cluster cell boundaries T

(2)
kk,out(∆d) is generated by xBS and

Φ′
k, and Φ′

k is still a PCP, the proof of Theorem 3 is the
same as that of Theorem 2.



The set of intra-cluster cell boundaries T
(2)
kk,in(∆d) is gen-

erated by xBS and Ωk(C(xBS))\{xBS}. We have the follow-
ing theorem:

Theorem 4. If tier-k is a C-tier, i.e., k ∈ KC , we have

P
(
0 ∈ T

(2)
kk,in(∆d)|R = R0, tier = k

)
= Gk(R0)∆d+O(∆d2),

where Gk(R0) is expressed in (21) (shown on the next page).

The proof is omitted due to the space limitation.

4.3.4 Unconditioned Probability of 0 ∈ T
(2)
kj (∆d)

Through deconditioning on R, we derive the uncondi-

tioned probabilities that the reference UE at 0 is inT
(2)
kj (∆d).

If k ̸= j, we have

P(0 ∈ T
(2)
kj (∆d)) (22)

=

∫ ∞

0

P(0 ∈ T
(2)
kj (∆d)|R = R0, tier = k)fR,k(R0)dR0

+

∫ ∞

0

P(0 ∈ T
(2)
kj (∆d)|R = R0, tier = j)fR,j(R0)dR0.

If k ∈ KP , we have

P(0 ∈ T
(2)
kk (∆d)) (23)

=

∫ ∞

0

P(0 ∈ T
(2)
kk (∆d)|R = R0, tier = k)fR,k(R0)dR0.

If k ∈ KC , we have

P(0 ∈ T
(2)
kk,x(∆d)) (24)

=

∫ ∞

0

P(0 ∈ T
(2)
kk,x(∆d)|R = R0, tier = k)fR,k(R0)dR0,

where the subscript “x” indicates either “in” or “out”.

4.4 From Area Intensities to Handoff Rates
Next, we compute the handoff rates using the area intensi-

ties derived in Section 4.3. This involves two steps: (1) from

area intensities µ2

(
T

(2)
kj (∆d)

)
to length intensities µ1

(
T

(1)
kj

)
,

and (2) from length intensities to handoff rates.

In the first step, we derive the length intensity µ1

(
T

(1)
kj

)
from the area intensity µ2

(
T

(2)
kj (∆d)

)
. Following Section 3.2

in [14], we have

µ1

(
T(1)

y

)
= lim

∆d→0

µ2

(
T

(2)
y (∆d)

)
2∆d

, (25)

where the subscript “y” indicates “kj”, “kk, in”, or “kk, out”.
Consequently, combining (15)-(25), we have
Case 1: If k, j ∈ KP and k ̸= j,

µ1

(
T

(1)
kj

)
(26)

=

∫ ∞

0

K∏
i=1,i ̸=k

ccdfRi(βikR0)pdfRk
(R0)λjR0F(βkj)dR0

+

∫ ∞

0

K∏
i=1,i ̸=j

ccdfRi(βijR0)pdfRj
(R0)λkR0F(βjk)dR0.

Case 2: If k ∈ KP we have

µ1

(
T

(1)
kk

)
(27)

=

∫ ∞

0

K∏
i=1,i̸=k

ccdfRi(βikR0)pdfRk
(R0)λkR0F(1)dR0.

Case 3: If k ∈ KP and j ∈ KC , µ1

(
T

(1)
kj

)
can be obtained

by replacing the term λjR0F(βkj) with
1
2
Hkj(R0) in (26).

Case 4: If k, j ∈ KC and k ̸= j, µ1

(
T

(1)
kj

)
can be obtained

by replacing the term λjR0F(βkj) with 1
2
Hkj(R0) and the

term λkR0F(βjk) with
1
2
Hjk(R0) in (26).

Case 5: If k ∈ KC , by replacing the term λkR0F(1) with
1
2
Hkk(R0) and 1

2
Gk(R0) in (27), we find the expressions of

µ1

(
T

(1)
kk,out

)
and µ1

(
T

(1)
kk,in

)
respectively.

In the second step, we derive the expected number of
handoffs of an active UE as follows:

Theorem 5. Let T0 denote an arbitrary UE’s trajecto-
ry on R2 with length |T0|1. Then, the expected number of

intersections between T0 and T
(1)
kj is

E
(
N (T0,T

(1)
kj )

)
=
2

π
µ1

(
T

(1)
kj

)
|T0|1, (28)

and the expected number of type k-j handoffs is

E
(
Nkj(T0,T

(1)
kj )

)
=


1
2
E
(
N (T0,T

(1)
kj )

)
, if k ̸= j,

E
(
N (T0,T

(1)
kj )

)
, if k = j.

(29)

Proof. We note that T
(1)
kj is a stationary and isotrop-

ic fibre process with length intensity µ1

(
T

(1)
kj

)
. The proof

follows the conclusions in Section 9.3 of [32].

Note that the expected number of type k-j handoffs is the
same as the expected number of type j-k handoffs, both of

which are equal to half of E
(
N (T0,T

(1)
kj )

)
.

Furthermore, let v denote the instantaneous velocity of an
active UE, and Hkj(v) denote its type k-j handoff rate. We
have the following Corollary from Theorem 5:

Corollary 1.

Hkj(v) =

{
1
π
µ1

(
T

(1)
kj

)
v, if k ̸= j,

2
π
µ1

(
T

(1)
kj

)
v, if k = j.

(30)

Note that the above handoff rates are instantaneous rates.
Hence, our analysis allows time-varying velocity for the UEs,
in which case the handoff rates are also time varying.

5. APPLICATION SCENARIO: OPTIMAL
TIER SELECTION

In this section, we study the problem of optimal tier se-
lection, as an application scenario for the handoff rate ana-
lysis above. Note that previous works focusing on biased
user association in HWNs usually assumed stationary UEs
[7–9,20,24,29]. In contrast, in this section, a UE’s velocity is
accommodated as one important factor for its tier-selection
decision. The optimal tier selections are individualized for
different UEs and can be adaptive to a UE’s changing ve-
locity over time.

Suppose that an active UE chooses to connect only to a
set of tiers S that is a subset of K and ignore other tiers.
We assume that 1 ∈ S (i.e., the UE always includes tier-
1 in its candidate set, which may correspond to macrocells
in practice). Our goal is to derive the optimal selection of
candidate tiers S among all subsets of K.

Following (14), the probability that the active UE is as-
sociated with a tier-k BS, for k ∈ S, is

Ak,S = P[R > 0, tier = k]



Gk(R0) =



∫R0+Rk
R0−Rk

rνkR0·(16θm(R0,Rk,r)−16 sin θm(R0,Rk,r)) exp(−νkC(R0,Rk,r))dr∫R0+Rk
R0−Rk

2θm(R0,Rk,r)r exp(−C(R0,Rk,r)νk)dr
, if R0 ≥ Rk,

π(Rk−R0)
2 exp(−πR2

0νk)·8νkR0+
∫Rk+R0
Rk−R0

rνkR0·(16θm(R0,Rk,r)−16 sin θm(R0,Rk,r)) exp(−νkC(R0,Rk,r))dr

π(Rk−R0)2 exp(−πR2
0νk)+

∫Rk+R0
Rk−R0

2θm(R0,Rk,r)r exp(−C(R0,Rk,r)νk)dr
, if R0 < Rk.

(21)
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Figure 3: Accuracy of PCP handoff rate analysis un-
der different µ2 values, for µ2 · ν2 = 0.5. For compar-
ison, black dashed lines indicate analytical results
assuming all PPP BSs.

=

∫ ∞

0

∏
i∈S,i̸=k

ccdfRi(βikR0) · pdfRk
(R0)dR0. (31)

We assume that the active UE is given some tier access
benefit Uk per second if it is associated with a tier-k BS.
For example, such benefit may represent data rate, power
consumption, and service charge at the tier. If the active
UE’s tier selection is S, its overall tier access utility (per
second) is

U(S) =
∑
k∈S

UkAk,S . (32)

Let Ekj be the expense for each type k-j handoff. Such
handoff expenses could be assigned arbitrarily. For example,
the expense on a horizontal handoff Ekk is expected to be
smaller than that of a vertical handoff Ekj (k ̸= j). The
average handoff expense (per second) given tier selection
and velocity is computed as

E(v,S) =
∑

k,j∈S

EkjHkj(v,S). (33)

where Hkj(v,S) are the handoff rates computed from (30)
for the set of tiers S.
Finally, the optimal tier selection under velocity v is

Sopt(v) = argmax
S∈S

U(S)− E(v,S), (34)

where S is the set of all possible tier selections. Because the
number of tiers K is usually not high in reality (i.e., K ≤ 5),
the cardinality of S, 2K−1, is not large. Therefore, Sopt can
be derived through comparing all possible tier selections.

6. NUMERICAL STUDY
In this section, we present simulation studies in Matlab

to validate the accuracy and usefulness of the proposed an-
alytical framework. In each round of simulation, multiple
tiers of BSs are generated on a 20 km × 20 km square.
Then, we randomly generate 5 waypoints X1,X2, . . . ,X5 in
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Figure 4: Handoff rates under different λ1 values.
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Figure 5: Handoff rates under different B2 values.

the central 10 km × 10 km square. The four line segments
X1X2,X2X3, . . . ,X4X5 form the trajectory of an active UE
in one round of simulation. By tracking which BSs the UE is
associated with along its trajectory, we can obtain its hand-
off rates in this round of simulation. Each simulation data
point is averaged over 2000 simulation rounds. Error bars in
the figures show the 95% confidence intervals for simulation
results.

Comparison with Simple PPP Modeling. First, we fo-
cus on a two-tier HWN with one P-tier (representing macro-
cell BSs) and one C-tier (representing clustered femtocell
BSs). Tier-1 is the P-tier, with λ1 = 1 unit/km2, P1 = 30
dBm, and B1 = 1; tier-2 is the C-tier, with R2 = 1 km,
P2 = 20 dBm, and B2 = 1; γ = 3.5; and v = 10 km/hour.
In Fig. 3, we study the handoff rates under different µ2 val-
ues while maintaining a constant µ2ν2 = 0.5 (i.e., the overall
tier-2 BS intensity is a constant 0.5π unit/km2). For refer-
ence, we also show the handoff rates (black dashed lines)
if tier-2 is replaced by a P-tier with the same BS intensi-
ty of 0.5π unit/km2. Fig. 3 shows that the actual handoff
rates obtained from simulation match well with the proposed
analysis, while they are far from the dashed lines when µ2 is
small (and ν2 is large). This interesting observation suggest-
s that using a simple PPP to model the BSs as in [6, 9, 23]
can lead to substantial numerical errors in computing the
handoff rates in HWNs with clustered BSs. The PPP model
gives a close approximation only when the cluster intensities
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are high but per cluster BS intensities are low in the C-tier.
In general, we observe that the actual handoff rates vary
drastically as µ2 and ν2 change, which can be accounted for
only by the proposed PCP analysis.

Effect of BS Densities and Association Bias Values.
We further study the influence of different network param-
eters on the handoff rates. In Figs. 4 and 5, we consider a
two-tier network with the same default parameter values as
in Fig. 3, except µ2 = 0.5 unit/km2 and ν2 = 1 unit/km2.
Fig. 4 shows handoff rates under different tier-1 BS inten-

sities λ1. The figure illustrates that increasing λ1 leads to
a higher type 1-1 handoff rate but a lower type 2-2 handoff
rate. Fig. 5 shows the handoff rates under different tier-2
association bias values B2. We observe that increasing the
association bias value of one tier has a similar effect as in-
creasing the BS intensity of this tier, leading to a higher hor-
izontal handoff rate within this tier, but lower handoff rates
outside the tier. Moreover, both figures illustrate that the
simulation results agree with the analytical results, demon-
strating the correctness of our analysis for different types of
handoff rates.

A More Complex Example. In Fig. 6, we study differ-
ent types of handoff rates in a network with four tiers. The
network parameters are as follows: Tier-1 and tier-2 are P-
tiers, with (λ1, λ2) = (1, 1) unit/km2; tier-3 and tier-4 are C-
tiers, with (µ3, µ4) = (0.5, 1) unit/km2, (R3, R4) = (0.9, 1.1)
unit/km2, and (ν3, ν4) = (1, 0.5) unit/km2; (P1, P2, P3, P4) =
(30, 33, 20, 23) dBm; (B1, B2, B3, B4) = (1, 1, 1, 1); γ = 3.5;
and v = 10 km/hour. In order to avoid redundancy, we
only show the sum rate of type k-j and type j-k (k ̸= j)
handoffs for easier inspection; the individual handoff rates
are half of the sum handoff rate. We again observe that
the simulation results agree with the analytical results, val-
idating the correctness of our analysis. We further observe

that the handoff rates of types 2-2, 2-3/3-2, and 2-4/4-2 are
higher than those of 1-1, 1-3/3-1, and 1-4/4-1 respectively,
due to the higher transmission power of tier-2 BSs compared
with tier-1 BSs. The handoff rates of types 4-4, 1-4/4-1, and
2-4/4-2 are higher than those of 3-3, 1-3/3-1, and 2-3/3-2 re-
spectively, due to the higher transmission power and higher
intensity of tier-4 BSs, i.e., πR2

4µ4ν4, compared with tier-3
BSs.

Tier Selection Optimization. Finally, we present an ex-
ample of the optimal tier selection problem presented in Sec-
tion 5. The network parameters are as follows: tier-1 is a P-
tier, with λ1 = 1 unit/km2; tier-2 and tier-3 are C-tiers, with
(µ2, µ3) = (0.5, 1) unit/km2, (R2, R3) = (0.9, 1.1) unit/km2,
and (ν2, ν3) = (1, 0.5) unit/km2; (P1, P2, P3) = (30, 20, 23)
dBm; (B1, B2, B3) = (1, 1, 1); and γ = 3.5. Tier access ben-
efits are (U1,U2,U3) = (1, 3, 3.5) unit utility/second. The
horizontal handoff expenses are (E11, E22, E33) = (10, 15, 15)
unit utility per handoff, and the vertical handoff expenses
are (E12, E21, E13, E31, E23, E32) = (30, 30, 50, 50, 50, 50) unit
utility per handoff.

Given a specific tier selection, the overall tier access ben-
efit does not change with the UE’s velocity, but the hand-
off expense increases linearly. Therefore, the overall utili-
ty linearly decreases with the UE’s velocity. As shown in
Fig. 7, when the UE’s velocity is low, tier selection {1, 2, 3}
is preferred since the handoff expense is relatively low com-
pared with its tier access benefit. When the UE’s velocity
is high, tier selection {1} is preferred, because handoff ex-
pense dominates tier access benefit, and tier selection {1}
has the smallest handoff expense. Overall, the UE’s velocity
can be divided into four regions: tier selection {1, 2, 3} is
optimal when the velocity is in [0, 33.00) km/hour; tier se-
lection {1, 3} is optimal when the velocity is in [33.00, 65.27)
km/hour; tier selection {1, 2} is optimal when the velocity is
in [65.27, 72.10) km/hour; tier selection {1} is optimal when
the velocity is in [72.10,∞) km/hour.

7. CONCLUSIONS
In this work, we present a stochastic geometric framework

to study user mobility in multi-tier HWNs. Each tier of BSs
is modeled as either a PPP or a PCP. We are able to cap-
ture (1) the spatial randomness of BSs, (2) the non-uniform
and dependent aggregation of BSs, and (3) the various s-
cales of cell sizes. Theoretical expressions for all types of
handoff rates experienced by an active UE with arbitrary
movement trajectory are derived. Based on these results,
optimal tier selection considering both the handoff expense
and tier access benefit is studied. Finally, extensive simula-
tions are conducted, validating the accuracy and usefulness
of our analytical results.

8. APPENDIX

8.1 Expressions Related to Two Intersecting
Circles

By applying basic analytical geometric tools, it can be
shown that

C(r1, r2, r) = arccos
(
(r21 + r2 − r22)/(2r1r)

)
· r21

+ arccos
(
(r22 + r2 − r21)/(2r2r)

)
· r22

− 2
√

((r1 + r2 + r)/2) ((r1 + r2 + r)/2− r1)
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Figure 8: The region (shaded part) of Skj(∆d).

·
√

((r1 + r2 + r)/2− r2) ((r1 + r2 + r)/2− r), (35)

L(r1, r2, r) = 2r1 arccos
(
(r21 + r2 − r22)/(2r1r)

)
, (36)

θm(r1, r2, r) = arccos
(
(r21 + r2 − r22)/(2r1r)

)
. (37)

8.2 Proof of Theorem 1
Proof. We study the probability P

(
0 ∈ T

(2)
kj (∆d)|R =

R0, tier = k
)
. Without loss of generality, we assume the

reference BS is located at R0 = (R0, 0). Note that because
the reference UE receives the highest biased power level from
the reference BS, for all other tiers, there are no tier-j BSs
located within B(0, R0

βkj
).

Let x0 = (x0, y0) denote the position of some tier-j BS
(other than the reference BS if j = k). Let T (R0,x0, βkj)
denote the curve satisfying the following condition:

T (R0,x0, βkj) =

{
(x, y)

∣∣∣∣∣ PkBk

((x−R0)2 + y2)γ/2
=

PjBj

((x− x0)2 + (y − y0)2)
γ/2

}
. (38)

Note that 0 ∈ T
(2)
kj (∆d) is equivalent to the event that the

distance from 0 to T (R0,x0, βkj) is less than ∆d.
In the following, we discuss three cases separately: βkj >

1, βkj = 1, and βkj < 1.
Case 1: βkj > 1. In this case, T (R0,x0, βkj) is a circle

centered at

(
β2
kjx0−R0

β2
kj

−1
,

β2
kjy0

β2
kj

−1

)
with radius

βkj

√
(R2

0+x2
0+y2

0−2x0R0)

(β2
kj

−1)
. Thus, the distance from 0 to T (R0,

x0, βkj) is

d(R0,x0, βkj) (39)

=

∣∣∣∣∣∣∣
√

(β2
kjx0 −R0)2 + (β2

kjy0)
2 −

√
β2
kj(R

2
0 + x2

0 + y20 − 2x0R0)

(β2
kj − 1)

∣∣∣∣∣∣∣ .
As a consequence, 0 ∈ T

(2)
kj (∆d) iff d(R0,x0, βkj) < ∆d, or

equivalently, x0 ∈ S̃kj(∆d), where

S̃kj(∆d) =
{
x0

∣∣∣d(R0,x0, βkj) < ∆d
}
. (40)

After mathematical manipulations on (40), and converting
(x0, y0) into polar coordinates (r, θ), we have

S̃kj(∆d) =

{
(r, θ)

∣∣∣∣∣
∣∣∣∣r2 −

R2
0

β2
kj

∣∣∣∣ < ∆d

β2
kj

· (41)

√
2
(
β4
kj + β2

kj

)
r2 − 8β2

kjR0r cos(θ) + 2(β2
kj + 1)R2

0 +O(∆d2)

}
.

Note that there are no tier-j BSs located inside B(0, R0
βkj

).

Let Skj(∆d) = S̃kj(∆d)
∩

B(0, R0/βkj), where B(·) , R2\B(·)
is the complement of B(·). As a result, 0 ∈ T

(2)
kj (∆d) iff

x0 ∈ Skj(∆d), where

Skj(∆d) =

{
(r, θ)

∣∣∣∣∣r ≥
R0

βkj
and

∣∣∣∣r2 −
R2

0

β2
kj

∣∣∣∣ < ∆d

β2
kj

· (42)

√
2
(
β4
kj + β2

kj

)
r2 − 8β2

kjR0r cos(θ) + 2(β2
kj + 1)R2

0 +O(∆d2)

}
.

According to (42), Skj(∆d) corresponds to a non-concentric
“ring” region (shaded area) shown in Fig. 8. We can observe

that ∀(r, θ) ∈ Skj(∆d), r = R0
βkj

+ O(∆d). Substituting it

into (42) gives

Skj(∆d) =

{
(r, θ)

∣∣∣∣∣r ≥
R0

βkj
and

∣∣∣∣r2 −
R2

0

β2
kj

∣∣∣∣ <
2∆dR0

β2
kj

√(
β2
kj + 1

)
− 2βkj cos(θ) +O(∆d2)

}
. (43)

The area of Skj(∆d) is

|Skj(∆d)| =
2∆dR0

β2
kj

∫ π

0

√(
β2
kj + 1

)
− 2βkj cos(θ)dθ +O(∆d2).

(44)

Given the reference UE and BS, it can be shown that Φj
1

is a PPP with intensity 0 in B
(
0, R0

βkj

)
and intensity λj in

B (0, R0/βkj) [4]. Because P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier =

k
)
is equal to the probability that there is at least one point

of Φj in Skj(∆d) (i.e., some x0 in Skj(∆d)), we have

P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier = k

)
=1− exp

(
−λj |Skj(∆d)|

)
=1− exp

(
−2λj∆dR0F(βkj) +O(∆d2)

)
=2λj∆dR0F(βkj) +O(∆d2), (45)

which completes the proof of Case 1.
Case 2: βkj < 1. The proof is similar to that of Case 1.
Case 3: βkj = 1. The proof of this case is relatively

simple, which is omitted due to space limitation.

8.3 Proof of Theorem 2
Proof. Similar to the proof of Theorem 1, 0 ∈ T

(2)
kj (∆d)

is equivalent to the event that there is at least one point of
Φj in the region Skj(∆d), given that no point of Φj is in

1If k = j, it is the reduced Palm point process [20] corre-
sponding to all tier-k BSs other than the reference BS.



B(0, R0/βkj). Note that Skj(∆d) here is still expressed in
(43) and shown in Fig. 8.
As labeled in Fig. 8, we also define ∆Dkj(θ) as the thick-

ness of Skj(∆d) at angular coordinate θ. It can be shown
that

∆Dkj(θ)

=

√√√√ R2
0

β2
kj

+
2∆dR0

β2
kj

√(
β2
kj + 1

)
− 2βkj cos(θ) +O(∆d2)−

R0

βkj

=∆d

√
β2
kj + 1− 2βkj cos(θ)

βkj
+O(∆d2). (46)

Then, we have

P
(
0 ∈ T

(2)
kj (∆d)|R = R0, tier = k

)
(47)

=P
(
Φj

∩
Skj(∆d) ̸= ∅

∣∣∣Φj

∩
B(0, R0/βkj) = ∅

)
(48)

=
1

π

∫ π

0

ccdfRj

(
R0
βkj

)
− ccdfRj

(
R0
βkj

+∆Dkj(θ)
)
+O(∆d2)

ccdfRj
(R0/βkj)

dθ

=
1

π

∫ π

0
∆Dkj(θ)dθ

pdfRj
(R0/βkj)

ccdfRj
(R0/βkj)

+O(∆d2) (49)

=
1

π

∫ π

0
∆d

√
β2
kj + 1− 2βkj cos(θ)

βkj
dθ

pdfRj
(R0/βkj)

ccdfRj
(R0/βkj)

+O(∆d2)

=
1

π
F(βkj)βkj∆d

pdfRj
(R0βjk)

ccdfRj
(R0βjk)

+O(∆d2), (50)

which completes the proof.
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