
Multi-Resource Fair Sharing for Datacenter Jobs
with Placement Constraints

Wei Wang†, Baochun Li‡, Ben Liang‡, Jun Li‡
†Hong Kong University of Science and Technology, ‡University of Toronto

weiwa@cse.ust.hk, {bli, liang, junli}@ece.utoronto.ca

Abstract—Providing quality-of-service guarantees by means of
fair sharing has never been more challenging in datacenters.
Due to the heterogeneity of machine configurations, datacenter
jobs frequently specify placement constraints, restricting them
to run on a particular class of machines meeting specific
hardware/software requirements. In addition, jobs have diverse
demands across multiple resource types, and may saturate any of
the CPU, memory, or storage resources. Despite the rich body
of recent work on datacenter scheduling, it remains unclear how
multi-resource fair sharing is defined and achieved for jobs with
placement constraints. In this paper, we propose a new sharing
policy called Task Share Fairness (TSF). With TSF, jobs are
better off sharing the datacenter, and are better off reporting
demands and constraints truthfully. We have prototyped TSF on
Apache Mesos and confirmed its service guarantees in a 50-node
EC2 cluster. Trace-driven simulations have further revealed that
TSF speeds up 60% of tasks over existing fair schedulers.

Index Terms—Cluster schedulers; multi-resource allocation;
placement constraints; fairness

I. INTRODUCTION

Datacenter-scale compute clusters running parallel process-
ing frameworks such as MapReduce [5] and Spark [32] serve
as the major powerhouses for data-intensive computation. As
their workloads surge, providing quality-of-service guarantees
for datacenter jobs, each consisting of many tasks, has become
increasingly important. Fair sharing is a fundamental tool to
achieve this objective, with which jobs are guaranteed to receive
fair shares of cluster resources, irrespective of the behavior
of others. Achieving fair sharing in datacenters, however, is
particularly challenging, due to the heterogeneity of physical
machines and the diversity of workload.

Over time, a datacenter typically evolves to include three to
five generations of machine hardware, with 10–40 different con-
figurations [6], [20], [22]. Incompatibilities between machine
configurations and prerequisites of task execution are often
encountered. As a result, an increasing number of datacenter
jobs specify placement constraints, restricting their tasks to run
on a particular class of machines that meet specific hardware
(e.g., GPU and SSD) and/or software (e.g., a particular kernel
version) requirements [11], [20], [22]. For example, a CUDA
[1] task must run on machines with GPUs, while a DNS
service requires machines with public IP addresses. According
to Google, approximately 50% of its production jobs have
simple, yet restrictive, constraints [22].

In addition to these constraints, datacenter jobs are charac-
terized by a high degree of demand diversity across multiple

resource types. For example, business analytics jobs typically
have CPU-intensive tasks, while machine learning and graph
analytics may have memory-bound tasks. Workload analyses
on production traces from Facebook, Microsoft, and Google
[10], [12], [20] have confirmed that jobs may require vastly
different amounts of resources of memory, CPU cores, storage
space, I/O bandwidth, and network bandwidth.

In the presence of placement constraints and multi-resource
demands, scheduling tasks in datacenter jobs involves some
non-trivial technical challenges. Prevalent schedulers, such as
the Hadoop Fair Scheduler [31] and the Capacity Scheduler
[2], allocate resources in the units of slots, each containing a
fixed amount of memory or CPU cores. While slot schedulers
can be easily extended to handle placement constraints using
a recently proposed algorithm called Choosy [11], they suffer
from poor utilization due to resource fragmentation [10], [12]
— resources in these allocated slots, even when idle, are not
available to the other tasks. Therefore, recent works, notably
DRF [10] and its variants [3], [8], [23], [30], have turned to
multi-resource fair scheduling. However, these algorithms do
not explicitly model placement constraints. Worse, as we shall
show in Sec. IV, directly applying them to constrained jobs
provides no quality-of-service guarantees.

In this paper, we ask a fundamental question of resource
management: how should fair sharing be defined and achieved
for jobs with placement constraints and multi-resource de-
mands? We propose a new sharing policy, called Task Share
Fairness (TSF), that equalizes the task share of jobs as much
as possible. Task share is defined for each job as the ratio
between the number of tasks scheduled and the maximum
number of tasks the job can run if we remove its constraints
and allocate it the entire datacenter. We show that TSF satisfies
a number of desirable sharing properties that are most important
for datacenter scheduling [4], [10], [11]. In particular, with
TSF, jobs are better off sharing the datacenter dynamically
than running in some static, dedicated resource pools (sharing
incentive); no job can receive more resources by lying about
its demands and/or constraints (strategy-proofness); no job
envies the allocation of another (envy-freeness); no job can
increase its allocation without decreasing that of another (Pareto
optimality). To our knowledge, TSF is the first multi-resource
sharing policy meeting all these desirable properties in the
presence of placement constraints.

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 ©2016 IEEE

We have prototyped TSF as a pluggable resource manager
on Apache Mesos [14], using a simple yet effective online
algorithm. Our experiments on a 50-node EC2 cluster have
confirmed that TSF delivers its theoretically proven properties
with predictable service guarantees. In addition, our large-scale
simulation study with cluster traces from Google [20] has
further revealed that, by allocating constrained jobs the “right”
share of resources, TSF speeds up the completion of 60%
of tasks over existing fair sharing algorithms in datacenters,
including Choosy [11], DRF, and its variants [8], [30].

The remainder of this paper is organized as follows. We
motivate the problem of multi-resource sharing with placement
constraints in Sec. II. In Sec. III, we list the desirable properties
that we aim to satisfy in this paper. We analyze existing fair
sharing policies and illustrate their problems in Sec. IV. We
present the design and analysis of TSF in Sec. V and evaluate
its performance in Sec. VI. We survey related work in Sec. VII
and conclude the paper in Sec. VIII.

II. BACKGROUND AND MODEL

In this section, we provide more background information
and describe our model.

A. Modeling Placement Constraints

Placement constraints can be either hard or soft. Hard
constraints must be satisfied by all means (e.g., the requirement
of GPUs or a particular kernel version); soft constraints, on
the other hand, are simply preferences (e.g., co-locating tasks
to data) and can be violated at the expense of degraded
performance. In this paper, we focus on hard constraints, as
soft constraints can be effectively addressed using existing
techniques such as Delay Scheduling [31] and cost- or utility-
based scheduling algorithms [15], [24]. Hard constraints are
more difficult to address [11] and may result in serious
utilization and latency consequences if handled inappropriately
[22]. To our knowledge, Choosy [11] is the only work that
provides quality-of-service guarantees in the presence of hard
constraints. However, Choosy is designed for single-resource
sharing — scheduling tasks based on one resource type
inevitably results in fragmentation and over-allocation [12].

We limit our discussion to simple, non-combinatorial con-
straints depending on the machine attributes only, e.g., machines
with GPUs and the Linux kernel version of 3.x.y. Complex,
combinatorial constraints are possible to be encountered (e.g.,
never co-locating two tasks of a job) but are dominated by
simple ones. For instance, at Google, 50% of production
jobs have simple constraints, as opposed to 11% having
combinatorial constraints [22]. We leave the exploration of
combinatorial constraints as our future work.

We model placement constraints (hereafter constraints) as a
bipartite constraint graph consisting of the user vertices and
the machine vertices. A user corresponds to a datacenter job
consisting of many parallel tasks. Unless otherwise stated, we
do not differentiate between a user and a job in the remainder of
the paper. In the constraint graph, an edge is connected between
a user vertex and a machine vertex if the user can run tasks

u1 u2

m1 m2 m3 m4

u3 u4

Fig. 1: An example of constraints modeled as a bipartite graph,
where user u1 can run tasks on all machines but m4, user u2
can run on all machines, user u3 can only run on m3, and u4
can run on both m2 and m4.

on the machine. Fig. 1 illustrates an example of the constraint
graph where 4 users share a 4-node cluster. Without loss of
generality, we assume that the constraint graph is connected
— for a disconnected graph, its connected components can be
considered separately.

B. Modeling Machines and Demands

We model a datacenter as a common shared infrastructure
consisting of a number of machines having multiple types of
resources, e.g., CPU, memory, storage space, I/O bandwidth,
etc. Each machine is characterized by a configuration vector,
which specifies the total amount of resources it has, e.g., 〈8
CPUs, 4 GB RAM〉.

Users run many parallel tasks. Each task is characterized by a
demand vector, which specifies the amount of resources needed
during the runtime, e.g., 〈1 CPU, 3 GB RAM〉. Because the
tasks of a job are typically the same binary program running
on different data blocks of similar sizes (e.g., MapReduce [5]),
they require the same amount of resources [20], [21], [26]. We
therefore assume the same demand vector across a user’s tasks
[4], [10], [19]. This assumption has been widely confirmed
in production workload traces [20], [21]. Finally, to support
service differentiation, each user is assigned a weight — a
positive real number — which indicates its relative importance
in the system.

III. DESIRABLE SHARING PROPERTIES

In this section, we motivate six sharing properties that are
key in providing quality-of-service guarantees.

A. Required Properties

As observed by DRF [3], [8], [10], there are four properties
that any datacenter scheduler should satisfy: sharing incentive,
strategy-proofness, envy-freeness, and Pareto optimality. While
the latter two properties directly extend to constrained tasks,
the former two require non-trivial generalization.

1) Sharing Incentive: Sharing incentive is the key to
provide service guarantee and is particularly important to data-
centers. In a nutshell, it ensures that each user obtained more
resources by dynamically sharing the datacenter than running
tasks in a static resource pool dedicated to it, irrespective of
the behaviors of others.

Definition 1 (Sharing incentive): Assume originally each
user is given a dedicated resource pool to run tasks. Suppose
now the users share their resource pools with others. A new

allocation of the shared resources is said to provide sharing
incentive, if it allows each user to run no fewer tasks than the
user would have run in its original dedicated resource pool.

We stress that in our definition of sharing incentive, the
dedicated resource pool given to users can be arbitrary.
This generalizes the requirement of existing work where the
dedicated pool is limited to equal resource partitioning (i.e.,
each of N users is given 1/N of the total amount of resources)
[3], [4], [8], [10], [23], [30].

2) Strategy-Proofness: It has been observed in production
datacenters that users may attempt to manipulate the scheduler
by lying about demands, in the hope of obtaining more
resources at the expense of the other users [10], [11]. In addition
to lying about resource demands, a user may manipulate the
constraints as well. To eliminate the incentive of both kinds
of strategic manipulation, it is important for a scheduler to be
strategy-proof :

Definition 2 (Strategy-proofness): No user can run more
tasks by lying about its resource demands and/or constraints.

From the perspective of game theory, users have two-
dimensional strategies, one for the demands and another for the
constraints. Existing schedulers, however, can only handle one-
dimensional strategies, where users either game the demands
[8], [10], [30] or the constraints [11], but not both.

3) Envy-Freeness: Envy-freeness embodies the basic means
of fairness in the sense that no user “envies” the allocation of
another. Intuitively, a user envies another user if it is able to
run more tasks by taking that user’s allocation. For weighted
users, envy-freeness ensures that user i does not envy user j
when the allocation of user j is scaled by wi/wj , where wi

and wj are the weights of users i and j, respectively.
Definition 3 (Envy-freeness): Assume user i can run ni

tasks with its own allocation and can run ni↔j tasks after
exchanging its allocation with another user j. We have ni ≥
wi

wj
ni↔j for all i and j.
4) Pareto Optimality: In pursuit of high utilization, we

require that no user can obtain more resources without
decreasing another user’s allocation. This ensures that no
resource is wasted in idle unless there is a “good” reason.

Definition 4 (Pareto optimality): Any attempt to launch
more tasks for a user results in fewer tasks for another.

B. Other Properties

In addition to the four required properties that must be
satisfied by all means, we also require the solution to recognize
two widely adopted sharing policies as special cases. In
particular, when tasks do not have any constraints and can
run on any machines, Dominant Resource Fairness (DRF)
[10], [19] embodies the notion of fair sharing by modeling
the entire datacenter as one gigantic machine; when sharing is
limited to one resource type, Constrained Max-Min Fairness
(CMMF) [11] serves as a natural extension to the conventional
max-min fairness in the presence of constraints. Our solution
should reduce to DRF and CMMF in the two special cases,
respectively.

Definition 5 (Single machine fairness): When sharing is
limited to one machine, the allocation reduces to DRF.

Definition 6 (Single resource fairness): When sharing is
for one resource type, the allocation reduces to CMMF.

We shall use all six properties as our general guideline to
develop a sharing policy. Our objective is to satisfy all of them
at the same time.

IV. ANALYSIS OF EXISTING POLICIES

In this section, we ask a question: can the required properties
be satisfied by extending existing sharing policies? We analyze
four policies: CMMF and three DRF variants, including Per-
Machine DRF [8], [30], DRFH [30], and CDRF [8]. We show
that they all suffer from serious problems and fail to retain all
the required properties when applied to multi-resource sharing
with constraints.

A. Constrained Max-Min Fairness

Ghodsi et al. [11] studied the problem of fair allocation for
constrained jobs in the single-resource setting. The proposed
scheduler, called Choosy, implements CMMF with which no
user can increase its allocation without decreasing that of
another with a less or equal allocation. It has been shown in
[11] that CMMF is in essence a market-based allocation where
users are given a budget and use it to buy or trade resources
at given prices in a perfectly competitive market1. However,
it has been shown in [10] that a market-based allocation is
not strategy-proof for multi-resource sharing, even without
placement constraints. We therefore exclude CMMF from
further consideration.

B. DRF Variants

When tasks do not have constraints and can run on any
machines, DRF [10], [19] serves as the de facto fair sharing
policy for multi-resource allocation. The idea behind DRF is
to equalize the share of dominant resources of all users. The
dominant resource is defined, for each user, as the resource
whose percentage share required by the user is maximum
among all resources.

While DRF satisfies all the required properties described
in Sec. III-A, it models the entire datacenter as if it were
a gigantic machine that holds and dispatches all resources
[10], [19]. We next study three variants that generalize DRF
to multiple machines and constrained tasks.

1) Per-Machine DRF: The first variant we consider, called
per-machine DRF, applies DRF to each machine separately,
on which only users that can run tasks are considered. This
policy has been analyzed in the following two simple scenarios.
(1) When tasks do not have constraints and can run on any
machines, per-machine DRF violates Pareto optimality with
poor utilization [8], [30]. (2) When sharing is limited to
one resource type, per-machine DRF reduces to independent
allocation studied in [11] and is shown to violate sharing
incentive. The lack of Pareto optimality and sharing incentive
disqualifies per-machine DRF from further consideration.

1The definition follows the conventional micro-economic assumptions.

2) DRF in Heterogeneous Systems (DRFH): The second
DRF variant we consider, called DRFH [30], follows the same
intuition of DRF but does not model a datacenter as a gigantic
machine with all resources. DRFH can be naturally extended
to constrained tasks by seeking a maximum feasible allocation
to equalize the share of dominant resources of all users. An
allocation is feasible if (1) no machine is allocated more tasks
than it could accommodate, and (2) no task is scheduled onto
a machine on which it cannot be executed.

DRFH satisfies envy-freeness, strategy-proofness, and Pareto
optimality. However, it violates sharing incentive, even for
unconstrained tasks [8], [30]. We therefore rule it out as a
desirable solution.

3) Containerized DRF (CDRF): The last DRF variant
we consider is Containerized DRF (CDRF) [8]. Similar to
DRFH, CDRF models a datacenter as a shared cluster of
heterogeneous machines. Better, CDRF retains the sharing
incentive, a property violated by DRFH. Its intuition is to
equalize the work slowdown of all users. The work slowdown
is computed for each user as the ratio between the number of
tasks allocated and the number of tasks the user can run when
monopolizing the datacenter.

CDRF can be directly generalized to constrained tasks.
The resulting algorithm, referred to as constrained CDRF,
seeks a maximum feasible allocation2 to equalize the work
slowdown of all users. For example, we consider a cluster in
Fig. 2a consisting of two machines each having 〈18 CPUs,
18 GB RAM〉, or simply 〈18, 18〉. There are two users, u1
and u2. Each task of u1 demands 〈1, 2〉 and can run on both
machines; each task of u2 demands 〈1, 3〉 and must run on m2.
When monopolizing the cluster, u1 can run 18 tasks, while
u2 can run 6, all on m2. In this example, constrained CDRF
schedules 12 tasks for u1, among which 9 run on m1 and 3
on m2. It also schedules 4 tasks for u2, all on m2. We see
that the work slowdown of each user is equalized to 2

3 , which
is the maximum as no more tasks can be allocated.

CDRF is shown to satisfy all the required properties when
tasks do not have constraints [8]. We might expect that the
same result also holds for constrained CDRF by interpreting a
constraint as the demand of some virtual resource exclusive to
machines meeting the constraint. For instance, in the example
of Fig. 2a, we add an infinite amount of virtual resource v
to m2 and let u2 demand a unit of v per task. This changes
the configuration vectors of m1 and m2 to 〈18, 18; 0〉 and
〈18, 18;∞〉, respectively, and the demand vectors of u1 and
u2 to 〈1, 2; 0〉 and 〈1, 3; 1〉, respectively. Here, we use a
semicolon (“;”) to separate the real and virtual resources in the
configuration/demand vector. Because m1 does not have virtual
resource demanded by u2, we can safely remove the constraint
of u2 without worrying about misplacing its tasks onto m1.
This way, we transform a constrained sharing problem to an
unconstrained problem, to which CDRF can be applied to
obtain the same allocation as constrained CDRF.

2The definition follows the same description in Sec. IV-B2.

m1

u1 u2

〈18, 18〉 〈18, 18〉

〈1, 2〉 〈1, 3〉

m2

9

3

4

(a) Both users are truthful.

m1 m2

u1 u2

〈18, 18〉 〈18, 18〉

〈1, 2〉 〈1, 3〉

9 6

0 0

(b) u2 lies about constraints.

Fig. 2: An example of constrained CDRF. The user demand
vectors and machine configuration vectors are given in the
figure. The number of tasks allocated to a user on a machine
is also presented along the edge connecting the user and the
machine. (a) Constrained CDRF allocation when users are
truthful. (b) User u2 can increase its allocation by claiming
that it can run tasks on m1 (illustrated as a dotted line).

m1 m2

u1 u2

m3

u3 u4 u5 u6 u7

u1 u2 u5 u6 u7u3 u4u2

1

1

0

2
1

1
1 1 1

Fig. 3: An example showing that constrained CDRF is not
envy-free, where u1 envies the allocation of u2.

However, to our surprise, constrained CDRF is neither
strategy-proof nor envy-free. To see that it is not strategy-
proof, we refer to the example of Fig. 2a and let u2 lie about
its constraints by claiming that its tasks can run on m1 as well.
Fig. 2b illustrates this scenario. According to the claim, u2
can run 12 tasks when monopolizing the cluster. Constrained
CDRF then schedules 6 tasks of u2 on m2, and 9 tasks of u1
on m1, equalizing the work slowdown of each user to 1

2 . This
allows u2 to increase its allocation by two more tasks than
being honest, at the expense of u1.

To illustrate the violation of envy-freeness, we consider a
more complex example in Fig. 3, where each machine has 3
CPUs. There are 7 users each demanding one CPU per task.
Their constraints and received allocations are shown in Fig. 3.
In this example, when monopolizing the cluster, each user but
u2 can run 3 tasks; user u2 can run 9 tasks. With constrained
CDRF, each user but u2 runs one task on the only machine
it can use; user u2 runs 3 tasks, two on m1 and one on m2.
The job slowdown of each user is equalized to 1

3 . However,
this allocation is not envy-free: user u1 envies the allocation
of u2, with which u1 can run 2 tasks.

The two examples in Figs. 2 and 3 reveal that placement
constraints cannot be simply interpreted as the demand of some
special kinds of resource exclusive to a subset of machines:
such a transformation, while leading to the same allocation, is
not equivalent from the perspective of property analysis.

Before concluding this section, we summarize in Table I
the properties of the three DRF variants in the presence of

TABLE I: Properties of DRF variants and TSF in the presence
of constraints: sharing incentive (SI), strategy-proofness (SP),
envy-freeness (EF), Pareto optimality (PO), single machine
fairness (SMF), and single resource fairness (SRF).

Property Per-Machine DRF DRFH CDRF TSF
SI X X
SP X X X
EF X X X
PO X X X

SMF X X X X
SRF X

constraints. More details are deferred to our technical report
[28] due to space constraints. The failure of existing fair sharing
policies motivates our design of a new alternative.

V. TASK SHARE FAIRNESS

In this section, we propose Task Share Fairness (TSF), a
new multi-resource sharing policy that retains all the properties
described in Sec. III for constrained tasks (see Table I). We
start with the definition of TSF followed by an offline algorithm
that achieves TSF in an idealized setting. We then analyze its
properties and give a practical online algorithm that implements
TSF in a dynamically shared datacenter.

A. Task Share Fairness

TSF computes the task share for each user, defined as
the ratio between the number of tasks allocated and the
maximum number of tasks the user can run if we remove
its constraints and allocate it the entire datacenter. One can
interpret task share as the job slowdown due to resource
sharing and placement constraints. TSF applies max-min fair
allocation with respect to the users’ task share. That is, it
always maximizes the lowest task share first, followed by the
second lowest, etc.

While TSF seems to be a simple fix to CDRF, we will show
through non-trivial analyses in Sec. V-C that such a simple idea
is sufficient to satisfy all the desirable properties. Before we
proceed, let us take a look at a running example that illustrates
how TSF works.

A running example of TSF. We consider a 3-node cluster
shown in Fig. 4, where machines m1 and m3 have the
same configuration of 〈9 CPUs, 12 GB RAM〉, while m2 has
〈3 CPUs, 4 GB RAM〉. There are three users. The task of u1
demands 〈1 CPU, 2 GB〉 and can run on all machines but m3;
the task of u2 demands 〈3 CPUs, 1 GB〉 and can run on m2

only; the task of u3 demands 〈1 CPU, 4 GB〉 and can run on
all machines. Suppose that we have allocated 6 tasks to u1 on
m1, 1 to u2 on m2, and 3 to u3 on m3. We compute the task
shares of three users as follows.
• For u1, we remove its constraints and let it monopolize

the entire cluster. In this hypothetical scenario, u1 can
run 14 tasks, 6 on m1, 2 on m2, and 6 on m3. The task
share of u1 is 6

14 = 3
7 .

m1

u1 u2

〈1, 2〉 〈3, 1〉

m2

6

0

1

u3

m3

〈9, 12〉 〈3, 4〉 〈9, 12〉

0

0
3

〈1, 4〉

Fig. 4: An example of a TSF allocation.

• For u2, we remove its constraints and let it monopolize
the cluster. This allows u2 to run 7 tasks, 3 on m1, 1 on
m2, and 3 on m3. The task share of u2 is 1

7 .
• For u3, its tasks can be executed on all machines. If

monopolizing the cluster, u3 can run 7 tasks, 3 on m1, 1
on m2, and 3 on m3. The task share of u3 is 3

7 .
To see that this allocation realizes TSF, we first show that

the minimum task share (i.e., 1
7 for u2) is maximized. Because

u2 is allocated the entire m2, the only machine u2 can run
tasks on, its task share cannot be further increased. We next see
that the second lowest task share is also maximized, because
both u1 and u3 receive the same share 3

7 , and no more task
can be allocated.

TSF can be directly generalized to weighted users as follows.
Definition 7 (Weighted TSF): An allocation is said to

achieve weighted TSF if any attempt to allocate more tasks to
a user would result in fewer tasks allocated to another with
an equal or lower weighted task share. Weighted task share is
defined, for each user, as the task share normalized by weight.

Unless otherwise specified, we assume weighted users and
do not differentiate TSF from weighted TSF in the remainder
of the paper. We also do not distinguish between task share
and weighted task share.

B. Computing TSF Allocation Offline

Assuming divisible tasks, TSF can be ideally achieved by
conventional progressive filling in multiple rounds. In the first
round, the algorithm equally raises the task share of every user
until it reaches a maximum. Users whose task shares cannot
be further increased3 become inactive, and their task shares
are frozen. In the second round, the algorithm continues to
act on the other users that remain active, raising their task
shares equally without decreasing those of inactive users. The
algorithm repeats round by round, until no more user is active.

Progressive filling is an idealized offline algorithm — it
recomputes the allocation upon a user arrival or departure.
While not implementable, it serves as an important tool for our
property analyses (Sec. V-C) and can be well approximated by
a practical online algorithm (Sec. V-D). We next formalize its
description.

1) Notations: We assume that there are N users sharing a
datacenter, which consists of M machines with R resource
types. For each machine m, we normalize its resource capacity
to the total availability of the datacenter and denote by
Cm = 〈Cm1, . . . , CmR〉 the normalized configuration vector,

3It happens when machines on which a user can run tasks are saturated.

where Cmr is the share of resource r available on machine m.
Similarly, we normalize the task demand to the total availability
of the datacenter and denote by di = 〈di1, . . . , diR〉 the
normalized demand vector of a task of user i, where dir is the
share of resource r required by the task at runtime.

Each user specifies a constraint vector to indicate if its task
can run on a machine. Specifically, let pi = 〈pi1, . . . , piM 〉 be
the constraint vector of user i, where pim = 1 if user i can
run tasks on machine m, and pim = 0 otherwise.

We assume divisible tasks in the offline algorithm. We
denote by hi the number of tasks user i can run in a
hypothetical scenario where it monopolizes the datacenter
without constraints. Suppose that user i is allocated ni tasks
and has weight wi, its task share is computed as si = ni

hiwi
.

2) Offline Progressive Filling: We now present progressive
filling in Algorithm 1. The algorithm runs in rounds. In each
round t, it determines st, which is the maximum task share
achieved for all active users, using a linear program. The
linear program has non-negative variables nim, indicating the
number of tasks scheduled for user i on machine m. It also
has three types of constraints for active users, inactive users,
and machines, respectively. For active users, the constraints
(2) ensure that their task shares are increased equally, i.e.,

1
hiwi

∑
m nimpim = st for all i in the active user set At. For

inactive users, the constraints (3) ensure that they should not
be penalized with fewer tasks in later rounds after becoming
inactive. Finally, we impose the machine constraints (4) to
ensure that the amount of resources allocated on each machine
m does not exceed its capacity.

Once the maximum task share st is allocated to all active
users in round t, the algorithm checks each active user j to
determine whether its task share can be further increased. To
do so, the algorithm freezes the total number of tasks allocated
to all users but j. It then tries to raise the task share of user
j to the maximum, using the same linear program mentioned
above. If user j cannot further increase its task share, it is
saturated and is marked inactive in the following rounds, and
the number of tasks allocated to it is frozen.

C. Properties of TSF

As summarized in Table I, TSF satisfies all the required and
desirable properties described in Sec. III. We discuss these
properties and provide intuitive explanations to our analyses.
We begin by showing that TSF provides service guarantees
with the sharing incentive.

Theorem 1: Assume that originally each user i is given
a dedicated resource pool and can run ki tasks. If the users
instead share their resources and re-allocate them using TSF
with weight wi = ki/hi for user i, user i is able to run at least
ki tasks.

Proof: We consider a trivial allocation where each user
i simply receives its own dedicated pool and runs ki tasks.
Considering user weights given by wi = ki/hi, this allocation
equalizes the task share of every user to 1:

si =
ki
hiwi

= 1, i = 1, . . . , N,

Algorithm 1 Computing TSF using Progressive Filling.

procedure TSF({Cm}, {di,pi, wi})
t← 1 . The current round
At ← {1, . . . , N} . The set of active users in round t
ni ← 0 for all i . # tasks scheduled for i when it becomes

inactive
while At 6= ∅ do

(st, {nim})← LP(t,At, {Cm}, {ni,di,pi, wi})
(At+1, {ni})← Freeze(t, st,At, {Cm}, {ni,di,pi, wi})
t← t+ 1

return {nim}
procedure LP(t,At, {Cm}, {ni,di,pi, wi})

max
{nim}

st (1)

s.t.
1

hiwi

∑
m

nimpim = st, i ∈ At, (2)∑
m

nimpim ≥ ni, i /∈ At, (3)∑
i

nimdir ≤ Cmr, for all m and r. (4)

return (st, {nim})
procedure FREEZE(t, st,At, {Cm}, {ni,di,pi, wi})
It ← ∅ . Users becoming inactivate after round t
for j ∈ At do

for i ∈ At \ {j} do
ni ←

∑
m nim . Freeze # tasks for all but j

. Increase user j’s task share to the maximum
(s′, {n′

im})← LP(t, {j}, {Cm}, {ni,di,pi})
if s′ == st then . If task share cannot be increased
It ← It ∪ {j} . User j becomes inactive

for i ∈ At \ {j} do
ni ← 0 . Unfreeze # tasks of active users

for j ∈ It do
nj ←

∑
m njm . Freeze # tasks of inactive users

return (At \ It, {ni})

meaning that the minimum task share of all users is 1. By
definition, TSF maximizes the minimum task share of all users.
Therefore, with TSF, each user is allocated at least ki tasks,
and the minimum task share is at least 1, no less than the
trivial allocation. ut

Theorem 1 provides a viable means to compute the correct
weights from the original dedicated resource pools given to
users. This is different from the case where the weights are
given a priori. Such a subtle difference does not affect the
analyses of the other properties except strategy-proofness,
which is addressed separately in two cases. We begin with
a simple case where the weights are given and are not
manipulable.

Theorem 2: TSF is strategy-proof when users’ weights are
given a priori.

We next consider a more complex case where the weights
are computed from Theorem 1 based on the dedicated resource
pools given to the users. By lying about demands and/or
constraints, user i can manipulate both ki and hi, gaming
its weight wi. This challenge is unique to TSF and has never
been explored in the existing work [3], [4], [8], [10], [23],

[30]. Nonetheless, we show that TSF is immune to this kind
of manipulation.

Theorem 3: TSF is strategy-proof when the weights are
computed from the dedicated resource pools given to the users,
using Theorem 1.

To prove Theorems 2 and 3, we consider a user and compare
its allocations made in each round by progressive filling with
different strategies, truthful and untruthful. Our key observation
is that the allocations given by the two strategies remain the
same (in terms of the task share received) until the round in
which the user becomes inactive with either strategy. We can
then show that the untruthful strategy is always worse off from
that round onward. The complete proofs are deferred to our
technical report [28] due to space constraints.

We next show that with TSF, no user would envy the
allocation of another.

Theorem 4: TSF is envy-free.
The proof of Theorem 4 is based on the observation that

for any two users i and j, user i does not envy user j unless
the latter has a higher task share. However, by the definition
of TSF, a user cannot increase its allocation by taking the
resources allocated to another user having a higher task share.
User i therefore does not envy user j. The complete proof is
deferred to the appendix.

As the last required property, we show that TSF is Pareto
optimal.

Theorem 5: TSF is Pareto optimal.
Proof: Let us suppose the opposite. In particular, we assume

that we can improve a TSF allocation by allocating more tasks
to a user, say i, without decreasing the number of tasks allocated
to the other users. Because user i can be allocated more tasks
at no expense of the other users’ allocations, by the definition
of TSF, it must be the only one with the minimum task share.
We see in this case that the minimum task share can be strictly
increased. This, however, contradicts the fact that the minimum
task share is maximized with TSF. ut

In addition to the four required properties, we consider the
following two special cases and show that TSF possesses the
two nice-to-have properties as well. First, when the cluster
consists of a single machine, the task share of a user is
equivalent to the share of dominant resource [10], and TSF
reduces to DRF.

Theorem 6: TSF reduces to DRF when there is only one
machine in the system.

Second, when sharing is limited to one resource type, the
task share of a user is equivalent to the share of resource
allocated to it, and TSF reduces to CMMF [11].

Theorem 7: TSF reduces to CMMF when sharing is limited
to one resource type.

To summarize, TSF retains all the desirable properties
described in Sec. III. We therefore use it as the notion of
fairness for multi-resource sharing with placement constraints.

D. Implementing TSF Online

So far, our discussion assumes divisible tasks in an offline
setting, where the allocation is recomputed whenever a user

arrives or departs, and tasks that are preempted due to the
change of allocation can resume computation from where
they stopped at no cost. This is neither practical nor efficient.
Datacenter tasks are indivisible and must be executed as entities.
Frequent preemption leads to a waste of computation, resulting
in a lower task goodput and a longer job completion delay.

Similar to existing datacenter fair schedulers [3], [10], [11],
[14], [18], [31], TSF can be implemented efficiently using a
simple online algorithm by offering idle resources to the user
that is the furthest from its fair share (i.e., the most “unfair”
user), without preempting tasks. In particular, the algorithm
serves users in an ascending order of task shares. Upon task
arrival, if the datacenter is not full, the algorithm schedules
the task onto a machine satisfying both the task demands and
constraints; otherwise, the task is queued up for later scheduling.
Upon task completion on a machine m, the algorithm offers
the available resources on m to users that can run tasks on
m. The algorithm keeps serving the user with the least task
share, until no more task can be scheduled. The algorithm then
proceeds to the next user with the second least task share, and
the entire process repeats.

The online algorithm can be easily implemented in the
prevalent datacenter management systems, such as Mesos [14]
and YARN [25]. Its performance can be further optimized
by incorporating existing scheduling techniques, such as
Delay Scheduling [31] and multi-resource packing [12]. The
discussion to these optimizations is, however, out of the scope
of this paper. We therefore evaluate TSF using the simple
online implementation.

VI. EVALUATION

We have evaluated TSF using prototype implementation and
trace-driven simulation. We start with our TSF implementation
on Mesos as a micro-benchmark deployed in a 50-node Amazon
EC2 cluster. We then use trace-driven simulation as a macro-
benchmark to evaluate TSF with respect to existing fair sharing
policies in large clusters.

A. Prototype Implementation

We have implemented online TSF as a pluggable job
scheduler on Apache Mesos (version 0.18.1) [14]. Mesos
is a cluster resource manager that allows jobs of different
processing frameworks to dynamically share the cluster. In
particular, Mesos launches the mesos-slave process on each
cluster node, who monitors the resource usage and reports
the available resources to the mesos-master over time. The
mesos-master offers available resources to the job that is the
furthest below its deserved fair share, who launches tasks on
demand. The remaining resources, if any, are offered to the job
that is the second furthest below the fair share, and the entire
process repeats. In our implementation, the TSF scheduler keeps
track of the task share of each job and offers resources in an
ascending order of the task share. We have ported Mesos to
allow each job to specify the placement constraints as a whitelist
(blacklist) of cluster nodes (in terms of the IP addresses): only

TABLE II: Configurations of jobs for a micro-benchmark.

Config. Job 1 Job 2 Job 3 Job 4
Start time (s) 0 10 150 150

tasks 1000 150 100 100
CPU cores 1 0.5 0.5 1

Memory (MB) 512 512 512 512
Mean task
runtime (s) 23.2 18.3 21.3 55.6

Whitelisted
nodes 1-50 1-25 1-10, 26-35 1-10, 26-35

hi 75 100 100 75

nodes in the whitelist (blacklist) can (cannot) be used to run
the job’s tasks.

1) Experiment Setup: We have deployed a 50-node cluster
in Amazon EC2 (instance type: t2.medium). To create a non-
trivial cluster with heterogeneous machines, we have configured
the mesos-slave to manage 1 CPU core and 1 GB RAM in
each of nodes 1-25, and 2 cores and 1GB RAM in each of
nodes 26-50. The mesos-master runs on an additional node
exclusively. We have run our experiments in the cluster with
various numbers of jobs. Each job is characterized by the start
time, the number of tasks, the resource demands of each task
(cores and memory), the mean task runtime, and the placement
constraints specified as a whitelist of nodes. All tasks of a job
have the same resource demand, but their runtime may fluctuate
up and down randomly by up to 20% from the mean, so as to
emulate the task execution in production datacenters [20]. The
mean task runtime of a job is randomly generated following the
distribution of the MapReduce jobs from Facebook traces [31].

2) Micro-Benchmark: For a micro-benchmark, we high-
light the behavior of our TSF implementation in a simple, easy-
to-verify scenario where 4 jobs dynamically share the cluster.
We summarize in Table II the job configurations as well as the
maximum number of tasks a job can run when monopolizing the
cluster without constraints (hi). Fig. 5 illustrates the allocation
results over time, including the CPU, memory, and task share,
and is explained below.

At the beginning, Job 1 is the only active job. Because it
can run tasks on all nodes, it monopolizes the cluster with task
share of 1. At the 10th second, Job 2 starts, whose tasks are
restricted to run on nodes 1-25. Ideally, with TSF, Job 2 should
be allocated all 25 nodes, each running 2 tasks. This raises its
task share to 2×25/100 = 1

2 , which is the maximum that Job 2
can achieve. Meanwhile, Job 1 is allocated nodes 26-50, each
running 2 tasks, and the task share is 2 × 25/75 = 2

3 . After
Job 2 completes, Job 1 monopolizes the cluster until Job 3
and Job 4 start. Because both jobs can run on the same set of
nodes, they should receive the same task share. As expected,
our TSF scheduler lets them evenly share the 20 whitelisted
nodes, equalizing their task shares to 1

5 . The other 30 nodes
remain allocated to Job 1, whose task share is stabilized at
2× 30/100 = 3

5 . The allocation maintains until Job 4 starts to
complete, and the relinquished resources are correctly offered
to Job 3, the one having the lowest task share. Finally, we
see that Job 1 gradually takes the resources released by Job 3,

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

T
a
s
k
 S

h
a
re

 Job 1

 Job 2

 Job 3

 Job 4

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

 C
P

U
 S

h
a
re

 Job 1

 Job 2

 Job 3

 Job 4

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

 Time (s)

 M
e
m

o
ry

 S
h
a
re

 Job 1

 Job 2

 Job 3

 Job 4

Fig. 5: CPU, memory, and task shares for four jobs over time
in the experiment on Mesos.

until it finishes.
3) Predictable Service Guarantees: We next use our im-

plementation to confirm that with TSF, jobs are allocated
more resources and finish faster than if they were run in
dedicated resource pools (Theorem 1). To do so, we have
run two experiments, one with static, dedicated pools and
another with TSF. In the first experiment, we have divided the
cluster into 4 dedicated pools for 4 jobs. Specifically, Pool 1
consists of nodes 1-10; Pool 2 consists of nodes 11-25; Pool
3 consists of nodes 26-35; Pool 4 consists of nodes 36-50. We
have launched 4 jobs whose demands and task runtime follow
Table II. The first two jobs can run in nodes 1-25, and the other
two can run on all nodes. Nonetheless, we have restricted each
job to run in its dedicated pool only. In the second experiment,
we have run the same jobs but let them share the cluster using
TSF. We see from Fig. 6 that TSF speeds up job completion
by up to 22% over static partitioning, validating Theorem 1 in
real systems.

Finally, we show that TSF provides desirable isolation for
“mice” jobs, protecting their resources from being taken by
“elephants”. In the first experiment, we have launched two
“elephants” and two “mice” (the resource demands and task
runtime follow the previous setup). Each elephant job consists
of 250 tasks and can run on 40 nodes (nodes 1-40 and 11-50,
respectively). Mice Job 1 is very picky about the placement (100
tasks runnable on 10 nodes, 1-5 and 25-30); Mice Job 2 is less
picky but has a very small number of tasks (10 tasks runnable

0

100

200

300

400
 J

o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Job 1 Job 2 Job 3 Job 4

 with Dedicated Pools

 with TSF

Fig. 6: The comparison of completion time of 4 jobs with
static partitioning and with TSF, respectively.

0

100

200

300

400

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Elephant

 Job 1

Elaphant

 Job 2

 Mice

Job 1

 Mice

Job 2

 with 2 elephant jobs

 with 6 elephant jobs

Fig. 7: Comparison of completion time of two elephant and two
mice jobs, running with and without four additional elephant
jobs, respectively.

on all nodes). In the second experiment, we have launched
4 more elephant jobs to congest the cluster, each having 250
tasks runnable on all nodes. Fig. 7 compares the completion
time of the original 4 jobs in the two experiments. We see
that while injecting more workload delays the completion of
the two elephants significantly, the two mice have not been
affected at all. TSF hence prevents elephants to starve mice.

B. Trace-Driven Simulation

We next evaluate TSF through a macro-benchmark in a large
cluster using trace-driven simulation. In particular, we compare
TSF with FIFO and four fair sharing policies discussed in
Sec. IV: DRF, constrained CDRF, CMMF w.r.t. CPU share
(hereafter CPU), and CMMF w.r.t. memory share (hereafter
Mem). Our implementation for CPU and Mem follows Choosy
[11]. We compare all the six policies with respect to perfor-
mance metrics related to job/task completion. We emphasize
that TSF is not designed specifically to optimize these job/task
performance metrics. Rather, as shown in Table I, the main
benefit of TSF is that it possesses important fairness properties
that elude all of the alternatives above. Nevertheless, in this
section, we would like to explore whether our “fairer” allocation
is achieved at the expense of performance loss.

1) Simulation Setup: We have simulated a 1000-node
cluster and fed it the workloads from a collection of Google
traces [20]. The machine configurations are obtained by
randomly sampling the 12k nodes in the traces. We have
adopted a similar approach to [22] to generate placement

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Machines Meeting Constraints

C
D

F

(a) Distribution of job constraints.

10
0

10
1

10
2

10
3

10
4

0.6

0.7

0.8

0.9

1

Job Size (# Task)

C
D

F

(b) Distribution of job size.

Fig. 8: Statistics of input workload used in simulations.

constraints. In particular, machines are classified into classes
and are associated with attributes following the distribution
measured in Google’s production clusters (4 classes and 21
attributes in total). Tasks specify required machine attributes
based on the measured distribution and can only run on
machines satisfying all the required attributes. This leads to
synthesized workloads with similar constraint distribution as
in practice [22]. As shown in Fig. 8a, less than 20% of jobs
can run on all 1000 machines, and 50% can run on 200. For
the input workloads, we have sampled the tasks submitted
within a 1-hour interval in the Google traces [20]. Fig. 8b
gives the distribution of job size measured by the number of
tasks, from which we see that the job population is dominated
by mice (≤ 10 tasks). Overall, the synthesized workloads
consist of 180k tasks across 4,500 jobs, heavily loading the
simulated cluster. We report results averaged over 50 different
simulations.

2) Job Performance: We start with the comparison of job
queueing delay, defined as the time elapsed from the job arrival
to the time when its first task is scheduled. Fig. 9a gives the
CDF of the job queueing delay of the six algorithms. As
expected, FIFO suffers from job starvation with intolerably
long queueing delay; fair sharing avoids this problem as newly
submitted jobs have zero resource share and are of the highest
priority to be served. Nonetheless, there remain 40% of jobs
suffering from salient queueing delay because the cluster is
heavily loaded, and jobs are picky about their placements.

We next evaluate the job completion time using different
algorithms. Fig. 9b shows the CDF. We see that by avoiding
starvation, fair sharing algorithms outperform FIFO unani-
mously, speeding up the completion of 80% of jobs by up
to 6×. Somehow surprisingly, it seems that jobs experienced
similar completion time across all fair sharing algorithms! We
attribute this phenomenon to the dominance of the population
of mice jobs. As shown in Fig. 8b, over 60% of jobs have only
one task. No matter which fair sharing algorithm is used, these
single-task jobs are always scheduled at the highest priority.
In general, mice jobs are less sensitive to different fair sharing
algorithms. Given that their population dominates, directly
comparing the CDF of job completion time does not tell a
difference between TSF and the other alternatives.

To address this problem, we have divided jobs into four bins:
small jobs (≤ 10 tasks), medium jobs (11-100 tasks), big jobs

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Job Queueing Delay (h)

C
D

F

TSF
DRF
CDRF
CPU
Mem
FIFO

(a) Job queueing delay.

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Job Completion Time (h)

C
D

F

TSF
DRF
CDRF
CPU
Mem
FIFO

(b) Job completion time.

Fig. 9: Job queueing delay and job completion time.

1−10 11−100 101−500 >500
0

5

10

15

20

25

30

Job Size (# tasks)

P
e

r−
J
o

b
 S

p
e

e
d

u
p

 (
h

)

 DRF

 CDRF

 CPU

 Mem

Fig. 10: Job completion speedup of TSF over four alternative
fair sharing algorithms. The range of error bars corresponds to
one standard deviation.

(101-500 tasks), and huge jobs (> 500 tasks). We use TSF as
the baseline and compare it with the other four alternative fair
sharing algorithms. In particular, we have measured per-job
speedup using TSF over an alternative. Per-job speedup is
defined for each job as the difference between its completion
time using an alternative algorithm and TSF. Fig. 10 shows
the average speedup of TSF over the four alternatives. The
range of error bars measures one standard deviation. We see
that TSF provides little speedup for small jobs. Yet, as the job
size increases, the speedup of TSF becomes more salient. For
medium and big jobs, the speedup is almost certain, and is on
average of 10% faster. For huge jobs, however, both speedup
and slowdown have been observed, because huge jobs are more
likely to receive “unfair” shares (too much or too less) using
alternative algorithms.

3) Task Performance: Small jobs, while dominating the
population, contribute only a tiny portion of the task population.
In our workloads, the biggest job consists of 20k tasks. In
comparison, adding up all the tasks of small jobs (account for
86% of job population) is less than 8k. Therefore, measuring
task queueing delay — defined as the wait time from the
task submission to scheduling — would better illustrate the
difference of five fair sharing algorithms. Fig. 11a shows
the CDF of task queueing delay using different scheduling
algorithms. As expected, FIFO suffers from the longest
queueing delay due to the job starvation problem. Among
the five fair sharing algorithms, TSF has the least queueing
delay. This is more clearly illustrated in Fig. 11b, where we

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Task Queueing Delay (h)

C
D

F

TSF
DRF
CDRF
CPU
Mem
FIFO

(a) Task queueing delay.

−30 0 30 60 90
0

0.2

0.4

0.6

0.8

1

Per−Task Speedup (h)

C
D

F

DRF
CDRF
CPU
Mem

(b) Per-task speedup.

Fig. 11: Task queueing delay and per-task speedup.

measure per-task speedup of TSF over alternative fair sharing
algorithms. Per-task speedup is defined for each task as the
reduction of task queueing delay when using TSF as compared
to the other algorithm. We see in Fig. 11b that CDRF performs
the worst: the speedup of 30% of tasks cannot compensate for
the substantial slowdown of the other 60%. We attribute this
problem to CDRF preferring jobs with more placement options,
at the expense of more constrained jobs (see Sec. IV-B3). Mem
does not suffer from the same design drawback and is better
than CDRF. However, because the Google workload is CPU-
intensive [20], fairly sharing CPU would be more efficient
than Mem. This also explains why the performance of DRF
and CPU are very close to each other. Nonetheless, failing
to address constraints efficiently results in 60% of tasks with
longer queueing delays than TSF.

VII. RELATED WORK

Job scheduling with placement constraints. Most datacen-
ter schedulers can only handle placement preferences, which
are soft constraints that can be violated at the expense of
performance penalty. For example, Quincy [15] and the Hadoop
Fair Scheduler [31] treat data locality as a preference and can
schedule tasks onto remote machines if those with the local
data are not available. alsched is another scheduler supporting
soft constraints [24]. It asks users to specify utility functions
for constraints and schedules tasks to maximize the sum of
these utilities. Compared with placement preferences, hard
constraints are more difficult to handle [11], and may increase
average task scheduling delays by 2 to 6 times [22]. Existing
works, such as Choosy [11], address hard constraints only for
single-resource scheduling in the units of slots. However, it
has been widely observed that slot schedulers inevitably result
in severe resource fragmentation and over-allocation [10], [12].

Multi-resource allocation. Dominant Resource Fairness
(DRF) [10] is proposed as the de facto fairness notion for
multi-resource allocation. DRF retains a number of desirable
sharing properties, and has been widely studied in both theory
and practice. Theoretically, Joe-Wong et al. [16] incorporated
DRF into a unifying framework to characterize the fairness-
efficiency tradeoff for multi-resource allocation. Gutman et
al. [13] extended DRF to a larger family of user utilities, such as
Leontief preferences. Parkes et al. [19] fine-tuned the analysis
of DRF by allowing users to have zero demands for certain

resources and weighted endowments. The case of indivisible
tasks has also been considered. Kash et al. [17] extended
DRF to a dynamic setting where users dynamically arrive
over time but never depart. Wang et al. [30] and Friedman et
al. [8] extended DRF’s all-in-one resource model to distributed
systems with heterogeneous machines. Dolev et al. [7] and
Bonald et al. [4], on the other hand, suggested other fairness
notions for multi-resource allocation to achieve a better fairness-
efficiency tradeoff. Tan et al. [23] generalized DRF to allow
users to have multi-class tasks with different demands. The
same technique can also be applied to TSF.

DRF has been widely implemented in systems like Apache
Mesos [14] and YARN [25]. Notably, Bhattacharya et al. [3]
extended DRF to a hierarchical scheduler in YARN to achieve
fair sharing at various organizational priorities. Grandl et
al. [12] incorporated DRF (or one of its variants) into a multi-
resource packing scheduler that speeds up job completion
without compromising fairness much. DRF has also been
implemented as a packet scheduler in middleboxes and software
routers [9], [27].

However, none of these works considers placement con-
straints, and their theoretical foundation, DRF, provides no fair
sharing guarantee for constrained jobs. Our work bridges this
gap and thus complements existing studies. The preliminary
results of this work have been briefly reported in [29].

VIII. CONCLUSION

In this paper, we considered the open problem of multi-
resource sharing for datacenter jobs with placement constraints.
We showed that prevalent resource allocation policies, including
Choosy, DRF and its variants, suffer from serious fairness
concerns without quality-of-service guarantees. We addressed
this problem with a new sharing policy, Task Share Fairness
(TSF). TSF provides the sharing incentive, ensuring that each
job receives more resources in a dynamically shared cluster than
in a static, dedicated resource pool. TSF is also strategy-proof,
in that no job can run more tasks by lying about its demands
and/or constraints. TSF is envy-free and Pareto optimal as well.
Our prototype implementation on Apache Mesos confirmed
that TSF provides predictable service guarantees in real-world
systems. Our trace-driven simulation studies further showed
that TSF speeds up the completion of constrained jobs/tasks
over existing fair schedulers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments on improving this paper. This work was supported in part
by a Microsoft Research Asia Collaborative Research Grant,
and by the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

REFERENCES

[1] CUDA. http://www.nvidia.com/object/cuda_home_new.html, 2015.
[2] Hadoop Capacity Scheduler. http://hadoop.apache.org/docs/r1.2.1/

capacity_scheduler.html, 2015.
[3] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and

I. Stoica. Hierarchical scheduling for diverse datacenter workloads. In
ACM SoCC, 2013.

[4] T. Bonald and J. Roberts. Multi-resource fairness: Objectives, algorithms
and performance. In ACM SIGMETRICS, 2015.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In USENIX OSDI, 2004.

[6] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for
heterogeneous datacenters. In ACM ASPLOS, 2013.

[7] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial.
No justified complaints: On fair sharing of multiple resources. In ACM
ITCS, 2012.

[8] E. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof allocation of
discrete jobs on multiple machines. In ACM EC, 2014.

[9] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource fair
queueing for packet processing. In ACM SIGCOMM, 2012.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In USENIX NSDI, 2011.

[11] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy: Max-min fair
sharing for datacenter jobs with constraints. In ACM EuroSys, 2013.

[12] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In ACM SIGCOMM, 2014.

[13] A. Gutman and N. Nisan. Fair allocation without trade. In Proc. 11th
Intl. Conf. Autonomous Agents and Multiagent Systems (AAMAS’12),
2012.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In USENIX NSDI, 2011.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair scheduling for distributed computing clusters.
In ACM SOSP, 2009.

[16] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Trans.
Netw., 21(6):1785–1798, 2013.

[17] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind: Dynamic
fair division of multiple resources. Journal of Artificial Intelligence
Research, 51:579–603, 2014.

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed,
low latency scheduling. In ACM SOSP, 2013.

[19] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant resource
fairness: extensions, limitations, and indivisibilities. ACM Transactions
on Economics and Computation, 3(1):3, 2015.

[20] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In ACM SoCC, 2012.

[21] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega:
Flexible, scalable schedulers for large compute clusters. In ACM EuroSys,
2013.

[22] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das.
Modeling and synthesizing task placement constraints in Google compute
clusters. In ACM SoCC, 2011.

[23] J. Tan, L. Zhang, M. Li, and Y. Wang. Multi-resource fair sharing
for multiclass workflows. ACM SIGMETRICS Performance Evaluation
Review, 42(4):31–37, 2015.

[24] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch. alsched:
Algebraic scheduling of mixed workloads in heterogeneous clouds. In
ACM SoCC, 2012.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache Hadoop
YARN: Yet another resource negotiator. In ACM SoCC, 2013.

[26] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at Google with Borg. In
ACM EuroSys, 2015.

[27] W. Wang, C. Feng, B. Li, and B. Liang. On the fairness-efficiency
tradeoff for packet processing with multiple resources. In ACM CoNEXT,
2014.

[28] W. Wang, B. Li, B. Liang, and J. Li. Multi-resource fair sharing for
datacenter jobs with placement constraints. Technical report, HKUST,
https://www.cse.ust.hk/~weiwa/papers/tsf.pdf, 2016.

[29] W. Wang, B. Li, B. Liang, and J. Li. Towards multi-resource fair
allocation with placement constraints. In ACM SIGMETRICS (poster
paper), 2016.

[30] W. Wang, B. Liang, and B. Li. Multi-resource fair allocation in
heterogeneous cloud computing systems. IEEE Trans. Parallel Distrib.
Syst., 26(10):2822–2835, 2015.

[31] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In ACM EuroSys, 2010.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In USENIX
NSDI, 2012.

APPENDIX

In this section, we prove that TSF is envy-free. We start
with the following lemma.

Lemma 1: For any two users i and j, we have

hi ≥ ρjihj , (5)

where
ρji = min

r:dir>0

djr
dir

. (6)

Proof: We consider a hypothetical scenario where user j
removes its constraints and monopolizes the cluster. Let hjm
be the number of tasks user j executes on machine m in this
hypothetical scenario. The share of resource r allocated to user
j on machine m is hjmdjr. Now remove the constraints of
user i and allocate it the resources that have been allocated
to user j in the hypothetical scenario, with which user i can
execute ni tasks. We have

ni =
∑
m

min
r:dir>0

hjmdjr
dir

= ρjihj . (7)

On the other hand, by the definition of hi, we have

hi ≥ ni. (8)

Combining (7) and (8), we see that the statement holds. ut
Having established Lemma 1, we next prove envy-freeness

of TSF.
Proof of Theorem 4: For the ease of presentation, we add

a superscript t to the variables of the linear program solved
in round t of Algorithm 1. Specifically, we denote by ntim the
number of tasks scheduled for user i on machine m at the end
of round t. Let ati = [atimr] be the allocation matrix of user i
at the end of round t, where atimr is the share of resource r
allocated to user i on machine m. We have

atimr = ntimdir.

Finally, we denote by ni(a) the number of tasks user i can
execute given allocation a.

For any two users i and j, let ti and tj be the rounds in
which they become inactive, respectively. The allocations they
receive are atii and a

tj
j , respectively. Envy-freeness ensures

that user i, if it takes user j’s allocation scaled by wi

wj
, runs

fewer tasks, i.e.,
wi

wj
ni(a

tj
j) ≤ ni(atii). (9)

To see this, we first show that user i does not envy user j
before either of them becomes inactive, i.e.,

wi

wj
ni(a

t
j) ≤ ni(ati), t ≤ min{ti, tj}. (10)

We derive as follows:

ni(a
t
j) =

∑
m

min
r:dir>0

atjmrpim

dir

≤
∑
m

min
r:dir>0

ntjmdjr

dir
(pim ≤ 1)

= ρji
∑
m

ntjm (substituting (6))

= ρjihjs
twj (t ≤ min{ti, tj})

≤ histwj (Lemma 1)

=
wj

wi
ni(a

t
i), (t ≤ min{ti, tj})

which is exactly (10). We next consider two cases.
Case 1: user j becomes inactive first, i.e., tj ≤ ti. In this

case, we have
wi

wj
ni(a

tj
j) ≤ ni(atji) (by (10))

≤ ni(atii). (tj ≤ ti)
Case 2: user i becomes inactive first, i.e., ti < tj . By

definition, user i cannot increase its task share after round
ti and hence cannot utilize any resources allocated to user j
afterwards. This essentially suggests the following equality:

ni(a
t
j) = ni(a

ti
j), ti < t ≤ tj .

Taking t = tj , we have
wi

wj
ni(a

tj
j) =

wi

wj
ni(a

ti
j) ≤ ni(atii),

where the last inequality is derived from (10). ut

