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Abstract—Electric vehicles (EVs) are promising alternatives to
provide ancillary services in future smart energy systems. In this
paper, we consider an aggregator-EVs system providing regula-
tion service to a power grid. To allocate regulation amount among
EVs, we present both synchronous and asynchronous distributed
algorithms, which align each EV’s interest with the system’s
benefit. Compared with previous works, our algorithms accom-
modate a more realistic model of the aggregator-EVs system,
in which EV battery degradation cost, EV charging/discharging
inefficiency, EV energy gain/loss, the cost of external energy
sources, and potential asynchronous communication between the
aggregator and each EV are taken into account. We give sufficient
conditions under which the proposed algorithms generate the
optimal regulation amounts. Simulations are shown to validate
our theoretical results.

I. INTRODUCTION

Frequency regulation service is provided to balance power

generation and load demand in a short time scale, so as to

maintain the frequency of a power grid at its nominal value.

Traditionally, regulation service is provided by fast responsive

generators, which vary their output to alleviate power deficits

or surpluses, and is the most expensive ancillary service [1].

More recently, experiments have shown that EV’s power elec-

tronics and battery can well respond to the frequent regulation

signals [2]. Thus, it is possible to exploit plugged-in EV as an

alternative to provide regulation service through charging and

discharging, which could reduce the cost of regulation service

significantly and may be more environmentally friendly [2].

However, since regulation service is generally requested on

the order of megawatts while the power capacity of an EV

is typically 5-20 kW, it is often necessary for an aggregator

to coordinate a large number of EVs to join the regulation

market [3]. To allocate the requested regulation amount in an

aggregator-EVs system, one may rely on a centralized control

architecture, in which the aggregator determines the regulation

amounts for all EVs. Nevertheless, letting the aggregator fully

control EV charging/discharging would override the user’s

individual choice, hence potentially hampering the adoption of

vehicle-to-grid (V2G) technology [4]. An alternative approach,

which is the focus of this paper, is to distribute the decision

making over EVs. In this case, it is important to design a

proper distributed algorithm, in which each EV’s interest can

be aligned with the system’s benefit.

There is a growing body of recent works on V2G regulation

service. Specific to the aggregator-EVs system, which focuses

on the interaction between the aggregator and EVs, most works

adopt centralized regulation allocation, with the objective of

maximizing the profit of the aggregator or the EVs, e.g.,

[5]–[9], or the social welfare of the system, e.g., [10]. To

our best awareness, the only previous works that address

distributed regulation allocation specific to the aggregator-

EVs system are [11] and [12]. Both apply a game-theoretical

approach to design pricing strategies that incentivize EVs’

participation. In [11], assuming that each EV only decides

whether to charge, discharge, or remain idle without con-

sidering the charging/discharging amount, a service pricing

function is developed leading to a Nash equilibrium, where

the difference between the requested regulation amount and

the sum EV contribution is minimized. The same goal is

considered in [12], where each EV can additionally decide

its charging/discharging amount. A pricing strategy and a

distributed consensus algorithm are designed for the EVs to

reach a unique Nash equilibrium, but the optimality of the

pricing strategy is not considered.

In this paper, we provide both synchronous and asyn-

chronous distributed algorithms for the aggregator-EVs system

to collectively optimize the regulation allocation among selfish

EVs, aligning each EV’s interest with the system’s benefit.

We include the cost of clearing the difference between the

requested regulation amount and the sum EV contribution into

the optimization objective. The aggregator is assumed to be

regulated and non profit-driven, so that it aims to minimize the

total cost of the whole system. Compared with previous works,

we also consider a more detailed model of the aggregator-

EVs system. Specifically, for each EV, the battery degradation

cost due to frequent charging/discharging in regulation service,

charging/discharging inefficiency, and energy gain/loss, are

taken into account. We study both the ideal scenario in

which the aggregator and each EV can communicate syn-

chronously without delay, and the practical scenario in which

the information at both sides can be outdated. To develop

distributed algorithms, we apply the technique of Lagrange

dual decomposition [13], which has found wide application

in network utility maximization [14]. For both synchronous

and asynchronous distributed algorithms, we give sufficient

conditions under which the algorithms produce the optimal

regulation amounts.

The remainder of this paper is organized as follows. We

describe the system model and formulate the regulation al-
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Fig. 1. Information and energy flows in the aggregator-EVs system.

location problem in Section II. In Section III, we propose

a synchronous distributed algorithm for regulation allocation,

and in Section IV, we provide an asynchronous distributed

algorithm. Simulation results are shown in Section V, and we

conclude in Section VI.

Notation: Denote [a, b]− as min{a, b}; denote [x]ba as

min{max{x, a}, b}, which projects x onto the interval [a, b];
denote R as the set of real numbers and Z

+ as the set of

nonnegative integers.

II. SYSTEM MODEL

In this section, we first describe an aggregator-EVs system

which provides regulation service, then formulate the regula-

tion allocation problem mathematically.

A. Regulation Service and Aggregator-EVs System

Consider an aggregator-EVs system in which an aggregator

coordinates N EVs to provide regulation service to a power

grid. The regulation signal is random and is sent by the

power grid to the aggregator periodically. Consider one period

of regulation service, and denote G as the regulation signal

received by the aggregator. If G > 0, the aggregator needs to

offer regulation down service by absorbing G units of energy

from the power grid during the current period; if G < 0, the

aggregator needs to offer regulation up service by contributing

|G| units of energy to the power grid during the current period.

For notation simplicity, let 1d,1(G > 0) and 1u,1(G < 0),
where 1(·) is the indicator function. Since regulation down and

up services cannot happen simultaneously, we have 1d·1u = 0.

To provide regulation service, assume that the aggregator and

each EV can communicate bidirectionally using a communi-

cation protocol such as ZigBee or Bluetooth. In Fig. 1, the

information and energy flows of the system are depicted.

In the considered regulation service period, denote xi,d ≥ 0
as the amount of energy absorbed by the i-th EV in the

case of regulation down, and xi,u ≥ 0 as the amount of

energy contributed by the i-th EV in the case of regulation

up. Define N -dimensional vectors xd,[x1,d, · · · , xN,d] and

xu,[x1,u, · · · , xN,u].
Let si,b be the energy state of the i-th EV at the beginning of

the current period, and si,e be the energy state after regulation

service. The relationship between si,b and si,e is as follows.

si,e = si,b + 1dηi,chxi,d − 1uηi,dixi,u,

where ηi,ch ∈ (0, 1] is the charging efficiency coefficient, and

ηi,di ≥ 1 is the discharging efficiency coefficient. Due to the

inefficiency of EV charging/discharging, generally, the actual

stored energy for regulation down is less than xi,d, and the

actual contributed energy for regulation up is larger than xi,u.

Because of charging/discharging circuit limitation, assume that

xi,d and xi,u are upper bounded by xi,max > 0. Charging a

battery near its capacity or discharging it close to the zero

energy state can significantly reduce battery lifetime [15].

Therefore, lower and upper bounds on the battery energy state

are usually imposed by its manufacturer or user. Denote si,cap

as the energy capacity of the i-th EV, and [si,min, si,max] as its

preferred energy range with 0 ≤ si,min < si,max ≤ si,cap. By

the above constraints, the regulation amounts xi,d and xi,u

of the i-th EV should satisfy 0 ≤ xi,d ≤ hi,d and 0 ≤

xi,u ≤ hi,u, respectively, where hi,d,

[

xi,max,
si,max−si,b

ηi,ch

]−

and hi,u,

[

xi,max,
si,b−si,min

ηi,di

]−

.

By providing regulation service, each EV receives payment

from the aggregator for its controllable and flexible charg-

ing/discharging capability. Denote the unit prices of regulation

down and up for the current period as pd and pu, respectively.

Then, the i-th EV gets payment pdxi,d in the case of regulation

down and payment puxi,u in the case of regulation up.

However, for each EV, the regulation service gain comes

at the cost of battery degradation for frequent charging and

extra cycling of battery [16], [17]. Denote Ci,d(·) and Ci,u(·)
as the degradation cost functions of the regulation amount

associated with regulation down and up, respectively, with

Ci,d(0) = Ci,u(0) = 0. For notation simplicity, we will merge

the parameter ηi,di into the cost function Ci,u(·). Since faster

charging or discharging (larger value of xi,d or xi,u) generally

has a disproportionally more detrimental effect on battery

lifetime, Ci,d(·) and Ci,u(·) are generally increasing convex

functions. To facilitate later analysis, we slightly strengthen

this condition to the following:

C1:

• Ci,d(x)
(

resp. Ci,u(x)
)

is increasing, strictly convex,

and twice continuously differentiable on [0, hi,d]
(

resp.

[0, hi,u]
)

.

• The second derivatives satisfy C′′
i,d(x) ≥ ci,d > 0, ∀x ∈

[0, hi,d]
(

resp. C′′
i,u(x) ≥ ci,u > 0, ∀x ∈ [0, hi,u]

)

.

Additionally, for each EV, there is energy gain/loss as-

sociated with regulation down/up. Denote the unit market

charging price as pm. Then, for the i-th EV, the rev-

enue due to absorbing energy in the case of regulation

down is pmxi,d, and the loss due to contributing en-

ergy in the case of regulation up is pmηi,dixi,u. Therefore,

the effective cost of the i-th EV for providing regulation

service is 1d (Ci,d(xi,d)− pmxi,d − pdxi,d) + 1u

(

Ci,u(xi,u)
+pmηi,dixi,u − puxi,u

)

.

Due to a lack of participating EVs or high battery degra-

dation cost, the total regulation amount provided by the

EVs may be insufficient to meet the requested regulation

amount. Specifically, for regulation down, this insufficiency



of regulation amount means that
∑N

i=1
xi,d < G, with the

associated gap representing an energy surplus; for regulation

up, this insufficiency means that
∑N

i=1
xi,u < |G|, with

the associated gap representing an energy deficit. Therefore,

from time to time, to fill such gaps, the aggregator needs to

exploit more expensive external energy sources, such as from

the traditional regulation market. Denote the cost functions

of clearing energy surplus and energy deficit as Ds(·) and

Dd(·), respectively, with Ds(0) = Dd(0) = 0. Then, the

cost for the aggregator to exploit the external sources is

1dDs(G−
∑N

i=1
xi,d) + 1uDd(|G| −

∑N

i=1
xi,u). We impose

the following conditions on the external cost functions:

C2:

• Ds(x)
(

resp. Dd(x)
)

is increasing, strictly convex, and

twice continuously differentiable on [0, G].
• The second derivatives satisfy D′′

s (x) ≥ ds > 0, ∀x ∈
[0, G]

(

resp. D′′
d(x) ≥ dd > 0, ∀x ∈ [0, G]

)

.

B. Problem Statement

Because the EVs may belong to different users other than

the aggregator, we assume that each EV is selfish and intends

to minimize its own effective cost given the regulation prices.

In particular, for each period of regulation service, the i-th EV

aims to solve the following optimization problem.

min
xi,d,xi,u

1d (Ci,d(xi,d)− pmxi,d − pdxi,d)

+ 1u (Ci,u(xi,u) + pmηi,dixi,u − puxi,u)

s.t. 0 ≤ xi,d ≤ 1dhi,d, 0 ≤ xi,u ≤ 1uhi,u.

The aggregator is assumed to be regulated and non profit-

driven, and it can represent a government-funded party that

encourages the integration of EVs into a power grid. The

objective of the aggregator is to minimize the total cost of the

whole system in the service period. The optimization problem

for the aggregator is thus as follows.

min
xd,xu

1d

([

N
∑

i=1

Ci,d(xi,d)− pmxi,d

]

+Ds

(

G−

N
∑

i=1

xi,d

)

)

+ 1u

([

N
∑

i=1

Ci,u(xi,u) + pmηi,dixi,u

]

+Dd

(

|G| −

N
∑

i=1

xi,u

)

)

s.t. 0 ≤ xi,d ≤ 1dhi,d, 0 ≤ xi,u ≤ 1uhi,u, ∀i,
N
∑

i=1

xi,d ≤ G,
N
∑

i=1

xi,u ≤ |G|.

In the objective function above, the EVs’ payments for

regulation service are not included. This is because the pay-

ments are transfered from the aggregator to the EVs, hence

not affecting the cost of the whole system. The aggregator

can solve the above optimization problem centrally, provided

that it can fully control EV charging/discharging, and is aware

of each EV’s upper bounds on the regulation amounts and

degradation cost functions. However, EV user may wish to

keep its individual choice; plus, the required information is

private to each EV, so it may not be available at the aggregator.

Motivated by these concerns, our goal in this paper is to

develop distributed algorithms in which the private information

of EVs is not required, but each EV’s self interest can be

aligned with the system’s benefit.

III. SYNCHRONOUS DISTRIBUTED REGULATION

ALLOCATION

Applying the technique of Lagrange dual decomposition

[13], we present a distributed algorithm for regulation alloca-

tion, provided that the aggregator can communicate with EVs

synchronously without delay. A more realistic asynchronous

distributed algorithm is considered in Section IV.

A. Synchronous Algorithm

Since regulation down and up services cannot happen si-

multaneously and their analyses are similar, in the following,

we focus on regulation down service only, i.e., 1d = 1. The

optimization problem for the aggregator is as follows.

P1: min
xd

[

N
∑

i=1

Ci,d(xi,d)− pmxi,d

]

+Ds

(

G−

N
∑

i=1

xi,d

)

s.t. 0 ≤ xi,d ≤ hi,d, ∀i,

N
∑

i=1

xi,d ≤ G.

For P1, since Ci,d(·) is strictly convex and thus the objective

function is strictly convex, there is at most one global mini-

mizer. Additionally, since the objective function is continuous

and the constraint set of xd is compact, there is at least one

minimizer. Therefore, there is a unique solution for P1.

Note that the term Ds(G −
∑N

i=1
xi,d) in the objective

function, as well as the constraint
∑N

i=1
xi,d ≤ G, couples

the regulation amounts of all EVs, which hinders a distributed

algorithm. To avoid such coupling, we first introduce an

auxiliary variable q ∈ [0, G] to represent the amount of energy

surplus and consider the following problem.

P2: min
xd,q

[

N
∑

i=1

Ci,d(xi,d)− pmxi,d

]

+Ds(q)

s.t. 0 ≤ xi,d ≤ hi,d, ∀i, 0 ≤ q ≤ G,
N
∑

i=1

xi,d + q = G. (1)

Denote the optimal solution of P2 as (x∗
d, q

∗) and the optimal

value of P2 as f∗. It is not hard to see that, P2 has a unique

optimal solution, and P2 and P1 are equivalent in the sense

that these two have the same unique solution x
∗
d and the same

objective value.

Next associate the equality constraint in (1) with a Lagrange

multiplier λ. The partial Lagrangian of P2 is

L(xd, q, λ)

=

[

N
∑

i=1

Ci,d(xi,d)− pmxi,d

]

+Ds(q) + λ

(

G−

N
∑

i=1

xi,d − q

)

.



The dual function g(λ) is defined as the minimum of the partial

Lagrangian with respect to the primal variables xd and q:

g(λ) = min
0≤xi,d≤hi,d,∀i, 0≤q≤G

L(xd, q, λ), (2)

which can be decomposed into sub-problems for each EV and

the aggregator. Specifically, the sub-problem for each EV is

min
xi,d

Ci,d(xi,d)− pmxi,d − λxi,d s.t. 0 ≤ xi,d ≤ hi,d, (3)

while the sub-problem for the aggregator is

min
q

Ds(q) + λ(G− q) s.t. 0 ≤ q ≤ G. (4)

In (3), by interpreting λ as pd, the unit price of regulation

down, the optimization problem is to minimize the i-th EV’s

effective cost, which aligns exactly with the EV’s interest.

By the Karush-Kuhn-Tucker (KKT) conditions, given λ, the

unique solution of the i-th EV is [C′−1

i,d (pm + λ)]
hi,d

0 . In (4),

the aggregator aims to minimize its cost, including both the

external energy cost and the payment to all EVs. Given λ, the

unique solution of the aggregator is [D′−1
s (λ)]G0 .

The dual problem is defined as the maximization of the dual

function:

max
λ

g(λ).

Denote the optimal solution of the dual problem as λ∗ and

the optimal value as g∗. Since Slater’s condition is satisfied

in P2, we have strong duality, i.e., g∗ = f∗ [13]. In addition,

since for any given λ, there is a unique solution in both (3)

and (4), the dual function g(λ) is everywhere continuously

differentiable in R, and the optimal point (x∗
d, q

∗) of P2 can

be recovered by solving (3) and (4) at the optimal dual solution

λ∗ [18]. Applying the gradient method to the dual problem,

we provide a distributed algorithm to derive λ∗ and (x∗
d, q

∗),
shown in Algorithm 1.

B. Performance Analysis

We first give the following lemma, which will be used for

the convergence analysis of Algorithm 1.

Lemma 1: Suppose that the conditions C1 and C2 hold.

Then the gradient of the dual function is Lipschitz continuous,

i.e., |g′(λ1)− g′(λ2)| ≤ l|λ1 − λ2| for all λ1, λ2 ∈ R, where

l,(N + 1)max{1/c1,d, · · · , 1/cN,d, 1/ds}.

Proof: See our technical report [19].

Using Lemma 1, the convergence condition of Algorithm 1
is given as follows.

Theorem 1: Suppose that the conditions C1 and C2 hold.

In Algorithm 1, if the step size r ∈ (0, r0) where r0,2/l, then

the generated {λk} converges to the optimal dual solution λ∗.

Proof: Algorithm 1 is a specific case of the gradient

algorithm. We refer readers to [18] for the detailed proof.

Remarks: From Theorem 1, the fixed step size r is upper

bounded by r0, which is inversely proportional to the number

of EVs and is related to all cost functions for providing

regulation service. Therefore, roughly speaking, the larger the

Algorithm 1 Synchronous distributed regulation allocation for

regulation down.

Aggregator’s algorithm:

1) Initialize the iteration index k to 0 and the regulation price

λ0 to an arbitrary positive constant. If 1d = 1, broadcast

to all EVs that the current service is regulation down.

2) At each iteration k ∈ Z
+, broadcast the price signal

pd = λk to all EVs, receive xk
i,d from each EV, derive the

optimal amount of energy surplus by qk = [D′−1
s (λk)]G0 ,

and update the price signal by

λk+1 ← λk + r

(

G−

N
∑

i=1

xk
i,d − qk

)

,

where r is a fixed step size.

3) Iteration terminates when the absolute value of the gradi-

ent |G−
∑N

i=1
xk
i,d− qk| < ǫ, for some predefined ǫ > 0.

EV’s algorithm:

1) Set 1d = 1 if the current service is regulation down.

2) At each iteration k ∈ Z
+, receive the price signal pd

from the aggregator, derive the optimal regulation amount

by xk
i,d = [C′−1

i,d (pm + pd)]
hi,d

0 , and submit xk
i,d to the

aggregator.

number of EVs, the slower the algorithm. Suppose that the

batteries and the external energy source all have quadratic cost

functions in the form of ci,dx
2 and dsx

2, respectively. Assume

that the external source is more expensive, i.e., ds > ci,d, ∀i.
Then, based on the definition of l in Lemma 1, the estimate

of the cost coefficient associated with the least-cost battery is

required for the aggregator to determine the upper bound r0.

Since EVs have energy gain by performing regulation down,

the price signal could be negative when EVs’ degradation costs

are small. In the following proposition, we give a condition

under which the price signal is lower bounded and there is an

EV willing to perform regulation down.

Proposition 1: If there exists an EV j such that C′
j,d(x)−

pm < D′
s(x), ∀x ∈ (0, η), where η is an arbitrarily small

positive number, then λ∗ > min1≤i≤N{C
′
i,d(0) − pm} and

x∗
j,d > 0.

Proof: See technical report [19].

Proposition 1 essentially says that, as long as there is one

EV whose effective marginal cost is strictly less than the

marginal cost of the external energy source, it’s beneficial for

the aggregator to incentivize EVs to perform regulation service

(although the price signal can be negative).

IV. ASYNCHRONOUS DISTRIBUTED REGULATION

ALLOCATION

To implement Algorithm 1, the aggregator and all EVs are

required to update the information at every iteration, which

is impractical especially when the number of EVs is large.

In addition, due to the communication delay between the

aggregator and each EV, the price signal at each EV or the total

regulation amount at the aggregator can be outdated. In this



section, we modify Algorithm 1 and provide an asynchronous

distributed algorithm for the aggregator-EVs system providing

regulation service. Our approach is adapted from the general

partially asynchronous method [20].

Denote ai as the communication delay from the aggregator

to the i-th EV, and bi as the communication delay from the

i-th EV to the aggregator. Denote Ti ⊆ Z
+ as the set of the

iteration indexes for which the i-th EV updates its regulation

amount. Specifically, if k ∈ Ti, then the i-th EV updates xk
i,d

based on the last received regulation price pd = λ̂k; if k /∈ Ti,
then the i-th EV skips this iteration, and its regulation amount

at the aggregator remains unchanged. Similarly, denote Ta ⊆
Z
+ as the set of the iteration indexes for which the aggregator

broadcasts and updates its information. In particular, if k ∈ Ta,

then the aggregator broadcasts λk, derives the energy surplus

amount qk, and updates the regulation price λk+1 based on

the last received regulation amount from each EV; if k /∈ Ta,

then the aggregator skips this iteration and keeps the price

unchanged. We assume the following partially asynchronous

conditions [20]:

C3:

• The communication delays ai and bi, ∀i, are bounded by

a positive integer d.

• The aggregator and each EV update their information at

least once every d iterations.

Under the condition C3, we state the asynchronous dis-

tributed regulation allocation in Algorithm 2. Algorithm 2 is

similar to the asynchronous algorithm presented in [21] for

network flow control. Different from our model, the objective

in [21] is to maximize the aggregate utility function of all

sources subject to link capacities.

The convergence condition of Algorithm 2 is given below.

Theorem 2: Suppose that the conditions C1-C3 hold. Then,

there exists a positive number rmax > 0 such that, if r ∈
(0, rmax), then the generated {λk} in Algorithm 2 converges

to the optimal dual solution λ∗.

Proof: The proof is similar to that in [21]. The key is to

show that the gradient of the dual function in (5) maintains in

the ascent direction. See technical report [19].

V. SIMULATION RESULTS

We have simulated an aggregator-EVs system with parame-

ters drawn from practical scenarios, implementing Algorithms

1 and 2 to validate the theoretical results.

Suppose that the aggregator coordinates N = 100 EVs,

evenly split into Type I (Ford Focus Electric) and Type II

(Tesla Model S), to provide regulation service. For Type I EVs,

we have si,cap = 23 kWh and xi,max = 0.55 kWh; for Type II

EVs, we have si,cap = 40 kWh and xi,max = 0.83 kWh [22],

[23], where xi,max for each EV is derived by assuming the

regulation interval ∆t = 5 minutes. Assume that the current

service is regulation down, and the regulation signal G = 69.2
kWh, which is the maximum allowed energy amount from all

EVs. For each EV, we set si,min = 0.1si,cap and si,max =
0.9si,cap, and draw the initial energy state, si,b, uniformly from

Algorithm 2 Asynchronous distributed regulation allocation

for regulation down.

Aggregator’s algorithm:

1) Initialize the iteration index k to 0 and the regulation price

λ0 to an arbitrary positive constant. If 1d = 1, broadcast

to all EVs that the current service is regulation down.

2) From time to time, receive the regulation amount from

each EV.

3) At each iteration k ∈ Ta or k = 0, broadcast the price

signal pd = λk to all EVs, derive the optimal amount

of energy surplus by qk = [D′−1
s (λk)]G0 , and update the

price by

λk+1 ← λk + r

(

G−

N
∑

i=1

x̂k
i,d − qk

)

, (5)

where r is a fixed step size, and x̂k
i,d is the last received

regulation amount from the i-th EV.

4) At each iteration k /∈ Ta, set λk+1 ← λk.

5) Iteration terminates when the absolute value of the gradi-

ent |G−
∑N

i=1
x̂k
i,d− qk| < ǫ, for some predefined ǫ > 0.

EV’s algorithm:

1) Set 1d = 1 if the current service is regulation down.

2) From time to time, receive the price signal from the

aggregator.

3) At each iteration k ∈ Ti, derive the optimal regulation

amount based on the last received price pd = λ̂k by

xk
i,d = [C′−1

i,d (pm + pd)]
hi,d

0 , and submit xk
i,d to the

aggregator.

[si,min, si,max]. The charging efficiency coefficient is ηi,ch =
0.8. The market charging price pm is 0.12 dollars/kWh. The

degradation cost functions of Type I and Type II EVs are

0.1x2 and 0.15x2, respectively. The external cost function for

clearing energy surplus is 0.2x2. Hence, from Theorem 1, the

upper bound on a fixed step size in Algorithm 1 is r0 =
0.002. In Algorithm 2, we set Ti = ∪k=0{2k} for Type I EVs,

Ti = ∪k=1{2k − 1} for Type II EVs, and Ta = Z
+ for the

aggregator. The bidirectional communication delay between

the aggregator and each EV is 1, i.e., ai = bi = 1, ∀i.

In Fig. 2, we exhibit the trace of the price signal {λk}
generated by Algorithm 1, where the step size r is set as 0.1r0,

r0, and 10r0. We see that, for the first two step sizes, the price

signal converges to the limit point 0.128, while for the last step

size, the price signal oscillates around 0.128. This observation

confirms the sufficient condition of r, i.e., r ∈ (0, r0), for

the convergence of {λk}, and also demonstrates that, the

convergence cannot be guaranteed if the step size is too

large. In Table I, we list the required number of iterations for

termination in Algorithm 1, where the termination condition is

set as |G−
∑N

i=1
xk
i,d−qk| < 0.001. The step size varies from

0.1r0 to r0. As expected, the required number of iterations

decreases with the step size. In particular, for r = 0.1r0 and

r0, the numbers of iterations are 299 and 26, respectively.
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Fig. 2. Trace of the price signal {λk} in Algorithm 1, with the step size
r = 0.1r0, r0, and 10r0.

TABLE I
REQUIRED NUMBER OF ITERATIONS FOR TERMINATION IN ALGORITHM 1.

r/r0 0.1 0.2 0.3 0.4 0.6 0.8 1

Number of iterations 299 148 97 72 47 34 26

This demonstrates the significance of the upper bound r0, and

hence the importance of estimating l, as defined in Lemma 1,

in practice.

For the convergence of Algorithm 2, Theorem 2 provides a

sufficient condition of the step size given by 0 < r < rmax.

We run Algorithm 2 with r ranging from 0.1r0 to r0. Our

results suggest that the price signal {λk} converges to the

same limit point for all these step sizes. Furthermore, in Fig.

3, we show the trace of the dual function in (2). We see that,

for r ranging from 0.1r0 to 0.2r0, the dual function increases

in every iteration, i.e., the price update is maintained in the

ascent direction, while for r ≥ 0.3r0, the ascent direction is

not guaranteed. Therefore, in this example, for Algorithm 2 to

be a gradient ascent algorithm, it suffices to set rmax = 0.2r0.

However, we note that, although for r ≥ 0.3r0 the ascent

direction is not maintained, the convergence of {λk} can still

be used for the recovery of the optimal solution (x∗
d, q

∗) in

P2, indicating the robustness of the algorithm to the step size.

VI. CONCLUSION

We considered an aggregator-EVs system performing regu-

lation service, and developed synchronous and asynchronous

distributed algorithms for regulation allocation. Our algo-

rithms align each EV’s interest with the system’s benefit, and

accommodate a more realistic aggregator-EVs system. For

both synchronous and asynchronous algorithms, we provide

sufficient conditions for optimality. The simulation results are

exhibited to confirm the theoretical results.
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