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Abstract— We study the effect of cooperation in an interfer-
ence limited, narrow-band wireless sensor network. Cooperation
among available sensors can potentially lead to significant ca-
pacity increases. However, in an interference limited setting with
asynchronous transmissions, exploiting more available sensors
to help active sources will cause more interference to other
sensors. Therefore, it is crucial to find the optimal trade-
off between the amount of cooperation and the amount of
interference introduced to the network. In this work we quantify
the amount of cooperation using the notion of relay zones for
each active sensor. The sensors that lie in such a zone are
allowed to cooperate with the source. We then use the physical
interference model to determine the probability that a relay node
correctly decodes its corresponding source. Through numerical
and simulation studies, we investigate the optimization of the
relay-zone radius to maximize the network sum-rate based on
relay availability and the sink reception capability. We show
that the overall system capacity increases significantly under the
proposed scheme, compared with cases where relay nodes are
not exploited or where the relay zone radius is suboptimal.

I. INTRODUCTION

With the advent of a new generation of sensors with higher
sensing and communication capabilities the challenge lies in
forming a complex information gathering network to maximize
the network capacity. In their landmark paper, Gupta and
Kumar [1] showed that the per node capacity of an interference
limited wireless network decreases as the number of nodes
N increases and the achievable per node rate diminishes
drastically.

However, relays can be exploited as a means to increase
the capacity in a sensor network. The relay channel first
introduced by van der Meulen in his PhD thesis leads to
another communication scheme where instead of point to point
communication between the source and destination, relays
are exploited in a two-hop communication. The key capacity
results for the case of a single relay were introduced by Cover
and El Gamal in [2]. The capacity region for the relay channel
with M relays is not known to date. However, Gastpar and
Vetterli [3] have obtained upper and lower bounds on the
capacity under Gaussian noise. These bounds are not tight
for small values of M . However, as M increases the bounds
tend to meet. In an information theoretic point of view the
literature is rich on the subject of multi-user information
theory, although the exact results are not known to date.

Cooperative diversity as a means to combat fading is an-
other interesting issue in multi-user communication introduced

mainly by Laneman et al [4] and Sendonaris et al [5]. In this
setting, the relay channel is used to forward the data causing
an increase in the capacity specifically for the cases where
the source-destination channel experiences deep fades. The au-
thors extend this work to benefit from co-operation of multiple
nodes in [6]. Nabar et al [7] further evaluate the performance
of co-operative schemes in the case of single source, single
relay, and single destination and prove that full diversity can be
obtained using this scheme. In [8] Sankaranarayanan, Kramer
and Mandayam consider the case where multiple sources send
their message to a relay, and the relay either simply forwards
the data or first decodes and then forwards.

The studies above have shown that, cooperation among
sensors can lead to significant capacity increases. However,
if multiple source sensors and relaying nodes use the channel,
their transmissions will interfere with each other. In the liter-
ature, it is usually assumed that there are a set of rules which
lead to interference removal. For instance, different users
might send their messages in a time slotted manner. However,
this in general is not the optimum capacity achieving strategy.
In a narrow-band sensor network with multiple sources the
effect of interference greatly affects the network capacity and
has to be considered.

Although the literature is rich in considering different relay-
ing schemes in an information theoretic view point, the effect
of relaying strategies and cooperation in a multiple source
network, where the nodes have un-synchronized transmission
has received much less attention. In a dense sensor network,
a considerable fraction of sensors can be found idle during
each transmission. The fundamental question is then “How
should the idle sensors be optimally exploited to maximize
the network capacity”? In this work we intend to answer this
question and consider the optimal tradeoff between improved
cooperation and increased interference when otherwise idle
sensor node are used as relays.

The main contribution of this work includes
• A general framework for localized zone-based relaying

in a large sensor network with multiple sources,
• A novel analytical framework to investigate the relation

between the relay zone radius, the interference level, and
the relay decoding probability,

• Derivation of the network sum-rate given multiple an-
tennas at the data sink, as a main metric for relay zone
optimization, in a MIMO multiple access setting, and

• Numerical and simulation studies to provide general
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design guidelines for optimal relaying.
The rest of this paper is organized as follows. Section II

explains the network model and presents a practical relaying
algorithm. Section III presents details of our analytical frame-
work to study the interaction between relaying and interfer-
ence. Section IV computes the network sum-rate with relaying
and multiple antennas at the data sink. Section V presents
the numerical and experimental results. Finally, concluding
remarks are given in Section VI

II. SENSOR NETWORK RELAYING ARCHITECTURE

In this section, we explain the sensor model under consid-
eration and present a generic relaying architecture.

A. Data Dissemination

We consider a collection of N sensors placed randomly, uni-
formly and independently in the disk of unit area. It is assumed
that the sensors can each measure a physical phenomenon.
We assume the measurement of sensor i at time n to be
represented by the random process Xi(n). The measurements
of two source sensors are assumed to be i.i.d processes justified
by enough separation between them. Note that this is a result
of the notion of relay zones in our model which causes the
sensor within each zone to measure independently from a
sensor in another zone. Each sensor measures the physical
phenomenon in case it senses activity. The activity event in
each slot is modeled using a Bernoulli random variable ui for
sensor i,

p(ui) =
{

ps, if ui = 1
1 − ps, if ui = 0 . (1)

Time is slotted to intervals of length L equal to the length of
the data packet detected at an active sensor. The transmission
is assumed to be half-duplex. Path-loss and channel variations
are both considered in the model. When node i transmits with
power Pi[n], node j receives the transmission with power
Pi[n]γij [n]. The channel gain can be represented as

γij =
|hij |2
rα
ij

, (2)

where rij is the distance between nodes i and j and hij models
the fading channel from sensor i to j. Throughout the paper a
block fading channel is considered for which the channel gain
is constant over a block of length L.

We assume the sensor network has the same setting as
SENMA [9]. The mobile access point (AP), i.e., data sink,
is located at a variable height h, 0 < h < ∞, above the center
of the disk. The AP is equipped with sophisticated terminals
and multiple receive antennas. In the following discussion we
assume that AP has nr receive antennas. However, each sensor
only has one antenna.

B. Communication Scheme

The communication of a message at the active nodes is
divided into two steps. The active sensor i first sends the
message Xi[n] to potential relays in its vicinity , forming a
relay zone. In the second phase the potential relays which have

Fig. 1. Sensor network layout. The relays that have decoded their message
in time slot n − 1 are interfering with the relays which are in their receive
state in time n

successfully decoded the message forward it to the destination.
The fraction of successful decoding nodes determines the
optimum amount of cooperation among sensors. Since the
successful decoding nodes are synchronized and deliver the
same message Xi[n], they are cooperating over the choice of
the message sent towards the destination.

We assume that, the relays implement the decode and
forward scheme. Then using the same physical model as
the one introduced in [1], a relay node m is assumed to
successfully decode the message sent from the source i if

SINRm =
Pi[k]γim[k]

Z +
∑

l∈S[k],l �=i Pl[k]γlm[k] +
∑

j∈R[k−1] Pj [k]γjm[k]
> β,

(3)

where the interference at potential relay nodes during the relay
reception phase is either due to other sensors belonging to the
active source set S[k], or the relays which have completed their
reception in slot k−1 and are forwarding their corresponding
message to AP in slot k. Such relays are represented as
R[k − 1]. The noise is assumed to be Gaussian with variance
Z. The parameter β is a design parameter and depends on the
level of tolerated interference by the sensors. This is illustrated
in Figure 1 with a simple example. Since we consider fading
in our model the relays within each zone are still probable to
go under deep fades. Therefore, some of the relays may not be
capable of decoding successfully. However, the closer a relay
sensor is to its corresponding source the higher the decoding
probability is. Possibility of local communication between
a source and its corresponding relays is another important
benefit gained by introducing relay zones.

Since during each slot a different set of senders are acti-
vated, their corresponding relays are different. The relays from
zone j in Figure 1 are one instant of the causes of interference
at the potential relays in node i’s relay zone. The source
sensors which have started their transmission synchronously
with source i are another cause of interference. Source l
represents such an example.

Some transmission models allow the relays to transmit and
receive simultaneously [2]. However, in the case of wireless
sensor networks, physical constraints restrict the relay from
simultaneous transmission and reception. Therefore, we define
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Fig. 2. Timing for a source and its corresponding relay in RELi as well as
possible interferer source and relays.

two states for each relay, receive and transmit. During the
receive state the signal received at a relay is decoded correctly
if (3) holds.

If a relay is in the relay zone of a source, and it has
successfully decoded the message from the source, it transmits
the message to the AP in the transmit state. During the relay
transmission state we have the following expressions

Ym[k] = 0, Yd[k] =
Np[k]∑
i=1

Hixi[k], (4)

where Ym[k] is the received message at a relay when it is
in transmit phase, Yd[k] is the received vector of dimension
nr × 1 at the destination which is a superposition of the
messages sent by all zones, Hi is the channel vector from
the set of relays in zone i which have successfully decoded
the message to the AP, xi[k] represents the message vector
sent out synchronously by the relays of zone i, and Np[k]
represents the number of sources (relay zones) at time k.

C. Source Scheduling

To schedule a maximum number of active sources, we need
to pack as many relay zones as possible in the disk area. As
explained in Section II.A, each sensor generates a message at
the beginning of slot k with probability ps. Other sensors in
the system at the beginning of each time slot can serve either
as a relay or they can switch to the sleep mode and take no
action. The timing of the network has been depicted in Fig. 2.
The main challenge in the design of a relaying strategy is
to decide whether an available node has to try to decode the
source message or it has to remain in sleep mode over the
next time slot.

We assume that the relay sensors can estimate their distance
from the active sensors. The relaying decision will be made
based on the relay’s distance from the sources at the beginning
of each transmission slot. Other active sources within the relay
zone will not be allowed to send.

We define the ith relay-zone RELi as a circle whose center
is sensor i and has radius rrel. The optimal value for this radius
will be determined by the optimal relaying strategy. Then, in

slot k − 1 the potential relay set is denoted by

R[k − 1] =
Np[k−1]⋃

i=1

RELi. (5)

During slot k the successful relay sensors forward their mes-
sages to the AP, and at the same time, a new set of sensors S[k]
is activated with probability ps. The source sensors i ∈ S[k]
choose the potential relays based on the same criteria used
during the prior slot (zone radius). The successful relays,
m[k − 1] ∈ R[k − 1], from the last slot interfere with the
reception of relays m[k] ∈ R[k] in slot k. Therefore, increasing
the zone radius will result in more interference.

For a given optimal relay-zone area A (the details of
derivation for zone radius are explained in Section III) the
ultimate number of sources that can simultaneously transmit
is 1

A since we considered the disk of unit area as the field
over which the sensors are deployed. However, in practice this
number strongly depends on the network topology. In the case
of circular relay zones the source selection problem can be
considered as a maximal circle packing problem which is NP-
hard. Two sources i, j can simultaneously send their messages
if they do not lie in the same relay zone. In other words their
distance has to follow d(i, j) ≥ 2rrel. This problem can be
translated into the maximal independent set (MIS) problem,
by considering a graph and assuming that the active nodes
represent the vertex set, and there is an edge between two
vertices i and j if and only if their distance di,j < 2rrel. Nodes
within a relay zone can communicate locally to determine their
relative distance. We have implemented the parallel algorithm
presented in [10] by Luby to solve the MIS problem and found
the maximal packing number in our experiments.

III. RELAY SET DECODING PROBABILITY AND

INTERFERENCE ANALYSIS

In this section we quantify the interference and correct
decoding probability at a relay, given the relay zone radius.
Clearly, the amount of interference at a relay is a function of
the number of interferers and their relative location to the relay.
Therefore, we have to consider the permissible region (outside
the relay zone) discussed in Section II-C as the possible
interferer locations. During the source transmission phase a
relay m ∈ RELi decodes the corresponding source if and only
if (3) holds. The interference at each relay can be due to either
other sources {l|l ∈ S[k], l �= i} sending simultaneously or the
other relays which are in their transmission phase at time k
and have started reception at time k − 1, {j|j ∈ R[k − 1]}.
The overall interference at m can then be expressed as

Im[k] =
∑

l∈S[k],l �=i

Pγlm[k] +
∑

j∈R[k−1]

Pγjm[k]

=
Np∑
l=1

Pγlm[k] +
D∑

j=1

Pγjm[k],
(6)

where Di is the number of sensors which have been successful
in decoding within RELi and D =

∑Np
i=1 Di represents the

total number of interfering relays, and we have simplified the
problem of relay selection by assuming that the sensors have
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the same power P . We next formulate the relay-zone maxi-
mization problem and analytically find the expected number
of successful decoding relays within each zone.

The goal of our design is to find the optimal area around
each active sensor, the relay zone, in which the relays are
allowed to decode and forward. We make the simplifying
assumptions that this area is a circle and the radius of this
circle is the same for all active nodes. The latter is justified by
the fact that the amount of interference is not sensitive to relay
zone location within the planar disk. However, the distance
of the relay from its corresponding source is the determining
factor. This fact will be elaborated in the Section III-C and
depicted in Fig. 4. The metric of interest in this case is
the network sum-rate

∑Np

i=1 Ri, where Ri is the rate of
information sent from the relay sensors within zone i towards
the destination.

A. Expected Number of Decoding Relays

We denote the number of relays in zone i by the random
variable N i

r. Sensors are uniformly distributed over the unit
disk area, therefore, the event m ∈ RELi has a Bernoulli
distribution with, Pr[m ∈ RELi] = Ai, where Ai =
πrrel

2. N i
r follows a binomial distribution as Pr(N i

r = l) =(
N
l

)
Al

i(1 − Ai)N−l with mean E[N i
r] = NAi = Nπr2

rel. In
the following we quantify the expected number of successful
decoding relays.

Theorem 1: In the given sensor network within region i,
E[Di] =

∫ rrel

0
NPr[SIR(r) > β]2πrdr, where Pr[SIR(r) >

β] represents the successful decoding probability for a relay
located at distance r relative to its source.

Proof:

For the relay m ∈ RELi, the conditional distribution of
d(S(i),m), the distance between the source and the relay is

Fd(r|m ∈ RELi) = Pr[d(S(i),m) < r|m ∈ RELi]

=
Pr[d(S(i),m) < r,m ∈ RELi]

P [m ∈ RELi]
=

πr2

πr2
rel

,
(7)

since the sensors are uniformly distributed and the probability
of lying in a specific region is proportional to the area of the
region. Therefore, the conditional pdf of d(S(i),m) can be
written as

fd(r|m ∈ RELi) =
dFd(r|m ∈ RELi)

dr
=

2πr

πr2
rel

. (8)

We use a differential approach to find the expected number
of decoding relays. Due to uniform sensor distribution, the
number of sensors within each differential element of area in-
side RELi is proportional to the element’s area. Furthermore,
the amount of SIR can be considered to be fixed within each
such element. Thus, we can formulate the expected number of

successful decoding sensors as,

Di =
∫ rrel

0

N i
rPr[SIR(r) > β]

2πr

πr2
rel

dr ⇒

E[Di] =
∫ rrel

0

E[N i
r]Pr[SIR(r) > β]

2πr

πr2
rel

dr

=
∫ rrel

0

πr2
relPr[SIR(r) > β]

2πr

πr2
rel

dr

=
∫ ropt

0

NPr[SIR(r) > β]2πrdr.

(9)

We can further compute the expected number of total
successful decoding relays within the network. We first present
the following definition.

Definition 1: A stopping rule for a set of random variables
Yi is a positive, integer valued, random variable S such that
for each i > 1 the indicator function δ[i], of {S ≥ i} is a
function of Y1, . . . Yi−1 [11].

Theorem 2: In the given sensor network the expected num-
ber of total successful decoding sensors satisfies E[D] =
E[Np]E[Di].

Proof: Wald’s equality ([11]) states that if {Di} are
i.i.d random variables each with mean E[Di] and Np is a
stopping rule for {Di} and D = D1 + . . . + DNp

, then
E[D] = E[Di]E[Np]. We first show that Np is a stopping
rule for Di. For any i the observation of Di means that the
scheduling algorithm permits zone i to be added to the set of
relay zones. This is dependent on 1, . . . , i−1. In other words a
new relay zone can be added if and only if it does not violate
the requirements for source selection (its distance from other
selected sources has to be more than 2rrel) and this will be
dependent on the relative location of the new source with the
previous ones. Therefore, Np is a stopping rule and by Wald’s
equality E[D] = E[Np]E[Di].

B. Expected Number of Interfering Sensors

Since the nodes are randomly distributed on the unit disk,
the number of interferer nodes is a random variable. In time
slot k the relays which have been in their reception phase in
slot k − 1 interfere with the relays receiving in the current
slot. The total number of interfering relays can therefore be
formulated as

NIrelay [k] =
Np[k]∑
j=1

N j
Irelay

[k], (10)

where N j
Irelay

[k] represents the number of relays within relay
zone j (which have been in receive mode during the previous
slot k − 1 and are in transmit mode in the current slot) and
Np[k] is the total number of permissible sources (relay zones)
in slot k. The maximum number of relay zones that can be
packed in the unit disk equals 1

πr2
rel

as explained in Section II-
C. Furthermore, based on the network model assumption, the
event of being an active source is Bernoulli with probability
ps. Therefore, the expected number of active sources equals
psN . Since the number of sources can not exceed the above
limit, we conclude E[Np] = min(psN, 1

πr2
rel

).
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The number of interferers N j
Irelay

within each zone are i.i.d
variables. Using a conditional expected value law we can write

E[NIrelay ] = ENp

[
E[NIrelay |Np = np]

]
= ENp

[ Np∑
j=1

E[N j
Irelay

]
]

= ENp

[
NpE[N j

Irelay
]
]

= E[Np]E[N j
Irelay

].
(11)

Finally, the total number NI [k] of interfering sensors is the
sum of the above quantity and the number of sources in the
current slot that are interfering with relay m’s reception. This
number is equal to Np[k]− 1, since the source corresponding
to the relay has to be removed from the interfering source set.
Therefore, E[NI ] = E[NIrelay ] + E[Np] − 1.

Thus far, for each relay sensor we have derived the expected
number of interfering sensors.

C. Interference Analysis

In this section we explain the details for deriving an approx-
imation to the interference value at each relay. The path loss
roll-off factor is assumed to be equal to α. The channel from
each interfering sensor l to the relay m is assumed to undergo
Rayleigh fading. We further assume that the magnitude of
fading is constant for each packet (quasi-static fading). The
basis of our approach follows [12] in crux and is summarized
below.

Interfering sensors to sensor m are constrained to be outside
RELi. This is imposed by the scheduling discussed before.
Figure 3 demonstrates a possible relay zone (the small circle).
The region outside this circle is the potential interference zone.
For each interfering node l the amount of interference to sensor
m equals Ilm = P

rα
lm

|hlm|2. We assume Rayleigh fading,

therefore |hlm|2 has exponential distribution with parameter
1, and hence E[Ilm] = μl = P

rα
lm

.
We use a differential approach to evaluate the overall

interference at m. Sensors are uniformly distributed, therefore,
the number of sensors within each differential element of area
is proportional to the element’s area. Since there is a total
of NI [k] such elements, in each differential element we have
NIrdrdθ sensors. A differential element dθ as depicted in
Figure 3 causes the following amount of interference

dI =
P

rα
NIrdrdθ =

P

rα−1
NIdrdθ. (12)

The overall expected interference at node m is, therefore,
E[Im] =

∫
S

dI , where S is the potential interferer region.
For a differential element located at angle θ with respect

to x
′

in Figure 3, the segment mh represents the distance of
the maximum interferer, dmax(θ), and the segment mj is the
distance of m from the minimum possible interferer, dmin(θ).
The boundary equation for point h on the unit disk, with
respect to axes x

′
and y

′
is

(x
′
+ d(c,m))2 + y

′2
= (

1√
π

)2, (13)

where d(c,m) represents the distance between disk center and
the relay. Since x

′
= dmax(θ) cos θ and y

′
= dmax(θ) sin θ, (13)

c ...
θ

θd

"y

"x

'x
mω

s

'y

j

h

Fig. 3. Snapshot of the unit disk and a relaying zone. A source and its relay
m have been considered. Differential elements of area have been considered
to find the overall interference at m by integrating over this area.

results in dmax(θ) =
√

1
π − (d(c,m) sin θ)2 − d(c,m) cos θ.

The same approach can be used to find the minimum dis-
tance dmin(ω) by considering the small circle’s equation rel-
ative to axis x

′′
and y

′′
, which will result in dmin(ω) =√

r2
rel − (d(s,m) sin ω)2−d(s,m) cos ω, where ω is the angle

of the differential element with respect to the axis x
′′
. Note

that ω + θ = ∠x
′
mx′′ which is a constant. Therefore, the

overall interference at m can be formulated as

E[Im] =
∫ 2π

0

∫ dmax(θ)

dmin(−θ+∠x′mx′′)
NI

P

rα−1
drdθ

= NIP

∫ 2π

0

r2−α

2 − α
|dmax(θ)

dmin(−θ+∠x′mx′′)
dθ

=
NIP

α − 2

∫ 2π

0

[
1

dmin(−θ + ∠x′mx′′)α−2
− 1

dmax(θ)α−2
]dθ.

(14)

In general, numerical integration is needed to be used to
solve the above integral. However, in our analysis we have
considered α = 4. For this case it can be shown that∫ π

0

dθ(√
a2 − (b sin θ)2 − b cos θ

)α−2 =
πa2

b4 − 2b2a2 + a4
.

(15)
Therefore, (14) can be further simplified as

E[Im] = 2
NIP

α − 2
( π2

π2d4(c,m) − 2πd2(c,m) + 1
−

πr2
rel

d4(s,m) − 2d2(s,m)r2
rel + r4

rel

)
.

(16)

Figure 4 represents the normalized value for the expected
interference E[Im]

NI
. The plot depicts the interference magnitude

for different distances between the disk center c and the relay
m. Also, the effect of the change of relay location relative to its
corresponding source, within each zone has been considered.
Note that interestingly the change of distance relative to the
disk center does not cause substantial change in the expected
interference value. However, within each zone, a possible relay
which is closer to the zone boundaries undergoes a higher
amount of interference as expected. The above observation
suggests that the expected interference will not change dra-
matically as a function of the distance of the zone from
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Fig. 4. The amount of interference (normalized by the number of interferers)
at a relay versus relay’s location in disk and its location relative to its source.

the disk center (neglecting the edge effects). However, the
relative location of relay sensors within each zone is of more
importance.

D. Decoding Probability

In this section we will give an approximation for
Pr[SINRm > β]. Note that we consider equal power P = 1
for all nodes. We assumed that channel coefficients undergo
Rayleigh fading, and therefore, the amount of signal and
interference at each relay sensor are random variables. The
interference at relay m can be formulated as Im =

∑NI

j=1 Ij
m,

where each interference element has an exponential distribu-
tion with mean μl as we explained in section III-C. Computing
this distribution in general becomes intractable, therefore, we
approximate it by assuming that individual interference ele-
ments have equal means μ = E[Im]

E[NI ] . Using this approximation,
it is clear that sum of E[NI ] i.i.d exponential random variables
with mean μ has Erlang distribution with parameter E[NI ] and
mean μE[NI ] = E[Im],

fIm
(x) =

xE[NI ]−1

(E[NI ] − 1)!μE[NI ]
e−

x
μ , for x ≥ 0. (17)

The distribution of the signal power received at node m
located at distance d from the corresponding source s can
then be computed as follows. The received signal from s at m
has the average power μs = P

dα , and therefore, the distribution
of the received power z in a Rayleigh environment follows,
fZ(z) = 1

μs
e−

z
μs . In a large network with interference, we

assume that the amplitude of noise at each relay is small
relative to the interference. Therefore, it suffices to find the
distribution of SIR, Y = Z

Im
. Since Z and Im are positive,

the distribution of SIR is computed as,

FY (y) =
∫ ∞

x=0

∫ z=xy

z=0

fZ(z)fIm
(x)dzdx

=
∫ ∞

x=0

∫ z=xy

z=0

1
μs

e−
z

μs
xE[NI ]−1

(E[NI ] − 1)!μE[NI ]
e−

x
μ dzdx

=
∫ ∞

x=0

(1 − e−
yx
μs )

xE[NI ]−1

(E[NI ] − 1)!μE[NI ]
e−

x
μ dx

= 1 − 1(
1 + yE[Im]

μs

)E[NI ]
,

(18)

where we have used the table of integrals [13] to obtain the last
equality. Thus, we can formulate P [SIR > β] = 1−FY (β) =

1(
1 + μβ

μs

)E[NI ]
, where μs = P

dα is a function of the sensor’s

relative distance d with its corresponding source. The expected
number of decoding nodes within each zone can therefore be
formulated by the result of Theorem 1 and is a function of
relay zone radius.

IV. NETWORK SUM-RATE

In Section III we introduced an analytical framework to
quantify the number of successful decoding relays. To derive
the network sum-rate, we consider the second phase during
which the set of successful decoding relay sensors in slot k
will forward the message to the AP. The successful decoding
sensors Di[k+1] constitute a cooperative MIMO system, first
analyzed in [14] in terms of power efficiency. The relay sensors
within each zone RELi serve as the multiple antennas sending
a common message synchronously.

We formulate the problem of optimizing the relay-zone
radius as maximization of the expected network sum-rate

ropt = arg max
rrel

Np∑
i=1

E[Ri(Di)], (19)

where Di represents the number of nodes which have success-
fully decoded the message in zone i, and we use the notation
Ri(Di) to clarify that the data rate corresponding to zone i is
based on having Di sensors in this zone. We upper bound the
optimization problem given in (19) as

ropt � arg max
rrel

Np∑
i=1

Ri(E[Di]). (20)

This approximation arises since the expected value of a con-
cave function f(x) obeys E[f(x)] ≤ f [E[x]] based on Jensen’s
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inequality. This makes intuitive sense, since the overall sum-
rate is a monotonically increasing function of the number of
transmitters. Therefore, the relay zone radius which results in
the maximum expected number of decoding relays E[Di] will
lead to maximum the network sum-rate.

The capacity of a MIMO channel is derived in the landmark
work of Telatar [15]. We further clarify the multiuser MIMO
model and show that our setting follows the same scheme. We
assume that the AP has access to channel state information for
the capacity results to be true. Suppose the AP is equipped
with nr receive antennas. The number of transmit antennas
in each zone i equals to E[Di], the number of successful
decoding sensors. Then, the uplink of a MIMO channel with
multiple-users can be modeled as

Y = [H1 . . . HNp
]

⎡
⎢⎣

x1

...
xNp

⎤
⎥⎦ + Z, (21)

where Y is the nr × 1 dimensional output vector, Hi is the
nr × E[Di] matrix representing the channel response from
the cooperating sensors of zone i to the destination, and xi

represents the E[Di] × 1 vector of the cooperative message
sent from zone i. Note that since the sensors are located
close to each other and at each instance we only consider
the sensors which have successfully decoded the message, we
can assume full cooperation and consider them as multiple-
antennas sending the same message. Assuming the channel
state information to be known at the receiver the formulation
of capacity region with multiple receive antennas can be
expressed as [16]

M∑
i=1

Ri(E(Di)) ≤ EH[log det(Enr
+

P

Z

M∑
i=1

HiHH
i )]

∀M, 1 ≤ M ≤ Np,

(22)

where Enr
is the nr × nr identity matrix. It is shown in [15]

that for the case of sources with Gaussian distribution and
channel matrices Hi with i.i.d complex Gaussian entries with
mean zero, the above sum can be analytically expressed in
terms of Laguerre polynomials. In our system model since it
is assumed that the AP is located at a height h far enough from
the sensors, the expected power received at the AP from all
sensing sensors approximately equals P

hα . Assuming Rayleigh
fading, the elements of each matrix Hi have a Gaussian
distribution and are scaled by the above expected power factor.
Hence, for our model Hi can be written as a scaled version
of a matrix H

′
i with zero mean complex Gaussian elements

, Hi = 1
hα H

′
i, with P normalized to 1. We can now apply

Theorem 2 in [15] to find an analytical expression for the
network sum-rate. In Theorem 2 of [15] it is proved that the
capacity of a single user MIMO channel with nt transmit and
nr receive antennas with power constraint Ptotal on the transmit
side and under Rayleigh fading equals

C(nr, nt, Ptotal) =
∫ ∞

0

log(1 +
Ptotal

nt
λ)

f−1∑
s=0

s!
(s + a − f)!

[La−f
k (λ)]2λa−fe−λdλ,

(23)

where f = min(nr, nt), a = max(nr, nt), La−f
s (x) =

1
s!e

xxf−a ds

dxs (e−xxa−f+s) is the Associated Laguerre polyno-
mial of order k [15]. The author further proves that under the
multiuser setting with M senders each having power Ptotal, the
sum-rate satisfies

∑M
i=1 Ri(E[Di]) ≤ C(nr,Mnt,MPtotal).

For the sensor network setting, we approximate the number
of virtual antenna elements in each zone and the number
of relay zones with their expected value, as we justified
the use of Jensen’s inequality. Therefore, the number of
transmitter virtual antennas in each zone is nt = E[Di],
the number of receiver antennas is nr and the power con-
straint for the transmitters within each zone is Ptotal =
ntP . Then, the achievable sum-rate satisfies

∑E[Np]
i=1 Ri ≤

C(nr, E[Np]E[Di], E[Np]E[Di] P
hα ). Since we assume all the

E[Di] sensors within zone i have the same power P .

V. NUMERICAL ANALYSIS AND SIMULATION RESULTS

In this section we present numerical results based on
the proposed analytical framework and compare them with
simulation results. The capacity maximization problem has
been solved numerically by changing the relaying zone radius
and finding its optimum value. Clearly, the relay zone radius
which causes the maximum number of correctly decoding
relays within the network will lead to maximum network sum-
rate. We have assumed the path loss roll-off factor to be
α = 4 within the planar disk as justified in [9] for sensor
networks with low-lying antennas. The free space path loss
factor between the sensors and the AP is however, considered
to be α = 2.

To avoid the possibility of very close sensors which will
cause the amount of received signal to be unlimited in our
model, a minimum distance ε is assumed between the sensors.
For the unit disk with N sensors, Nπε2 < Adisk = 1 is needed
to guarantee that all sensors can be located within the disk. We
assumed ε = 1√

5πN
. We also have considered the minimum

threshold for decoding to be β = 15dB for the purpose of our
simulation. For the simulation, the capacity results have been
averaged over 25 different network topologies. In all cases,
the AP is assumed to be located at height h = 1 above the
network.

Figure 5 represents the network snapshot for one relay
zone with the active source sensor for rrel = 0.05 and its
corresponding relays and the interferer sensors. Note that the
idle sensors are not represented in this figure. In this example
the average number of relays in a relaying zone with radius rrel

can be easily computed as E[N i
r] = πr2

relN = π(0.05)21000 �
8.

Figure 6 presents log scaled plots of the sum rate for
two different values of ps. The effect of different numbers
of receive antennas nr based on the capacity results of the
previous section has also been shown. As we expect, the
total number of successful sensors in decoding determines the
capacity. We observe that, the curves for different values of
number of receive antennas have the same characteristic in
terms of the point where the maximum sum-rate occurs. The
determining factor for the network sum-rate is the total number
of cooperative regions and the number of decoding sensors
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Fig. 6. Network sum rate for different number of antennas at the destination.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
[S

IR
(r

)>
β]

Relay distcance r from source

P[SIR(r)>β] vs. distance from source

relay−zone radius=0.05
relay−zone radius=0.11
relay−zone radius=0.19

Fig. 7. Probability of successful decoding versus relay distance from source.

within each region. Therefore, the optimum zone radius is the
same for different values of nr. However, the increase in the
number of antennas will result in spatial multiplexing which
causes the capacity increase shown in the curves. Furthermore,
this figure suggests that the choice of the optimal zone radius
is crucial for all values of nr.

The main reasons for the difference between analysis and
simulation are the edge effect, the approximations used, and
the fact that it is not possible in general to quantify the number
of active sources chosen by scheduling scheme analytically.
Since sensors are randomly located, the actual number of
sources chosen by the MIS algorithm is less than the number
determined by the theoretical results.

In Figure 7 the probability of successful decoding at a
relay vs. the relay distance from the source is given for three
different values of rrel with ropt = 0.05. As the figure suggests,
increasing the zone-radius above the optimum value does not
further improve the system performance.

From this figure it is clear that, the successful decoding
probability is higher when a node is closer to its corresponding
source. Also, as we increase the relay zone radius above its
optimal value, the probability of successful decoding increases
for the relays which are close to the source. This fact results
from the scheduling algorithm, which imposes the interferers
to be located further from the relays closer to the center
of a relay zone for larger zones. However, as the figure
demonstrates, the relays which are located far from the source
decode successfully with a probability approaching zero. This
is because the scheduling algorithm prevents the transmission
of multiple sources within a relay zone, which results in more
sources to be shut down in case of higher relay-zone radius.
In this case the increase in the number of decoding relays (for
the relays close to a specific source) can not compensate for
the capacity loss due to the decrease in the number of sources.
Therefore, the overall network capacity decreases.

As an example, consider a relay located at the distance 0.02
from its corresponding source in Figure 5. For the zone radius
ropt = 0.05. the probability of successful decoding at this relay
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equals 0.51. This value is almost the same for a zone radius
ropt = 0.11 and increases to 0.85 for ropt = 0.19. However, in
the latter case as we can see from the figure there is a very
small probability of correctly decoding for the relays located
further than ropt = 0.05 from the source. In this case, by
having a bigger zone the amount of interference in the network
has increased while there is only little increase in the number
of decoding relays which are close to the source. This results
in the overall decrease of the sum-rate compared to the case
of relaying with optimal zone radius.

VI. CONCLUSION

In this work we have studied the trade-off between ex-
ploiting sensors as relays and the increase in the amount of
interference caused by asynchronous transmission of these
relays in a dense sensor network. Based on this trade-off
we have introduced the notion of relay zones whose radius
can be optimized to maximize the overall network sum-rate.
We give a closed form approximation, for the probability
of correctly decoding at each potential relay node, and the
average number of cooperating sensors within each zone is
quantified. Assuming Rayleigh fading we have also computed
the amount of interference within each zone and studied
its variation at different locations within the disk and for
different distances of the relay from its corresponding source.
Numerical results based on the proposed analysis provide
design guidelines for optimal relaying in interference limited
sensor networks.
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