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Abstract—The problem of real-time power balancing in a grid-
connected microgrid is studied. We consider a microgrid pow-
ered by a conventional generator (CG) and multiple renewable
generators (RGs) each co-located with one distributed storage
(DS) unit. An aggregator operates the microgrid and aims to
minimize the long-term system cost, including all RGs’ cost, the
CG’s cost, and the cost for exploiting external energy markets. We
jointly manage the supply side, demand side, and DS units, taking
into account the randomness of the system, and incorporating
the ramping constraint of the CG. A real-time algorithm is
proposed, which does not require any statistics of the system. We
analytically characterize the gap between the system cost under
our algorithm and the minimum cost, demonstrating that our
algorithm is asymptotically optimal as the DS energy capacity
increases and the CG ramping constraint loosens. In simulation,
we compare the proposed algorithm with a greedy algorithm as
well as a lower bound on the optimum. Simulation shows that
our algorithm outperforms the greedy one and its performance
can be close to the optimum even with small DS units.

I. INTRODUCTION

Microgrid is seen to be the basic structure in the future
power grid [1]. With the growing environmental concerns and
the need to reduce greenhouse gas emissions, more and more
renewable generation, such as wind and solar, is expected
to be integrated into the microgrid. However, as renewable
generation is intermittent and non-dispatchable, straightfor-
ward integration of a large amount of renewable generation
would create noticeable variations in power supply. On the
other hand, continuously balancing supply and demand is of
paramount importance for the reliability of a power system [2].
Therefore, how to efficiently integrate renewable generation
while ensuring the system reliability is crucial for microgrids.

A microgrid is typically characterized by distributed gen-
eration (DG), distributed storage (DS), and loads. Besides
renewable generators (RGs), DG can encompass some conven-
tional generators (CGs) such as nuclear, coal-fired, or gas-fired
generators. For DS, its charging and discharging capability
can be exploited to regulate the energy supply. Hence, co-
location of DS and a RG is often suggested. Moreover, loads
generally contain base loads and flexible loads, and the latter
can be controlled through either curtailment or time shift. For
system reliability, the microgrid has to maintain power balance
continuously. This generally involves three types of manage-
ment: supply side management, demand side management, and
storage management, which require the coordination of all
components in the system. Designing an efficient algorithm

for real-time power balancing in microgrids is challenging.
Concretely, since the system states such as the renewable
generation, loads, and electricity prices are random, accurate
modeling and statistical information may be required, which
are difficult to obtain in reality. Second, due to practical
operation limitations such as the restriction of the energy
capacity of DS units and the ramping constraint of CGs, the
control decisions are coupled over time, which complicates
the real-time decision making.

Recently, there are many works on energy management in
microgrids, emphasizing various aspects of the system. For
example, [3] and [4] consider supply side management by
assuming all loads are uncontrollable, [5] studies demand side
management, while [6] and [7] propose to employ DS units
to clear power imbalance in real time. [8] and [9] put these
three types of management together. However, in [8], although
the uncertainty of the renewable generation is characterized by
a polyhedral set, the uncertainty of the loads and electricity
prices is ignored. Moreover, the algorithm is designed for off-
line use such as in day-ahead scheduling, and therefore cannot
be implemented in real time. In [9], a real-time algorithm is
proposed to minimize the cost of the CG only. Nevertheless,
the ramping constraint of the CG is not taken into account.

In this paper, we investigate the problem of real-time power
balancing in a microgrid by incorporating supply side man-
agement, demand side management, and storage management.
We consider a microgrid powered by a CG and multiple RGs
each co-located with one DS unit. An aggregator operates the
microgrid and aims to minimize the long-term system cost,
including all RGs’ cost, the CG’s cost, and the cost for selling
and purchasing energy from the external energy markets. We
take the system randomness into account and also incorporate
the ramping constraint of the CG. To solve the underlying
optimization problem, a real-time algorithm is proposed.

The main contribution of this paper is two-fold. First, we
build a more complete microgrid system and formulate the
real-time power balancing problem as a stochastic optimization
problem. Second, we offer a real-time algorithm, which does
not require any statistics of the system and meanwhile provides
a strong performance guarantee. In particular, we characterize
the gap between the system cost under our algorithm and
the minimum cost. We demonstrate that our algorithm is
asymptotically optimal as the energy capacity of the DS units
increases and the ramping constraint of the CG loosens. In



Fig. 1. Schematic representation of a microgrid.

simulation, we compare our algorithm with a greedy algorithm
as well as a lower bound on the minimum system cost.
Simulation shows that our algorithm outperforms the greedy
algorithm and can be close to the minimum cost even with
small DS units.

The remainder of this paper is organized as follows. In
Section II, we describe the system model of a microgrid
and formulate an optimization problem for real-time power
balancing. In Section III, we propose a real-time algorithm and
in Section IV, we analyze its performance. Simulation results
are presented in Section V, and we conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, we consider a microgrid powered by
a CG (e.g., nuclear, coal-fired, or gas-fired generator) and N
RGs (e.g., wind or solar) each equipped with one on-site DS
unit. The microgrid is connected to the external energy markets
and is operated by an aggregator, who is responsible for
satisfying the loads by managing energy from various sources.
The information flow and the energy flow are also depicted in
Fig. 1. Assume that the system operates in discrete time with
time slot t ∈ {0, 1, 2, . . .}. The details of each component in
the microgrid are described below.

1) Loads: The loads include base loads and flexible loads.
The base loads represent the critical energy demands such as
lighting, which must be satisfied once requested. The flexi-
ble loads represent the controllable energy requests, such as
those from thermostatically controlled loads (TCLs), electric
vehicles (EVs), and other smart appliances, which can be
partly curtailed if the energy provision cost is high. At time
slot t, denote the amount of the requested base loads as
lb,t ∈ [lb,min, lb,max] and the amount of the requested flexible
loads as lf,t ∈ [lf,min, lf,max]. The amounts lb,t and lf,t
are generated by users based on their own needs and are
considered random. Let the amount of the total satisfied loads
be lm,t, which is bounded by lb,t ≤ lm,t ≤ lb,t + lf,t.

The control of the flexible loads needs to meet cer-
tain quality-of-service requirement. In this work, we im-
pose an upper bound on the portion of the unsatisfied flex-
ible loads. Formally, we introduce a long-term constraint
lim supT→∞

1
T

∑T−1
t=0 E

[
lb,t+lf,t−lm,t

lf,t

]
≤ α where α ∈ [0, 1]

is a pre-designed threshold with a smaller value indicating a
tighter quality-of-service requirement.

2) RG and On-Site DS Unit: At the i-th RG, denote the
amount of the renewable generation during time slot t by
ai,t ∈ [0, ai,max], where ai,max is the maximum generated
energy amount. Due to the stochastic nature of the renewable
sources, ai,t is random over time. To mitigate such random-
ness, we assume that each RG is co-located with one on-
site DS unit capable of charging and discharging. Denote the
charging/discharging energy amount of the i-th DS unit during
time slot t as xi,t, with xi,t > 0(< 0) indicating charging
(discharging). Owing to the storage battery characteristics, xi,t
is bounded within [xi,min, xi,max] with |xi,min| and xi,max

representing the maximum discharging and charging amount,
respectively.

In every time slot, the RG supplies energy to the aggregator.
Denote bi,t ≥ 0 as the amount of the contributed energy by
the i-th RG during time slot t. Since the energy flows of
the RG should be balanced, we have bi,t = ai,t − xi,t,∀t.
In particular, if xi,t > 0 (charging), the energy contribution
amount bi,t comes from part of the renewable generation; if
xi,t < 0 (discharging), bi,t comes from both the renewable
generation and the DS unit.

For the i-th DS unit, denote its energy state at the beginning
of time slot t by si,t with the initial energy state si,0 = 0.
Due to charging and discharging operations, the energy state
fluctuates over time and evolves as follows1:

si,t+1 = si,t + xi,t,∀t. (1)

It is known that fast charging/discharging causes battery
degradation, which shortens battery lifetime [10]. Moreover,
faster charging/discharging (i.e., larger |xi,t|) generally has
a more detrimental effect on battery lifetime. To model this
effect on the i-th DS unit, we use Di(·) to represent the degra-
dation cost function associated with the charging/discharging
amount xi,t. We assume Di(·) to be convex, non-increasing
on [xi,min, 0], and non-decreasing on [0, xi,max]. To facilitate
later analysis, we add a mild condition that Di(·) is con-
tinuously differentiable with a bounded first derivative, i.e.,
D′i,min ≤ D′i(xi,t) ≤ D′i,max,∀xi,t ∈ [xi,min, xi,max].

3) CG: Besides the RGs, the aggregator can coordinate a
dispatchable CG. Denote gt ∈ [0, gmax] as the output of the
CG during time slot t, where gmax is the maximum amount of
the energy output. Due to practical limitations of the CG, the
change of its outputs in two consecutive time slots cannot be
arbitrarily large, but is bounded. This is typically reflected by
a ramping constraint on the CG outputs [11]. Assume that the
ramp-up and the ramp-down constraints are identical. Then,
we can express the overall ramping constraint as |gt−gt−1| ≤
rgmax where the coefficient r ∈ [0, 1] indicates the tightness
of the ramping requirement. In particular, if r = 0, the CG
produces a fixed output over time, and if r = 1, the ramping
requirement becomes non-effective.

The generation cost function of the CG is denoted by
C(·), which is assumed to be convex and non-decreasing on

1In this work we use a simplified energy storage model. Our mathemat-
ical framework carries over when other modeling factors such as charg-
ing/discharging efficiency and storage leakage are considered.



[0, gmax]. Furthermore, we assume C(·) to be continuously
differentiable with a bounded first derivative, i.e., C ′min ≤
C ′(gt) ≤ C ′max,∀gt ∈ [0, gmax].

4) External Energy Markets: In addition to the internal
energy transactions, the aggregator can resort to the external
energy markets if needed. For example, the aggregator can
buy energy from the external energy markets in the case
of energy deficit, or sell energy to the markets in the case
of energy surplus. At time slot t, denote the unit prices of
the external energy markets for buying and selling energy as
pb,t ∈ [pb,min, pb,max] and ps,t ∈ [ps,min, ps,max], respectively.
To avoid arbitrage, the buying price is strictly greater than the
selling price, i.e., pb,t > ps,t,∀t. Note that the prices pb,t and
ps,t are typically random due to unexpected market behaviors.
Denote eb,t ≥ 0 and es,t ≥ 0 as the amount of the energy
bought from and sold to the external energy markets during
time slot t, respectively.

5) System State and Constraint: Based on the previously
described system components, we define the system state at
time slot t as

qt,[at, lb,t, lf,t, pb,t, ps,t]

where at,[a1,t, · · · , aN,t]. We assume qt to be i.i.d. over
time, but the elements within qt can be arbitrarily corre-
lated. For system reliability, the energy should be balanced
at all times, which yields a system-wide balancing constraint
gt+eb,t+

∑N
i=1 bi,t = es,t+lm,t,∀t. To the aggregator, the left

hand side represents the amount of the total incoming energy,
while the right hand side represents the amount of the total
outgoing energy.

B. Problem Statement

The aggregator controls the energy flows in the microgrid.
It aims to minimize the long-term time-averaged system cost
by jointly managing the supply side, demand side, and storage.
In particular, the decision vector at time slot t is defined by

ut, [bt,xt, lm,t, gt, eb,t, es,t]

where bt,[b1,t, · · · , bN,t] and xt,[x1,t, · · · , xN,t]. The sys-
tem cost at time slot t includes all RGs’ cost, the CG’s cost,
and the cost for exploiting the external energy markets, which
is defined as follows2:

wt,
[ N∑

i=1

Di(xi,t)
]

+ C(gt) + pb,teb,t − ps,tes,t.

Based on the system model described in Section II-A, we
formulate the problem as a stochastic optimization problem:

P1 : min
{ut}

lim sup
T→∞

1

T

T−1∑
t=0

E[wt]

s.t. lb,t ≤ lm,t ≤ lb,t + lf,t, ∀t, (2)

2For the RGs and the CG, the payment for supplying energy could be settled
by additional contracts offered by the aggregator, or be calculated based on
the actual provided energy. For both of these cases, the payment is transfered
inside the system hence not affecting the system-wide cost.

xi,min ≤ xi,t ≤ xi,max, ∀i, t, (3)
0 ≤ si,t <∞, ∀i, t, (4)
bi,t ≥ 0, ∀i, t, (5)
bi,t = ai,t − xi,t, ∀i, t, (6)
0 ≤ gt ≤ gmax, ∀t, (7)
|gt − gt−1| ≤ rgmax, ∀t, (8)
eb,t ≥ 0, es,t ≥ 0, ∀t, (9)

gt + eb,t +

N∑
i=1

bi,t = es,t + lm,t,∀t, (10)

lim sup
T→∞

1

T

T−1∑
t=0

E
[
lb,t + lf,t − lm,t

lf,t

]
≤ α (11)

where the expectations in the objective and (11) are taken over
the randomness of the system state qt and the possibly random
control decision ut in each time slot. Constraint (4) requires
that the energy state of each DS unit be always bounded. Note
that the system cost depends on the capacity of each DS unit.
For now we do not specify the capacity of each DS unit, and
will discuss it later in Section IV.

We emphasize that, solving P1 is challenging. Specifically,
first, the system state qt is random. This implies that we
may need accurate system modeling and statistical information
(such as in dynamic programing), which are difficult to obtain
in practice. Second, constraints (4), (8), and (11) couple the
decision ut over time, further complicating the management.
In this paper, we aim to propose an algorithm that is easy to
implement and does not require any system statistics.

III. REAL-TIME ALGORITHM FOR MICROGRID POWER
BALANCING

In this section, leveraging Lyapunov optimization tech-
niques [12], we propose a real-time algorithm for solving P1.

A. Problem Relaxation

Lyapunov optimization can be used to transform time-
averaged constrains such as (11) into queue stability con-
straints, and to provide simple real-time algorithms for com-
plex dynamic systems. Unfortunately, the energy state con-
straint (4) and the ramping constraint (8) are not time-averaged
constraints, but are hard constraints required in each time
slot. These two constraints couple the decision over time and
make P1 a more challenging problem that cannot be directly
handled by the standard Lyapunov optimization techniques.
To overcome this difficulty, we first relax P1 to the following
problem.

P2 : min
{ut}

lim sup
T→∞

1

T

T−1∑
t=0

E[wt]

s.t. (2)(3), (5)− (7), (9)− (11),

lim
T→∞

1

T

T−1∑
t=0

E[xi,t] = 0, ∀i. (12)



Compared with P1, in P2, the energy state constraint (4)
is replaced with a new time-averaged constraint (12) and the
ramping constraint (8) is removed. Using the energy state
update in (1) and si,0 = 0,∀i, we can derive that the left
hand side of constraint (12) is identical to the limiting value
of E[si,T ]

T , i.e.,

lim
T→∞

1

T

T−1∑
t=0

E[xi,t] = lim
T→∞

E[si,T ]

T
. (13)

From (13), if si,t is always bounded, i.e., constraint (4) holds,
then constraint (12) is satisfied. Therefore, P2 is indeed a
relaxed problem of P1.

We need to point it out that this relaxation transformation
is crucial and enables us to apply the standard Lyapunov
techniques. However, the solution of P2 may be infeasible
to P1. In the next subsection, based on P2, we propose a real-
time algorithm which ensures to produce a feasible solution
to P1.

B. Real-Time Algorithm

At time slot t, define a vector Θt,[s1,t, · · · , sN,t, Jt],
which consists of the energy states of all DS units and a virtual
queue backlog Jt. In particular, Jt is associated with the time-
averaged constraint (11) and evolves as follows:

Jt+1 = max{Jt − α, 0}+
lb,t + lf,t − lm,t

lf,t
, ∀t. (14)

From (14), the virtual queue Jt accumulates the portion of the
unsatisfied flexible loads. We initialize it as J0 = 0. Based on
constraint (2), we have Jt ≥ 0,∀t.

Using Θt, we define the Lyapunov function as

L(Θt),
1

2
J2
t +

1

2

N∑
i=1

(si,t − βi)2 (15)

where βi is a perturbation parameter associated with the i-th
DS unit and is defined as

βi,V (pb,max +D′i,max)− xi,min (16)

with V > 0 being a control parameter. Note that the design of
βi is important and guarantees the boundedness of si,t. We will
discuss more about this related issue on si,t in Section IV. The
idea of the perturbation parameter in Lyapunov optimization
is originally introduced in [13]. Nevertheless, [13] studies
the scheduling of packet transmissions for energy harvesting
networks, which is intrinsically different from our problem.
Therefore, the specific design of βi in our problem is different
from that in [13].

We define the one-slot conditional Lyapunov drift as
∆(Θt),E [L(Θt+1)− L(Θt)|Θt]. Moreover, we define the
drift-plus-cost function as ∆(Θt) + V E[wt|Θt], which is a
weighted sum of the one-slot conditional Lyapunov drift and
the objective function. In the following lemma, we show that
the drift-plus-cost function is upper bounded.

Lemma 1: For all possible decisions and all possible values
of Θt, in each time slot t, the drift-plus-cost function is upper
bounded as follows

∆(Θt) + V E[wt|Θt] ≤ B + JtE
[
lb,t + lf,t − lm,t

lf,t
− α

∣∣∣Θt

]
+

N∑
i=1

(si,t − βi)E
[
xi,t|Θt

]
+ V E[wt|Θt] (17)

where B is a constant and is given by B, 1
2 (1 + α2) +

1
2

∑N
i=1 max{x2i,min, x

2
i,max}.

Proof: See Appendix A of our technical report [14].
The proposed real-time algorithm is to minimize the right

hand side of inequality (17) in every time slot. The hope is that,
through the minimization of the upper bound in every time
slot, we can actually minimize the Lyapunov function (hence
the queue backlog Jt and |si,t−βi|) and the objective function
together. Nevertheless, since the ramping constraint (8) has
been dropped in the relaxed problem P2, the optimal solution
of gt may violate constraint (8). To avoid the infeasibility of
gt, we move constraint (8) back into the real-time problem.
That is, we now solve the following problem at time slot t.

P3 : min
ut

[
N∑
i=1

V Di(xi,t) + (si,t − βi)xi,t

]
+ V C(gt)

+ V pb,teb,t − V ps,tes,t −
Jt
lf,t

lm,t

s.t. (2)(3), (5)− (10).

Therefore, the solution of gt in P3 is always feasible to P1.
Based on the description above, we summarize the proposed

algorithm as follows. Clearly, no system statistics is required,
which makes it easy to implement in reality.

Algorithm 1 Real-time microgrid power balancing.
Initializes J0 = 0. At each time slot, the aggregator executes
the following steps sequentially.

1: Observe the system state qt, energy state si,t,∀i, and
queue backlog Jt.

2: Solve the real-time problem P3.
3: Update si,t,∀i, and Jt based on (1) and (14), respectively.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
algorithm with respect to the original problem P1.

Denote the decision at time slot t under Algorithm 1 by
u∗t,

[
b∗t ,x

∗
t , l
∗
m,t, g

∗
t , e
∗
b,t, e

∗
s,t

]
. In addition, to emphasize the

dependence of the system cost with the ramping coefficient r
and the control parameter V , we denote the system cost under
Algorithm 1 by w∗(r, V ). Denote the minimum system cost
of P1 by wopt(r), which is independent of V .

We now show that the energy state of each DS unit under
our algorithm satisfies the boundedness constraint (4) in P1.
To this end, we first give the following lemma. It describes a



sufficient condition under which the i-th DS unit will charge
or discharge.

Lemma 2:
1) If si,t < −xi,min, then x∗i,t = min{ai,t, xi,max}.
2) If si,t > βi − V (ps,min +D′i,min), then x∗i,t = xi,min.

Proof: See Appendix B of our technical report [14].
Lemma 2 conveys that if the energy state si,t is too low

the DS unit will charge, and if si,t is too high the DS
unit will discharge. This lemma provides the key results for
demonstrating the boundedness of si,t. Using Lemma 2, we
can prove that si,t is confined within a specific interval.

Lemma 3: For the i-th DS unit, the energy state si,t is always
confined within the interval [0, si,max] where

si,max,V (pb,max − ps,min +D′i,max −D′i,min)

− xi,min + xi,max. (18)

Proof: See Appendix C of our technical report [14].
Lemma 3 is quite informative and reveals a linear relation-

ship between si,max and the control parameter V . In particular,
by setting si,max as the energy capacity of the i-th DS unit
based on the definition in (18), we can ensure that constraint
(4) in P1 holds. On the other hand, if si,max is known, the
boundedness of si,t can be guaranteed by appropriately setting
the control parameter V . The following proposition is obtained
straightforwardly from Lemma 3.

Proposition 1: Assume that the energy capacity of the i-
th DS unit si,max is known. Then, by setting V ∈ (0, Vmax]
where

Vmax, min
1≤i≤N

{
si,max + xi,min − xi,max

pb,max − ps,min +D′i,max −D′i,min

}
, (19)

we have si,t ∈ [0, si,max],∀t.
Note that Lemmas 2 and 3, and Proposition 1 are all

sample path results that do not depend on the statistics of
the system. Next, we characterize the time-averaged system
cost of Algorithm 1 with respect to P1.

Theorem 1: Assume that the system state qt is i.i.d. over
time3 and the energy capacity of each DS unit is given by
si,max based on (18). Then, under Algorithm 1,

1) the decisions {u∗t } are feasible to P1;
2) w∗(r, V ) is upper bounded as

w∗(r, V ) ≤ wopt(r) +B/V + (1− r)gmax max{pb,max, C
′
max}

where B has been defined below (17); and
3) wopt(r) is lower bounded as wopt(r) ≥ w∗(1, V )−B/V .

Proof: See Appendix D of our technical report [14].
Theorem 1.1) indicates that, despite the relaxation to P2, the

feasibility of the solution is maintained under our algorithm.
In Theorem 1.2), we characterize the gap between the

system cost under Algorithm 1 and the minimum cost of P1.
Different from the standard O(1/V ) gap in typical Lyapunov
optimization [12], here, the ramping constraint introduces an

3Using a multi-slot drift technique, we can show similar conclusions when
qt evolves based on a finite state irreducible and aperiodic Markov chain.

extra additive gap that increases linearly with (1 − r). The
upper bound in Theorem 1.2) reflects that Algorithm 1 is
asymptotically optimal as V (or the energy capacity of the
DS units) increases and the ramping constraint becomes loose
(i.e., r → 1).

In Theorem 1.3), we provide a lower bound on the minimum
cost of P1 based on Algorithm 1, in which the ramping
constraint is removed, i.e., r = 1. As deriving an optimal
control policy of P1 may require accurate system statistics
or simply be intractable, we will use this lower bound as a
benchmark for performance comparison in simulation. The
performance gap between our algorithm and this lower bound
serves as an upper bound on the performance gap between our
algorithm and an optimal algorithm.

Note that, when the energy capacity si,max is pre-
determined, Theorem 1 still holds by setting V ∈ (0, Vmax].
From the definition of Vmax given by (19) in Proposition 1,
the performance of Algorithm 1 is limited by the smallest DS
unit.

V. SIMULATION RESULTS

In this section, we present a numerical evaluation of the
proposed algorithm and compare it with two benchmarks.

A. Simulation Setup

For the microgrid considered in simulation, unless otherwise
specified, the following parameters are set as default. The
length of each time slot is 10 min. The amounts of the base
loads lb,t and the flexible loads lf,t are uniformly distributed
on [5, 25] kWh, and the portion of the unsatisfied flexible loads
α is 0.5. The aggregator is connected with N = 30 RGs.
For each on-site DS unit, we set the maximum discharging
and charging amounts as |xi,min| = xi,max = 1.1 kWh by
assuming the DS unit charging/discharging rate to be 6.6 kW
(three-phase, level II) [15]. Since the model of the degradation
cost function is proprietary and unavailable, in simulation we
set Di(x) = 10x2 as an example. The renewable generation
ai,t is uniformly distributed on [0, ai,max] where ai,max = 1.1
kWh. For the CG, we set the generation cost function as
C(x) = 8x, the maximum output gmax = 50 kWh, and the
ramping coefficient r = 0.1. The unit buying electricity price
pb,t is uniformly distributed on [10, 12] cents/kWh, which is
around the current mid-peak electricity price in Ontario [16].
The unit selling electricity price ps,t is uniformly distributed
on [4, 6] cents/kWh, which is slightly below the current off-
peak electricity price in Ontario [16]. The control parameter
V = 1 and the energy capacity si,max is given by (18).

B. Comparison with Benchmarks

For comparison, we provide two benchmarks. One is a
greedy algorithm, which is myopic and aims to minimize the
current system cost. The optimization problem of the greedy
algorithm at time slot t is formulated as follows.

min
ut

wt

s.t. (3), (5)− (10),



Fig. 2. Time-averaged system cost v.s. V . Fig. 3. Time-averaged system cost v.s. α. Fig. 4. Time-averaged system cost v.s. r.

lb,t + (1− α)lf,t ≤ lm,t ≤ lb,t + lf,t,

− si,t ≤ xi,t ≤ si,max − si,t
We can show that the greedy algorithm does not employ the
DS units because of its indifference to the future performance.
For another benchmark, we consider the lower bound on the
minimum cost in Theorem 1.3).

In Fig. 2, we depict the time-averaged system cost under
various values of the control parameter V . For the proposed
algorithm, the system cost drops quickly and then remains
stable being very close to the lower bound. This observation
reflects the efficiency of our algorithm and implies that using
small DS units can be enough for being near optimum. In
contrast, the performance of the greedy algorithm does not
change with V . Moreover, the system cost under the greedy
algorithm is about 1.7 times that under the proposed algorithm
with V ≥ 0.1.

In Fig. 3, we illustrate the effect of α, the portion of the
unsatisfied flexible loads, on the system cost. As expected, the
system cost goes down as α rises. For the proposed algorithm,
the marginal system cost decreases with α, which indicates
that the benefit of curtaining the flexible loads keeps on falling.
Compared with the greedy algorithm, the proposed algorithm
always achieves a lower system cost. Besides, it is close to
the minimum cost for all cases.

In Fig. 4, we show the effect of the ramping constraint
on the system cost. It can be seen that, the system cost is
non-increasing with the ramping coefficient r. This is easy
to understand since less expensive external energy resources
are used with a looser ramping constraint. Furthermore, for
both the proposed and the greedy algorithm, the marginal
system cost goes down. In particular, the system cost cannot
be decreased any further when r ≥ 0.3. This indicates that
the system supply is relatively sufficient in that region of r,
and therefore it is unnecessary to further relax the ramping
constraint. We also observe that, the proposed algorithm is
superior to the greedy algorithm for all cases, and achieves
the minimum cost when r ≥ 0.3.

VI. CONCLUSION

We have investigated the problem of real-time power bal-
ancing in a grid-connected microgrid, powered by one CG and
multiple RGs each equipped with one DS unit. An aggregator
operates the microgrid and aims to minimize the system cost

by coordinating the supply side, demand side, and DS units.
We have proposed a real-time algorithm that does not require
any system statistics. Theoretically, we have characterized the
gap between the system cost under our algorithm and the
minimum cost, and shown the asymptotic optimality of our
algorithm. In simulation, we have compared our algorithm
with a greedy algorithm as well as a lower bound on the
minimum cost and shown its efficiency.
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