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and then switch to the other alternative after accumulating sufficient distribution knowledge. With minor modifications, our designs are
also effective for a profit-driven auctioneer aiming to maximize the auction revenue.
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1 INTRODUCTION

THe recent explosive growth of wireless networks, with
their ever-growing demand for radio spectrum, has

exacerbated the problem of spectrum scarcity. Such scarcity,
however, is not an outcome of exhausted physical spec-
trum, but a result of inefficient channel utilization due to ex-
isting policies that channels are licensed to their authorized
holders (typically those who win government auctions of
spectrum), and unlicensed access is not allowed even if the
channel is not used.

In order to utilize such idle channels and to improve their
utilization, it is critical to design sufficient incentives that
encourage primary license holders to allow other spectrum-
deficient users to access these channels. It is intuitive to
observe that under-used channels have values that can be
efficiently determined by a market, governed by spectrum
auctions. If designed well, a spectrum auction offers an
efficient way to create a market: it attracts both license
holders and wireless users to join, and to either buy or
sell idle channels in the market. Once a transaction is
conducted, the seller (license holder) earns extra income
by leasing unused channels to the buyer (wireless user),
who pays to obtain the channel access.

Yet, it is important to point out that transactions take
place in secondary markets where spectrum is leased in a
seller-defined geographic region. Unlike physical commodi-
ties that can be traded anywhere in the world, spectrum is
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Fig. 1. A license holder partitions its entire license area into
three regions, A, B and C. It can sell any of the pieces in the
local spectrum market.

a local resource and can only be leased to local users who
are within the license region of this channel. In this sense,
a local market is formed between the license holder and all
these local users.

To facilitate such local markets, the FCC has advocated to
establish an Internet database to store the information of the
currently vacant spectrum as well as its geographic area [2].
An unlicensed user can simply query the database to obtain
the list of channels that can be used at the user’s location.
This database-driven technique enables practical spectrum
markets, such as SpecEx [3], to take full advantage of the
spectrum locality and to provide flexible selling options to
attract participation. One of them is license partitioning [3], in
which a license holder can divide the entire geographic area
in which it holds its spectrum license, called its license area,
into several regions and sell any of the pieces to wireless
users, as shown in Fig. 1.

Unfortunately, market locality, as an inherent character-
istic of spectrum resources in practice, is seldom men-
tioned in the literature. Most existing spectrum auctions
[4]–[9] are designed in the sense of the global market —



all channels are accessible to all users, no matter where
they are. Furthermore, no license partitioning is supported:
All channels have to be traded as a whole in the entire
license area. These assumptions not only are impractical,
but will also seriously degrade the flexibility of selling
options, leaving license holders unable or unwilling to join
the market. It is typical for channels to be only available to
wireless users in some seller-defined geographic regions,
rather than the entire license area of a license holder. For
example, in Fig. 1, a channel may be vacant in region A,
yet utilized by its license holder in region B and C. Without
the support of license partitioning (as is the case in global
market), a license holder has to decide if it is able to make
channels vacant in its entire license area, and channels that
are available only in part of the regions are not ready for
sale.

To bridge such a gap between the existing literature and
practical limitations of geographic spectrum locality, in this
paper, we present District, a set of new spectrum double
auctions that are specifically designed for local spectrum
markets. With District, a license holder can freely partition
its entire license area and either sell or reserve spectrum in
local markets, based on their own requirements. Moreover,
District allows the same channel to be shared by multiple
wireless users if no interference occurs.

We believe that it is crucial for District to maintain
basic properties of economic robustness (truthfulness in
particular). As a matter of fact, introducing the notion of lo-
cal markets imposes non-trivial challenges when economic
robustness is to be maintained. Most existing spectrum
double auctions [5], [7], [8] are based on McAfee’s design
[10], which is for the global market only. Their direct
extensions, as shown in Sec. 3.6, are either not feasible or
leading to fairly inefficient outcomes. To maintain economic
robustness, District is designed to work effectively in cases
with and without a priori information about bid distribu-
tions. In the former case, District extends Myerson’s virtual
valuations [11] to double auctions and designs a market
with a discriminatory pricing policy — different auction
winners might face different charges or payments. In the
latter case, District sets a uniform pricing mechanism to
charge all winners uniformly. Both mechanisms are proved
to be computationally efficient and economically robust.
With minor modifications, the design is also applicable to
a profit-driven auctioneer aiming to maximize the auction
revenue. Extensive simulation studies show that District
substantially improves spectrum utilization with local mar-
kets, and is scalable to large networks.

2 RELATED WORK

Auction serves as an efficient mechanism to price and dis-
tribute scarce resources in a market. [12] offers an excellent
treatment of general auction theory.

When it comes to spectrum auctions, pioneering works
include [13], [14], [15], and [16]. All of them focus on the
primary markets, where primary users bid to obtain long-
term spectrum rights from the government.

Recently, spectrum auction has received considerable
attention in dynamic spectrum access. Some early works
in this field include transmit power auctions [17] and
spectrum band auctions [18]–[20]. [19] aims to generate
maximum revenue for sellers and employ linear program-
ming to model interference constraints. A similar objective
is also adopted in [20], where a greedy graph coloring
algorithm is used to maximize the revenue in cellular
network. [18] also formulates the channel management
problem in homogeneous CDMA networks and proposes
a spectrum allocation algorithm with linear programming.
However, none of these works discusses the strategic be-
haviours of participants, and the claimed performances are
only achieved when all participants truthfully reveal their
private information.

The strategic issues of participants are first addressed in
[4], in which two truthful spectrum auctions are designed
to facilitate as many transactions as possible. [6] further
presents a truthful design to maximize the auction rev-
enue. Also, [21] allows sellers to have reservation prices
on their idle channels. All these designs are single-sided
auctions where only one side, either spectrum buyers or
spectrum sellers, has bidding strategies. When the strategic
issues extend to both sides, [5] proposes the first spectrum
double auction that is truthful. Based on it, [7] designs
a double auction for spectrum secondary markets, where
participants are all secondary users.

Besides truthfulness, recent works also consider other
factors in spectrum auction designs. For example, [8] in-
cludes the time domain into strategy considerations and
proposes a truthful online auction, while [9] investigates
the fairness issue in spectrum allocations.

However, all works above discuss auction designs in the
sense of global markets, where all channels to be auctioned
off are globally accessible to all spectrum buyers, no matter
where they are. Such ignorance of the geographic locality of
spectrum resources made them incapable to accommodate
the demand of the recent push of database-driven spectrum
markets [2], [3], in which channels are traded to local
users within the seller-defined license area. A more detailed
technical discussion is given in Sec. 3.6.

3 BASIC SYSTEM MODEL

This section presents the basic system model where a non-
profitable auctioneer runs a spectrum double auction for
unit-supply sellers and unit-demand buyers. By “unit” we
mean each participant either sells or requests a single
channel in the local market. In Sec. 6, we further discuss
how this model can be extended to scenarios where 1)
a buyer can request more than one channel, and 2) the
auctioneer is profit-driven aiming to maximize its revenue.

3.1 General Settings

To accommodate spectrum requests that arise dynami-
cally over time, an auctioneer (e.g., the spectrum database
administrator) carries out a sequence of double auctions



periodically, one in each time slot. Participants, both li-
cense holders (sellers) and wireless users (buyers), join
the auction asynchronously and submit requests anytime
they wish. Yet, their submissions may not be processed
immediately until the next auction is conducted, at which
time the auction results are computed. Due to the temporal
dynamics of spectrum usage, spectrum leases are necessar-
ily ephemeral. A mature business model to facilitate such
short-term leases is to adopt an agreed-upon lease cycle,
in which a buyer will hold a seller’s spectrum license after
the transaction is made. Participants may join subsequent
auctions to lease channels for additional cycles. Throughout
the paper, we focus on auction designs in one time slot,
as they are the essential building blocks of the spectrum
market and are independent of the value of the time slot
or the lease cycle.

In each auction round, every seller has one channel for
sale in an indicated license area (a.k.a., local market) in
which the channel is vacant (e.g., region A in Fig. 1).
Each seller reports the channel, the associated local market
(i.e., the available geographic region), and an ask to the
auctioneer. Each buyer, on the other hand, requests to buy
one channel at some geographic location by submitting a
bid and its location to the auctioneer. All bids and asks are
submitted in a sealed manner — no one has access to any
information about the others’ submissions. After collecting
all these submissions, the auctioneer computes the best set
of channel transactions to clear the market.

The main challenge is to establish proper payoff schemes
and to optimally match buyers and sellers, with the con-
straints that all channel transactions must be made within
local markets, and that no interfering buyers are assigned to
the same seller. Fig. 2 illustrates an example of such a dou-
ble auction with multiple spectrum sellers and buyers in
different local markets. Note that the areas of local markets
are drawn as circles only for illustration. In fact, they can
have arbitrary shapes and may not even be contiguous in
general. We finally assume there are M participating license
holders and N wireless users.

3.2 Modelling Channel Transactions within Local Mar-
kets

Channels should be assigned without introducing interfer-
ence. We use a conflict graph G = (V,E) to represent inter-
ference relations among buyers, where V is the collection
of buyers and E is the collection of edges, such that two
buyers share an edge if they are in conflict with each other
and cannot use the same channel simultaneously. In our
example shown in Fig. 2, seven conflicting pairs of buyers
are illustrated by dotted lines.

We say seller m and buyer n are tradable if n is within
m’s local market so that it can trade with m. We use Cn to
denote the set of tradable sellers of a buyer n. For example,
in Fig. 2, B1’s tradable sellers are S1 and S5, i.e., CB1 =
{S1, S5}.

Now the network scenario can be represented by a
conflict graph G as well as all buyers’ tradable sellers {Cn}.
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Fig. 2. A spectrum double auction with 7 buyers and 5
sellers. An auctioneer performs the auction among sellers
and buyers. Sellers can partition their license areas and sell
any pieces of their spectrum in local markets. All license
areas for sale are circular in this figure, but can have any
shape in general. The dotted lines indicate interference
relations among buyers.
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Fig. 3. The graph abstraction G = (V,E,C) of the
scenario depicted in Fig. 2. A feasible spectrum assignment
is also given. The underlined spectrum is assigned to its
corresponding user in the figure.

As an example, Fig. 3 illustrates such a representation of
the scenario depicted in Fig. 2, with CBi labeled next to Bi
(i = 1, . . . , 7).

A channel assignment scheme is feasible if all transactions
are made between tradable sellers and buyers, and no two
buyers sharing an edge in G are assigned to the same seller.
A feasible assignment can be equivalently converted to a
feasible graph coloring scheme by treating tradable sellers
Cn as the available colors that can be used to color node
n in G. In this sense, a buyer n is assigned to a tradable
seller m if node n in G is colored by m ∈ Cn, and vice
versa. As an example, one feasible channel assignment of
the scenario depicted in Fig. 2 is shown in Fig. 3, with the
assigned spectrum underlined in the text. It can be seen that
the assignment is exactly a feasible graph coloring scheme.
We say a buyer n (a seller m) is a winner if node n is colored
(color m is used) in G; otherwise, it is a loser. For notational
convenience, we integrate the available colors of nodes into
the conflict graph and denote it by G = (V,E,C), where
C = {Cn|n ∈ V }.



3.3 Spectrum Double Auction

With the knowledge of G, the auctioneer collects asks (bids)
from the sellers (buyers). Denote by am and bn the ask and
bid submitted by the seller m and buyer n, respectively.
Every seller m has a true ask atm, a price that it believes its
channel is worth. Every buyer n also has a true bid btn, a
price quantifying its economic benefit of getting a channel.
The value of atm (btn) is the private information of the seller
m (buyer n), and is unknown to anyone else, including the
auctioneer. Note that the seller m may submit a different
ask from its true ask (i.e., am 6= atm), as long as it believes
that this is more beneficial. Similar misreporting strategy
may also be adopted by any buyer n (i.e., bn 6= btn).

After collecting all asks a = (a1, . . . , aM ) and bids
b = (b1, . . . , bN ), the auctioneer clears the market by
computing the channel assignment and winner payoffs.
The assignment is represented by a coloring scheme of
the conflict graph G, as mentioned before. Every winning
seller m is paid pm by the auctioneer for leasing a channel,
while every winning buyer n is charged cn by the auc-
tioneer. Therefore, the payoffs consist of both the payments
p = (p1, . . . , pM ) to sellers and the charges c = (c1, . . . , cN )
to buyers. Then, for each winning pair, the utility of seller
m is usm = pm − atm, and that of buyer n is ubn = btn − cn.
For all losing sellers and buyers, the payments, charges, and
corresponding utilities are all zero. The auctioneer gains a
revenue, defined as the difference between the total charges
and total payments, γ =

∑
n cn −

∑
m pm.

3.4 Economic Requirements

To encourage participation, an auction should satisfy some
basic economic requirements [22] as defined below.

Definition 1 (Individual rationality): An auction mecha-
nism is said to be individually rational if every participant’s
utility is nonnegative, i.e., ubn(rn, bn) ≥ 0 for all n =
1, . . . , N , and usm(rn, bn) ≥ 0 for all m = 1, . . . ,M .

By joining the auction with individual rationality, all
participants are guaranteed to be benefited. This property
is critical in attracting user participation.

Also, to make the auction self-sustained without any
external subsidies, the generated revenue is required to be
non-negative.

Definition 2 (Budget balance): An auction mechanism is
said to achieve the ex post budget balance if its revenue γ
is always nonnegative, i.e., γ =

∑N
n=1 cn −

∑M
m=1 pm ≥ 0.

Furthermore, if the revenue is nonnegative in expectation,
the auction is said to be ex ante budget balanced. That is,
E[γ] = E

[∑N
n=1 cn −

∑M
m=1 pm

]
≥ 0.

Moreover, the designed spectrum double auction is pre-
ferred to be truthful.

Definition 3 (Truthfulness): An auction is said to be truth-
ful if no participant can expect a higher utility by misre-
porting its true submission. That is, for every seller m (resp.
buyer n), usm(atm) ≥ usm(am) (resp. usn(btn) ≥ usn(bn)) for
all am (resp. bn).

As an important economic property, truthfulness brings
the following benefits. First, a truthful mechanism helps the

auctioneer to gather more accurate market information. We
show later in Sec. 5 that utilizing such information enhances
the auction performance. Second, truthfulness simplifies
all participants’ strategies and ensures the basic market
fairness. Since no one has the incentive to cheat at its
submission, the auction result will not be manipulated by
any individual participant. Finally, by the Revelation Prin-
ciple [11], as long as the revenue is of interest, restricting
discussions to truthful auctions does not lose generality.

Following the convention adopted in the existing lit-
erature, we say an auction is economically robust if it is
individually rational, budget balanced (either ex post or ex
ante), and truthful [5], [8].

3.5 Problem Definition

In the basic model, we consider a non-profit auctioneer
whose objective is to improve channel utilization by facil-
itating as many wireless users as possible to access idle
channels. For an auction mechanism M, we define the
auction efficiency as the proportion of winning buyers, i.e.,
ηM = Nw/N , where Nw is the number of winning buyers.

With input G = (V,E,C), asks a and bids b, an auction
mechanism M outputs payments p, charges c, and a col-
ored graph G representing the channel assignment result.
Ideally, we would like to find an economically robust auc-
tion mechanism that also maximizes the auction efficiency.
However, the impossibility theorem [23] dictates that the
maximal auction efficiency is incompatible with economic
robustness. In this work, we view economic robustness as a
hard constraint to ensure a well-behaving spectrum market.
Hence, we are concerned with the following optimization
problem:

max
M

ηM (1)

s.t. M is economically robust.

3.6 Challenges of Local Markets

Introducing the notion of local markets imposes non-trivial
challenges when economic robustness is to be maintained.
Simply extending existing spectrum double auctions, e.g.,
[5], [7], [8], is either not feasible or leads to fairly inefficient
outcomes. In [7] and [8], spectrum reuse is not considered,
and a complete conflict graph is assumed. Neither of them
is applicable to our system model.

For other auctions designed under a global market that
consider spectrum reuse, say, TRUST in [5], it is possible
to propose a simple extension for local markets when the
traded license areas are of some special shape. For example,
suppose all license areas are circular. As shown in Fig. 4, we
can partition the entire geographic region into hexagonal
cells, each with edge length R/2, where R is the minimum
radius of all circular license areas. Then, it is always feasible
for a buyer to trade with any seller whose license area
is centered within the same cell of the buyer. If we limit
our discussion to the buyers and sellers within one cell,
then TRUST is applicable. Fig. 4 illustrates an example,
where the extension is applied to the scenario depicted in
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Fig. 4. Applying a simple extension to TRUST [5] to the
scenario depicted in Fig. 2.

Fig. 2. It is easy to verify that within each cell all buyers
and sellers are tradable to one another. Following this idea,
the proposed extension geographically partitions the whole
market into a set of submarkets that are independent of
each other. It then applies TRUST in every cell to cover the
whole market.

However, such an extension is problematic. First, the
traded license areas need to be of some special shape, which
is usually not the case in practice. Second, buyers are only
allowed to trade with sellers within the same cell. As a
result, many originally feasible transactions are blocked.
For example, in Fig. 4, buyer B6 cannot trade with seller S3
since they are not covered by the same cell. However, in the
original network scenario in Fig. 2, S3 and B6 are tradable.
Similar trade-blocking phenomenon can also be observed
among B5, B7 and S2. As a result, B5, B6 and B7 will
be left unassigned, independent of their submissions. This
intuitive example reveals that the auction efficiency of such
simple extension is fairly low, especially when the cell is
small. We later verify this problem by our numerical results,
shown in Sec. 7.

The failure to simply extend auction mechanisms for
global markets requires a new design tailored to local mar-
kets. The proposed District contains a set of auction mech-
anisms that are specifically designed to address unique
challenges imposed by market locality. We present two
alternative designs, District-D and District-U, for the cases
with and without a priori knowledge on bid distributions,
respectively. An auctioneer without any distribution knowl-
edge can start with District-U for a moderate level of
auction efficiency, and then switch to District-D to pursue
a higher level of efficiency after collecting sufficient infor-
mation about bid distributions.

4 District-U: AUCTION WITH UNIFORM PRIC-
ING

District-U adopts uniform pricing policies, such that all
buyers (sellers) are charged (paid) exactly the same amount
of money if they win, without a priori knowledge on bids or
asks. The basic idea is trade reduction: non-profitable trades
among low-bid buyers and high-ask sellers are removed,
which is critical in maintaining ex post budget balance. At

a price, however, the auction efficiency is limited due to the
reduction of feasible transaction pairs.

4.1 Preliminaries

Without loss of generality, we assume bids and asks are
sorted respectively, from the most competitive to the least
competitive, i.e., b1 ≥ b2 ≥ . . . ≥ bN ≥ 0 and 0 ≤ a1 ≤
a2 ≤ . . . ≤ aM . We also assume M ≥ N . Otherwise, we
add N −M dummy sellers who ask aM for their channels
but are not tradable to any buyers. Clearly, adding dummy
sellers does not affect the auction result.

We introduce the following notations for convenience.
• Gm,n : A subgraph of G = (V,E,C) composed

of only the first m colors (sellers) and the first n
nodes (buyers). That is, Gm,n = (V ′, E′, C ′) where
V ′ = {1, . . . , n}, E′ = {eij ∈ E|i, j ∈ V ′}, and
C ′ = {C ′1, . . . , C ′n} where C ′j = Cj ∩ {1, . . . ,m}.

• GraphColoring(G) : A graph coloring algorithm return-
ing a colored G. District-U accepts only a deterministic
graph coloring algorithm with no randomness intro-
duced.

4.2 Mechanism Design

To achieve the trade reduction, District-U first decides how
many buyers to admit, based on the submitted asks and
bids. The auctioneer then computes the set of admitted
sellers, and subsequently determines the transaction pairs
and corresponding payoffs. The details are given in Algo-
rithm 1.

Algorithm 1 District-U
1. N ′ = arg maxi{ai+1 ≤ bi+1}
2. M ′ = arg maxi{ai ≤ bN ′+1}
3. GraphColoring(GM ′,N ′)
4. Seller m trades with buyer n if node n is colored by m.
5. for each winning buyer n do
6. cn = bN ′+1

7. end for
8. for each winning seller m do
9. pm = bN ′+1

10. end for
11. return transactions and payoffs (c and p).

The key to understanding Algorithm 1 is to appreciate its
trade reduction nature. As shown in Fig. 5, the algorithm
first removes low-bid buyers, i.e., buyers N ′ + 1, . . . , N ,
based on the formula of line 1. It then uses the highest
bid among the set of removed buyers (i.e., bN ′+1) as an
admission threshold to determine how many sellers to
admit: Those who ask higher than the threshold price are
all rejected. After the trade reduction, each enrolled buyer
bids at least as high as the ask of every admitted seller.

Note that even for the enrolled buyers and sellers, there is
no official guarantee that they will eventually win out. The
final spectrum assignment will be calculated by running a
graph coloring algorithm, and prices are uniformly set for
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Fig. 5. Illustration of the trade reduction nature in Algo-
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of M ′ admitted sellers. All others are removed.
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Fig. 6. An example of applying the trade reduction to the
scenario depicted in Fig. 2. We assumeN ′ = 6 andM ′ = 3.
The underlined spectrum is assigned to the corresponding
buyer. All winning buyers pay bB7 and all winning sellers
receive aS4.

both winning buyers and winning sellers. We will see later
that this uniform price applied to all buyers (sellers) is the
least (highest) submission for them to win. Fig. 6 shows an
example of applying Algorithm 1 to the scenario depicted
in Fig. 2, where we assume N ′ = 6 and M ′ = 3. We can
see that participants B7, S4, S5 are directly removed by the
auction.

4.3 Economic Properties

Intuitively, one might think that the economic proper-
ties of District-U should depend on the specific form of
GraphColoring(·) adopted by Algorithm 1 in line 3. Sur-
prisingly, the following analysis shows a general result
saying that District-U is guaranteed to be economically
robust, as long as the GraphColoring(·) is a determinis-
tic algorithm. That is, with the same input G, algorithm
GraphColoring(·) should always produce the same out-
put.

To see this interesting result, we first prove the ex post
budget balance directly. We then prove that District-U is bid
monotonic with critical payoffs, which leads to truthfulness
and individual rationality [22], [24].

Proposition 1: District-U is ex post budget balanced.
Proof: Denote by x and y the number of winning buyers

and sellers, respectively. Since a seller’s channel could be
spatially reused by multiple buyers, we have x ≥ y. In

this case, the auction revenue is always positive, i.e., γ =∑N
n=1 cn −

∑M
m=1 pm = (x− y) · bN ′+1 ≥ 0.

Before we proceed to the formal proof of truthfulness
and individual rationality, we first introduce two important
concepts, the monotonicity and criticality. Both of them
serve central roles in the proofs.

Definition 4 (Monotonicity): An auction mechanism is bid
monotonic such that for every buyer n (seller m), if by
submitting bn (am) it wins, then by submitting b′n > bn
(a′m < am) it also wins, given the others’ submissions
remain unchanged.

The interpretation of Definition 4 is quite straightfor-
ward: a more competitive submission never hurts a par-
ticipant’s chance to win. An important property associated
with a bid monotonic auction is the unique existence of the
critical submission defined below.

Definition 5 (Criticality): For winning buyer n (seller m),
we say bcn (acm) is critical if n (m) wins by submitting bn >
bcn (am < acm) and loses by submitting bn < bcn (am > acm),
given the others’ submissions remain unchanged.

In other words, the critical bid (ask) is the minimum
(maximum) submission for a buyer (seller) to win the auc-
tion, and is therefore a threshold submission in determining
their auction results. Its value depends on other buyers’
bids (sellers’ asks) and how the winners are selected from
the participants.

There is one important result in mechanism design
regarding truthfulness and individual rationality, as de-
scribed in Lemma 1.

Lemma 1 ( [22]): A bid monotonic auction is truthful and
individually rational if and only if it always charges critical
bids from winning buyers and pays critical asks to winning
sellers.

Now we show that District-U is bid monotonic with
critical payoffs, and is hence truthful and individually
rational.

Proposition 2: District-U is bid monotonic.
Proof: Suppose buyer n wins by bidding bn. According

to the admission rule stated in line 1, we have bn ≥ an and
bn+1 ≥ an+1. Hence, by unilaterally raising the bid up to
b′n, buyer n will be admitted again, as b′n > bn ≥ an and
bn+1 ≥ an+1. We see GM ′,N ′ remains unchanged. Since
algorithm GraphColoring is deterministic, with the same
GM ′,N ′ as input, the output is always the same, which
implies that n wins again.

Similarly, consider a winning seller m decreasing its ask
unilaterally from am to a′m. Then a′m < am ≤ bN ′+1.
That is, m remains among the bottom M ′ sellers, and will
be admitted again. The rest of the proof is similar to the
buyer’s case.

Proposition 3: In District-U, bN ′+1 is the critical submis-
sion for all winning buyer n and winning seller m.

Proof: For a winning buyer n, it will remain in the set
of the top N ′ buyers as long as it bids bn > bN ′+1, which
ensures it to be admitted with the same GM ′,N ′ . Then n
keeps winning due to the unchanged graph coloring result.

On the other hand, suppose n bids bn < bN ′+1 and is
ranked in the kth place among all buyers, where N ′ + 1 ≤



k ≤ N . The rankings of bids now become b1 ≥ · · · ≥
bn−1 ≥ bn+1 ≥ · · · ≥ bk ≥ bn ≥ bk+1 ≥ · · · ≥ bN . Since
k+ 1 > N ′+ 1, by the definition of N ′ (i.e., line 1 of Algo-
rithm 1), we have bk+1 < ak+1. This essentially indicates
that buyer n will not be admitted in the new rankings as
its next bid bk+1 is lower than the corresponding ask ak+1

(refer to line 1 of Algorithm 1 for the admission rule).
We now consider the seller’s case. For a winning seller

m, it will remain in the set of top M ′ sellers as long as it
asks am < bN ′+1, which ensures it to be admitted and win
(similar to the buyer’s case).

For the case where m asks am > bN ′+1, we see it must be
removed because its ask exceeds the admission threshold
(see Fig. 5 and line 2 of Algorithm 1). Therefore, m must
lose.

With Propositions 1, 2, 3 and Lemma 1, we conclude the
following:

Theorem 1: District-U is economically robust.
It is worth mentioning that the statement of Theorem 1

is independent of the underlying conflict graph. Therefore,
a participant will always behave truthfully no matter how
its belief on the conflict graph is.

Also note that the adopted graph coloring algorithm
plays a key role in District-U as it not only affects the
auction efficiency, but also dominates the computational
complexity. Fortunately, since District-U accepts any de-
terministic coloring algorithms, those computationally ef-
ficient designs with good coloring performance could be
directly applied. We later evaluate how the choice of the
coloring affects the performance of District-U in Sec. 7.

In conclusion, District-U is designed as a suitable starting
mechanism for the auctioneer without a priori information
on bids or asks.

5 District-D: AUCTION WITH DISCRIMINA-
TORY PRICING

When bid and ask distributions are available, one can
expect higher efficiency via District-D, an auction with
discriminatory pricing policies (i.e., winners have different
payoffs). We begin by using Myerson’s virtual valuations [11]
to characterize the expected revenue of a truthful spectrum
auction M. We show that an economically robust M is
equivalent to a graph coloring with a weighted sum non-
negative in expectation. We design District-D based on this
result and show that the design is computationally efficient.

5.1 Preliminaries

Assume all buyers (sellers) bid (ask) independently, but
possibly under different distributions. For every buyer n,
denote its bid distribution function as F bn(bn) and the
corresponding density function as f bn(bn). We similarly
define F sm(am) and fsm(am) for every seller m. Since M is
designed to be truthful, we do not discriminate the true bid
(ask) and the submitted bid (ask) in the following context.

In [11], Myerson defines virtual valuations for buyers in a
single-sided auction. We extend this idea to double auctions

and apply it to our design. Formally, we define

ψm(am) = am +
F sm(am)

fsm(am)
(2)

as the virtual valuation of seller m with ask am, and

φn(bn) = bn −
1− F bn(bn)

f bn(bn)
(3)

as the virtual valuation of buyer n with bid bn. We assume
regular distributions [11], i.e., all φn(·) and ψm(·) are in-
creasing functions1.

Let v = (a1, . . . , aM , b1, . . . , bN ) be the vector of sub-
missions. Denote by γM(v, G) the revenue of auction M
with submissions v and the conflict graph G as the input.
When there is no confusion, we simply write γM(v, G)
as γ(v). The following lemma shows that the expected
revenue can be fully characterized by the virtual valuations
of all winners. The proof is similar to [11] and is given in
the appendix2.

Lemma 2: Given a truthful M and G, let xn(v) = 1 if n
wins, i.e., n is colored, and xn(v) = 0 otherwise. Let ym(v)
be similarly defined for a seller m. Then

Ev [γ(v)] = Ev

[
N∑
n=1

φn(bn)xn(v)−
M∑
m=1

ψm(am)ym(v)

]
.

(4)
Lemma 2 reveals an important fact — dealing with

virtual valuations is equivalent to dealing with submitted
bids (asks), in terms of the expected revenue.

Introducing φn(·) and ψm(·) greatly simplifies the auc-
tion design problem. Suppose the conflict graph G is given.
For a buyer n with bid bn, we assign φn(bn) as the node
weight to node n. For seller m with ask am, we assign
ψm(am) as the color weight to color m. We define the weight
of a colored graph G as

W (G) =
N∑
n=1

φn(bn) · xn −
M∑
m=1

ψm(am) · ym . (5)

Here xn = 1 if n is colored, and xn = 0 otherwise; ym = 1
if m is used to color, and ym = 0 otherwise. By Lemma 2,
we have

Ev [γM(v, G)] = Ev [W (G)] . (6)

Therefore, achieving the ex ante budget balance is equiv-
alent to maintaining the weighted sum non-negative in
expectation, i.e., E[W (G)] ≥ 0.

Recall that the ultimate goal of our design is to pursue
a high auction efficiency. We can now rewrite the objective
problem (1) as follows:

max
M

E [ηM] (7)

s.t. E[W (G)] ≥ 0 ,

M is truthful and individually rational .

1. This is not a restrictive assumption, as many important dis-
tributions satisfy the regularity assumption [11], including uniform,
exponential, normal, etc.

2. The appendix is given in a supplementary document as per the
TMC submission guidelines.



We see from the analysis above that the expected revenue
of a truthful mechanism can be fully characterized by
winners only, independent of their payoffs. In other words,
for truthful spectrum auctions, the winner-determination
algorithm (i.e., graph coloring) characterizes the pricing
scheme, and serves a key role in District-D’s design.

5.2 Winner Determination

Based on our model, calculating the winning buyers and
sellers is, in essence, to calculate a graph coloring scheme.
From (7), we see that such a coloring scheme should color
as many nodes as possible, while keeping the weighted
sum non-negative in expectation. Due to the intractability
of this problem, our design is heuristic-based.

In the proposed heuristic algorithm, at every iteration,
we pick a feasible buyer-seller pair with the maximum
marginal revenue measured by the virtual valuation. We
then add the pair’s marginal revenue to the accumulated
revenue. If a deficit (i.e., the resulted revenue is negative)
occurs, the pair is rejected and the algorithm terminates.
Otherwise, the pair is accepted, and we proceed to the next
iteration and repeat the above procedure.

For convenience, we introduce the following notations
before presenting the formal algorithm in Algorithm 2.
• S – Set of all sellers S = {1, . . . ,M}.
• B – Set of all buyers B = {1, . . . , N}.
• T – Round-by-round record of transactions already

made by the winner-determination algorithm.
• T b – Set of winning buyers corresponding to T .
• T s – Set of winning sellers corresponding to T .
• ∆m,n(T , am, bn) – Marginal revenue generated by as-

signing m to n, given T , seller m’s ask am, and buyer
n’s bid bn. If the assignment is feasible, then by (4),
we have

∆m,n(T , am, bn) = φn(bn)− ψm(am)Im/∈T s , (8)

where Iα = 1 if α is true, Iα = 0 otherwise.
When the assignment is not feasible, we simply define
∆m,n(T , am, bn) = −∞ .

• MaxMarginalRev(T ) – Given T , calculate the trans-
action (m,n) with the maximum marginal revenue
among all feasible transactions, i.e., ∆m,n(T , am, bn) =
maxi∈S,j∈B ∆i,j(T , ai, bj).

Algorithm 2 District-D Winner Determination
1. Initialization: γ ← 0, T ← ∅, and stop ← false.
2. while stop = false do
3. ∆m,n ← MaxMarginalRev(T )
4. if γ + ∆m,n ≥ 0 then
5. γ ← γ + ∆m,n

6. Add (m,n) to T , color G accordingly.
7. else
8. stop ← true
9. end if

10. end while
11. return T

To better understand Algorithm 2, one can refer to Fig. 7
for an example.

Our winner-determination algorithm guarantees the
budget balance, as stated by the following proposition.

Proposition 4: District-D is ex ante budget balanced.
Proof: Given conflict graph G, for all asks a and all bids

b, Algorithm 2 colors G with a non-negative weighted sum,
i.e., γ = W (G) ≥ 0. Hence E[W (G)] = E[γM(v, G)] ≥ 0,
where the equality holds because of (6). Since this statement
holds for every G, we conclude the proof.

Also, our design has the potential to achieve truthfulness
and individual rationality. The key to this point is to show
that the design is bid monotonic. Once this is the case, the
pricing scheme will be an algorithm to calculate the critical
submissions for all winners.

Proposition 5: Algorithm 2 is bid monotonic.
The formal proof of Proposition 5 is presented in the

appendix. Intuitively, if buyer n wins and trades with
seller m by bidding bn, then raising the bid to b′n > bn
increases the marginal revenue generated by transaction
(m,n), i.e., ∆m,n(T , am, b′n) ≥ ∆m,n(T , am, bn), as can be
verified by referring to (8). Since (m,n) is already the most
profitable assignment when n bids bn, we see that in the
new submission, (m,n) remains the most profitable choice
for the auctioneer and will be selected again. Therefore,
n wins by bidding higher than bn. Similar argument also
applies to winning seller m.

Now by Lemma 1, to achieve truthfulness and individ-
ual rationality, the pricing mechanism of District-D needs
to calculate the critical submissions in a computationally
efficient manner. We present the design in the next sections.

5.3 Buyer Pricing

By Definition 5, we see that the critical bid is the minimum
submission required to win. The basic rationale is that to
win the auction, there is no need to bid as high as possible.
Instead, it suffices to win if one can do better than its
competitors. Following this idea, we first remove buyer n
from bidding. We then conduct winner determination to
obtain the winners list and see the winning competitors’
bids. Buyer n can win as long as its bid is higher than
the one submitted by the weakest competitor. The detailed
procedure is given in Algorithm 3. It is worth mentioning
that if the equation in line 4 (resp. line 8) has no solution,
then the value of bl(i) (resp. bk+1

(i) ) is set to be ∞.
Let T be the transaction list generated by the winner-

determination algorithm (Algorithm 2). Let Tl be the first
l transactions in T , i.e., Tl = {(i1, j1), . . . , (il, jl)}, where
(il, jl) is the lth transaction made by Algorithm 2 between
the seller il and the buyer jl. Denote by T sl the winning
sellers associated with Tl.

Proposition 6: For every winning buyer n, Algorithm 3
returns its critical bid cn.

Proof: We first prove that n wins by bidding higher
than cn, i.e., bn > cn. It suffices to consider two cases:

Case 1: cn is finalized in the first k loops, i.e., cn =
bl = bl(i) for some l ≤ k and i ∈ S. For n bidding
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(d) The fourth iteration. T =
{(2, 7), (3, 6), (1, 1), (5, 5)}.
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(e) The fifth iteration. T =
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(f) The final iteration. T =
{(2, 7), (3, 6), (1, 1), (5, 5), (5, 4), (5, 2)}.

Fig. 7. An example of Algorithm 2. The network scenario is the same as that depicted in Fig. 2. For simplicity, the virtual
valuations are set as follows: ψm = m and φn = n. We replace labels for buyers and sellers by their virtual valuations in
figures. (a) to (f) illustrate the iteration process of Algorithm 2.

Algorithm 3 District-D Pricing for a Winning Buyer n
1. Remove n and run Algorithm 2 to obtain the transaction

(seller, buyer) list T = {(i1, j1), . . . , (ik, jk)}.
2. cn ←∞, and γ ← 0
3. for l = 1 to k do
4. bl ← mini∈S b

l
(i), where bl(i) solves the following

equation: ∆i,n(Tl−1, ai, bl(i)) = ∆il,jl(Tl−1, ail , bjl)
5. cn ← min{cn, bl}
6. γ ← γ + ∆il,jl(Tl−1, ail , bjl)
7. end for
8. bk+1 ← mini∈S b

k+1
(i) , where bk+1

(i) solves the following
equation: ∆i,n(Tk, ai, bk+1

(i) ) = −γ
9. cn ← min{cn, bk+1}

10. return cn

bn > cn = bl(i), the worst case is that it loses in the first
l − 1 rounds. But in the lth round, ∆i,n(Tl−1, ai, bn) >
∆i,n(Tl−1, ai, bl(i)) = ∆il,jl(Tl−1, ail , bjl), where the first
inequality holds due to the increasing φn(·) and (8). This
implies that making the transaction (i, n) would generate
more marginal revenue than selecting (il, jl). Since (il, jl) is
already the most profitable transaction when n is absent, we
conclude that (i, n) maximizes the marginal revenue when
n joins the auction. Therefore, n wins by being selected to
trade with seller i.

Case 2: cn = bk+1 = bk+1
(i) for some i ∈ S. For n bidding

bn > cn = bk+1
(i) , the worst case is that it loses in the first

k rounds. However, n can still trade with seller i after the
first k rounds, with the marginal revenue ∆i,n(Tk, ai, bn) >
∆i,n(Tk, ai, bk+1

(i) ) = −γ. Therefore, adding the transaction
pair (i, n) to the auction results makes the total revenue

remain positive, i.e., ∆i,n(Tk, ai, bn) + γ > 0. Based on the
winner determination algorithm (Algorithm 2), n wins and
trades with seller i.

Next, if n bids less than cn (i.e., bn < cn), then it loses
in the first k rounds. For any l = 1, . . . , k and any seller
i ∈ S, we have

∆i,n(Tl−1, ai, bn) < ∆i,n(Tl−1, ai, bl)
≤ ∆i,n(Tl−1, ai, bl(i))
= ∆il,jl(Tl−1, ail , bjl) .

Here the equality holds because of line 4. This essentially
indicates that buyer n loses in the first k rounds as any
transactions involving it does not generate the optimal
marginal revenue.

Moreover, even if bk+1 <∞ after k rounds, n loses and
cannot trade with any seller i ∈ S. Otherwise, the total
revenue would become negative: ∆i,n(Tk, ai, bn) + γ ≤
∆i,n(Tk, ai, bk+1) + γ ≤ ∆i,n(Tk, ai, bk+1

(i) ) + γ = 0.

5.4 Seller Pricing

For sellers, the analysis on pricing is similar to buyers’.
Seller m only needs to ask for lower than its competitors
to win the auction. We first remove m and run the winner
determination to see its winning competitors’ asks. Seller
m can win by asking for lower than these competitors. The
detailed design is given in Algorithm 4. Note that if the
equation in line 4 (resp. line 8) has no solution, then the
value of al(j) (resp. ak+1

(j) ) is set to be −∞.
Proposition 7: For every winning seller m, Algorithm 4

returns its critical ask pm.
The proof of Proposition 7 is similar to the proof of

Proposition 6 and is given in the appendix.



Algorithm 4 District-D Pricing for a Winning Seller m
1. Remove m and run Algorithm 2 to obtain the transac-

tion (seller, buyer) list T = {(i1, j1), . . . , (ik, jk)}.
2. pm ← −∞, and γ ← 0
3. for l = 1 to k do
4. al ← maxj∈B a

l
(j), where al(j) solves the following

equation: ∆m,j(Tl−1, al(j), bj) = ∆il,jl(Tl−1, ail , bjl)
5. pm ← max{pm, al}
6. γ ← γ + ∆il,jl(Tl−1, ail , bjl)
7. end for
8. ak+1 ← maxj∈B a

k+1
(j) , where ak+1

(j) solves the following
equation: ∆m,j(Tk, ak+1

(j) , bj) = −γ
9. pm ← max{pm, ak+1}

10. return pm

5.5 Economic Properties and Computational Effi-
ciency

From Proposition 5, 6 and 7, we see that District-D is bid
monotonic and generates critical submissions. Therefore, by
Lemma 1, it is truthful and individually rational. Noting
that District-D is also ex ante budget balanced by Proposi-
tion 4, we conclude that:

Theorem 2: District-D is economically robust.
We now analyze the time complexity of District-D. In

Algorithm 2, one transaction is made in each round of
the loop, and the loop runs at most N rounds for N
transactions. The complexity of each round is dominated by
MaxMarginalRev(·), which takes O(M2N) time to finalize3.
We hence need O(M2N2) time for Algorithm 2. Note that
Algorithm 2 also dominates the complexity of Algorithm 3
and 4, where the former runs N times while the later runs
M times to calculate prices for all winners. We conclude
that District-D completes within O(M2N3 +M3N2) time.

6 EXTENSIONS

For now, all our discussions are based on a basic model
where each buyer requests only a single channel and the
auctioneer is non-profit — its ultimate goal is to maximize
the auction efficiency, not the revenue. In this section, we
show that with minor modifications, previously developed
techniques also apply to more general cases, in which 1)
buyers can bid for multiple channels, and 2) the auctioneer
aims to maximize the auction revenue.

Note that a more general model should also include
multi-supply sellers selling different channels idle in dif-
ferent geographic regions, at different prices. Each seller
jointly optimizes the ask prices of different channels to
maximize the overall utility. Since every seller has high-
dimensional strategies, the problem is essentially a combi-
natorial mechanism design problem [22]. We are not aware

3. A simple implementation is to go through all tradable transactions
without conflicting with previously made trades, and select the one
with the maximum marginal revenue. There are at most MN such
transactions, each requiring at most M comparisons to clear the conflict
relation. We hence need O(M2N) time for MaxMarginalRev(·).

of any revenue characterization result reported in this set-
ting. Without this result, it would be very difficult to ensure
budget balance, as there is no way to characterize the
auction revenue. For these reasons, we leave this general
scenario as an open problem for future investigation.

6.1 Multi-Demand Buyers

6.1.1 Models

Suppose every buyer n requests rn channels at its location
and has a true bid btn for accessing each one. Buyer n
reports rn and submits a bid bn to maximize its utility.
No partial fulfillment is accepted: A buyer is either rejected
or has all requested rn channels being allocated. We define
buyer n’s utility ubn(bn) as follows:

ubn(bn) =

{
rn(btn − cn) , if n wins;
0 , otherwise,

(9)

where cn is the charged per-channel price. A buyer’s prob-
lem is to find an optimal submission to maximize its utility,
i.e., maxbn u

b
n(bn). We note that this multi-demand buyer

model has also been adopted in [4], [21]. The seller model
is the same as in Sec. 3.

The auctioneer’s problem is to design a spectrum double
auction to maximize the auction efficiency ηM while main-
taining economic robustness. Here, ηM is defined as the
ratio of the fulfilled channel requests to the total requests,
i.e., ηM =

∑
n∈Wb

rn/
∑
n rn, with Wb being the set of all

winning buyers.
Note that the auctioneer has to ensure a feasible channel

assignment such that no two interfering buyers shares the
same channel. To this end, we first extend the conflict
graph G(V,E,C) defined in Sec. 3 as follows. For buyer n
requesting rn channels, we treat it as rn virtual buyers each
requesting a different channel. We therefore split node n in
G to rn subnodes, each having exactly the same available
colors Cn and interfering relations as its supernode n has.
In particular, if buyer n interferes with n′, then every
subnode of n has an edge connected to every subnode
of n′. Besides, to ensure that all rn channels allocated to
buyer n are different, we add an interfering edge between
every two subnodes of it. For convenience, denote by Ḡ the
extended conflict graph of the originalG. A feasible channel
assignment therefore corresponds to a coloring scheme on
an extended conflict graph Ḡ.

6.1.2 Extending District-U

In Algorithm 1, after the trade reduction, instead of coloring
the original conflict graph GM ′,N ′ (see line 3), we color
the extended graph ḠM ′,N ′ , and buyer n wins if all its
rn subnodes are colored. The pricing scheme remains the
same as the original one: Every winning seller is paid bN ′+1

and every winning buyer is charged bN ′+1 for each traded
channel.

It is easy to verify that both the claims and proofs
of Proposition 1, 2, and 3 trivially apply to the above
extensions, leading to the properties of truthfulness, bid



monotonicity, and critical submissions. Therefore, we have
the following theorem.

Theorem 3: The extended District-U is economically ro-
bust.

6.1.3 Extending District-D

Since a winning buyer n now trades with rn sellers, by
Lemma 2, in expectation, accommodating its channel re-
quests generates rnφn(bn) revenue for the auctioneer. In
fact, we see that Lemma 2 can be trivially extended to
characterize the expected auction revenue as

Ev [γ(v)] = Ev

[
N∑
n=1

rnφn(bn)xn(v)−
M∑
m=1

ψm(am)ym(v)

]
.

(10)
Therefore, being budget balanced is equivalent to maintain-
ing the RHS of (10) nonnegative.

Some notations are introduced before presenting the
formal designs. Denote by (S, n) the transactions made
between buyer n and a set of sellers S = {s1, . . . , srn}. Let
S, B, T , T b, T s, Tl, and T sl be similarly defined as they
are in Sec. 5.2 and 5.3. Denote by ∆S,n(T ) the marginal
revenue generated by adding transactions (S, n) to the
existing transaction list T . By (10), when adding (S, n) to
T is feasible, we have

∆S,n(T ) = rnφn(bn)−
rn∑
i=1

ψsi(asi)Isi /∈T s . (11)

Otherwise, ∆S,n(T ) = −∞. Sometimes, ∆S,n(T ) is also
written as ∆S,n(T , am) (∆S,n(T , bn)) if seller m’s ask
(buyer n’s bid) is of interest. Finally, let MaxMarginalRev(T )
return the feasible transactions (S, n) with the maximum
marginal revenue, given the already decided transaction list
T , i.e., MaxMarginalRev(T ) = maxn∈B,S⊂S,|S|=rn ∆S,n(T ).

Winner determination. The extended winner determina-
tion algorithm follows the same logic flow of Algorithm 2,
with ∆m,n and (m,n) being replaced by ∆S,n and (S, n),
respectively. Intuitively, the auctioneer greedily adds trans-
actions (S, n) with the maximum marginal revenue to its
output, until the accumulated revenue is no longer positive,
at which time it stops.

Buyer pricing. With the same design idea of Algorithm 3,
we extend the buyer pricing to Algorithm 5. Note that in
line 4 (resp. line 8), if the equation has no solution, we
simply set bl(S) =∞ (resp. bk+1

(S) =∞).
Seller pricing. Algorithm 6 presents the design of the

extended seller pricing. If the equation in line 4 (resp. line 8)
has no solution, we simply set al(j) = −∞ (resp. ak+1

(j) =
−∞).

Following the same analyses of Proposition 4 and 5, we
can easily show that the winner determination is ex ante
budget balanced and bid monotonic, while both the buyer
and seller pricing return critical submissions. Therefore, we
have the following theorem. The proofs are given in the
appendix.

Theorem 4: The extended District-D is economically ro-
bust.

Algorithm 5 Extended District-D Pricing for a Winning
Buyer n

1. Remove n and run Algorithm 2 to obtain the transaction
list T = {(S1, j1), . . . , (Sk, jk)}.

2. cn ←∞, and γ ← 0
3. for l = 1 to k do
4. bl ← minS⊂S,|S|=rn b

l
(S), where bl(S) solves the equa-

tion ∆S,n(Tl−1, bl(S)) = ∆Sl,jl(Tl−1, bjl).
5. cn ← min{cn, bl}
6. γ ← γ + ∆Sl,jl(Tl−1, bjl)
7. end for
8. bk+1 ← minS⊂S,|S|=rn b

k+1
(S) , where bk+1

(S) solves the
equation ∆S,n(Tk, bk+1

(S) ) = −γ
9. cn ← min{cn, bk+1}

10. return cn

Algorithm 6 Extended District-D Pricing for a Winning
Seller m

1. Remove m and run Algorithm 2 to obtain the transac-
tion list T = {(S1, j1), . . . , (Sk, jk)}.

2. pm ← −∞, and γ ← 0
3. for l = 1 to k do
4. al ← maxj∈B a

l
(j), where al(j) solves the equation

maxS⊂S,|S|=rj ,m∈S{∆S,j(Tl−1, al(j))} = ∆Sl,jl(Tl−1)

5. pm ← max{pm, al}
6. γ ← γ + ∆Sl,jl(Tl−1)
7. end for
8. ak+1 ← maxj∈B a

k+1
(j) , where ak+1

(j) solves the equation
maxS⊂S,|S|=rj ,m∈S{∆S,j(Tk, ak+1

(j) )} = −γ
9. pm ← max{pm, ak+1}

10. return pm

Note that all extensions above remain computationally
efficient, taking O(M2N3 +M3N2) time to complete. The
detailed analysis is also given in the appendix.

6.2 Profit-Driven Auctioneer

Previous discussions assume a non-profit auctioneer aim-
ing to maximize the auction efficiency. Such an unselfish
auctioneer could be governmental or public agencies such
as the FCC in US. However, when the auction is operated
by some profit-driven company, such as Spectrum Bridge,
Inc., then the auctioneer’s objective is to maximize its
own revenue. In this case, the auctioneer runs District-
U first. After accumulating sufficient knowledge of bid
distributions, it switches to District-D with the following
minor modifications.

By Lemma 2, maximizing the expected auction revenue
is equivalent to maximizing the RHS of (4), which is
apparently an NP-Complete problem. We hence adopt a
heuristic solution with greedy designs: Sequentially add
a transaction (m,n) with the maximum marginal revenue
∆m,n to the auction output, until there is no profitable
transaction to make (i.e., ∆m,n < 0). In particular, we



change the “if” condition from γ + ∆m,n ≥ 0 (see line 4
of Algorithm 2) to ∆m,n ≥ 0. Some adjustments are also
needed in the pricing design: We replace −γ in line 8 of
Algorithm 3 with 0. The same replacement is also taken in
the same line of Algorithm 4.

With similar proofs to Proposition 5, 6 and 7, one can
easily show that the extension above is bid monotonic
and charges (pays) the winners their critical submissions.
Therefore, we have the following conclusion.

Theorem 5: The extension of District-D for a profit-driven
auctioneer is truthful and individually rational.

Finally, for multi-demand buyers, the extensions pre-
sented in Sec. 6.1 are also applicable, and Theorem 5
extends to this scenario as well. The complete design is
given in the appendix.

7 SIMULATION RESULTS

We evaluate the performance of District with extensive
simulations. Buyers are uniformly distributed in a 1 × 1
geographical region. Two buyers interfere with each other
if their Euclidean distance is less than 0.1. Every seller
indicates a license area to sell. The license area is assumed
to be circular, with radius uniformly distributed between
0.2 and 0.5 and center uniformly located in the entire
region. All bids and asks are normalized and follow the
uniform distribution in the range of [0, 1]. Since District is
truthful by design, these are also true bids and asks.

We evaluate the auction efficiency as the main perfor-
mance metric of District, as our design is already proven to
be economically robust. We also present numerical results
for the generated revenue to study the relation between the
auction efficiency and the revenue. All results presented in
this section are based on the basic scenario where every
participant trades only one channel in the local market.
For the extended case where a buyer asks for multiple
channels, we observe similar performance trends, which is
reasonable since the extensions adopt similar design ideas
to the original ones. Each result obtained below has been
averaged over 10000 runs.

7.1 District-U

We first investigate how the performance of District-U is
affected by the choice of the deterministic graph coloring
algorithm GraphColoring(·). We compare three sequential
coloring algorithms with different coloring orders, i.e., the
fixed order where nodes with the least node ID is colored
first, the least uncolored neighbors where a node with
the least uncolored neighbors is colored first, and Brélaz’s
DSATUR where a node with the least available colors is
colored first [25]. Fig. 8a illustrates the comparison results
of their performances. Interestingly, we see that all three
coloring algorithms achieve similar auction efficiency. This
suggests that the performance of District-U is less depen-
dent on the specific design of GraphColoring(·). However,
adopting a good coloring algorithm, such as DSATUR, does
benefit the auction efficiency.

Since DSATUR slightly outperforms the other two col-
oring, our following simulations are carried out based on
District-U with DSATUR. Fig. 8b and 8c further illustrate
its mean and standard deviation of the auction efficiency,
respectively, while Fig. 8d presents the mean revenue.

We see that the mean auction efficiencies in all four ex-
periments exhibit similar trend in their performance curves:
Higher auction efficiency is achieved as more sellers join
the auction, while the marginal enhancement is decreasing.
On the other hand, when the channel supply is maintained
unchanged, adding more buyers to the market degrades the
auction efficiency, as the fixed amount of channel supply is
insufficient to accommodate the increasing demand. When
the channel supply and demand are of the same level (i.e.,
the number of buyers is equal to the number of sellers), the
auction efficiency is around 50%.

It is worth mentioning that the maximum revenue does
not always come with the optimal efficiency, as illustrated
in Fig. 8d. Although enrolling more buyers increases the
number of potential transaction pairs, it essentially lowers
the admission threshold, making each transaction less prof-
itable. However, high revenue is indeed extracted when the
number of winners becomes a dominating factor.

7.2 District-D

Though District-U does not require a priori information
and is ex post budget balanced, its efficiency is highly
constrained due to its trade-reduction nature: many feasible
trades are reduced to avoid a budget deficit. As shown in
Fig. 8e, when the bid distribution knowledge is available,
District-D can do better. As more sellers become available
and the channel supplies increase, the auction efficiency can
grow quickly, until the market is saturated with almost all
buyers being served.

Interestingly, as shown in Fig. 8e, the more buyers join
the market, the higher the mean auction efficiency is. We
give an intuitive explanation here. The design rationale of
District-D is to add as many trades as possible, with the
constraint that the total revenue measured by virtual valu-
ations is non-negative in every iteration. However, not all
transactions are profitable. These transactions are accepted
only when the auctioneer has already accumulated suffi-
cient revenue in the past trades: it can use its accumulation
to compensate for the deficit caused by these unprofitable
transactions while still maintaining budget balance. For a
smaller market with fewer buyers, the accumulated rev-
enue is limited and is insufficient to compensate for the
deficit. As a result, the trade that is not profitable has to be
dropped, leaving a relatively low auction efficiency com-
pared with a market with more buyers. Fig. 8g validates
this point of view — low efficiency usually comes with
low revenue. As a conclusion, District-D is scalable to large
networks.

Also, we depict the standard deviation of the auction
efficiency in Fig. 8f. We see that the scenario containing
more participants, either buyers or sellers, tends to have
a smaller standard deviation. Moreover, the deviation is
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(b) District-U with DSATUR:
Mean auction efficiency.
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(c) District-U with DSATUR:
Standard deviation of the auc-
tion efficiency.
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(d) District-U with DSATUR:
Mean auction revenue.
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(e) District-D: Mean auction
efficiency.
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(f) District-D: Standard devia-
tion of the auction efficiency.
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(g) District-D: Mean auction
revenue.
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Fig. 8. Simulation results of the efficiency-driven spectrum double auctions.
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Fig. 9. Simulation results for profit-driven District-D.

observed to be exponentially diminished with respect to
the number of participants. One can view this result as an
outcome of the Law of Large Numbers.

We next compare the performance of District-D and
District-U with DSATUR by inspecting Fig. 8b, 8d, 8e and
8g. By a significant margin, District-D outperforms District-
U in the auction efficiency, especially in a market containing
more buyers.

Finally, we evaluate the profit-driven Distric-D discussed
in Sec. 6.2. We see in Fig. 9b that the design generates
significantly higher revenues than both District-U and its
efficiency-driven counterpart. At a price, however, the auc-
tion efficiency is much lower, as illustrated in Fig. 9a.

In conclusion, District-U serves as an appropriate transi-
tional mechanism for the auctioneer to sustain the auction
without external subsidies. It generates a moderate level
of auction efficiency, and creates time for the auctioneer to
collect the distribution information of bids and asks. When
the distribution information is available, the auctioneer can
switch to District-D to enjoy higher auction efficiency.

7.3 District vs. A Simple Extension of TRUST

Sec. 6 discusses a scheme to directly extend an existing
spectrum auction to make it compatible with local markets.
A natural question is whether such a simple extension can
provide acceptable performance. To study this, we extend
TRUST4 as described in Sec. 6 and investigate its auction
efficiency.

In Fig. 8h, we see that, with market sizes comparable to
those experimented in District (i.e., fewer than 100 sellers
and buyers), the auction efficiency of TRUST-extension is
fairly low — generally less than 0.1 — and grows slowly
when channel supplies increase. Moreover, when more
buyers are available in the auction, the market is saturated
and the efficiency drops. This is in stark contrast to the
scalability of District-D. The efficiency of TRUST-extension
improves only when a very large amount of channel sup-
plies are available in the market, but it is still severely
limited when the number of buyers is small. By comparing
Fig. 8h with both Fig. 8b and Fig. 8e, we conclude that
District significantly outperforms the simple extension in
Sec. 6.

8 CONCLUSION

In this paper, we present District, a set of new spectrum
double auctions that incorporate market locality for prac-
tical spectrum markets, where sellers can freely partition
their license areas to either sell or reserve, based on their
own requirements. An auctioneer can start from District-U,

4. Similar to [5], the associated spectrum allocation algorithm is
Greedy-U.



a uniform pricing auction, to obtain moderate auction effi-
ciency without any a priori information about bids. After ac-
cumulating sufficient knowledge of bid distributions, it can
then switch to District-D, a discriminatory pricing auction,
to pursue better auction efficiency. Our computationally
efficient designs are proved to be economically robust and
scalable to large networks. With minor modifications, our
designs can also be applied by a profit-driven auctioneer to
pursue the high auction revenue. To our knowledge, this is
the first set of spectrum double auctions designed for local
markets with these properties.

REFERENCES
[1] W. Wang, B. Li, and B. Liang, “District: Embracing local markets

in truthful spectrum double auctions,” in Proc. IEEE SECON, 2011.
[2] FCC, “TV white spaces databases and database

administrators,” http://transition.fcc.gov/oet/whitespace/
WhiteSpacesDAGuide.pdf.

[3] Spectrum Bridge, Inc., “SpecEx,” http://www.specex.com.
[4] X. Zhou, S. Gandhi, S. Suri, and H. Zheng, “eBay in the sky:

Strategy-proof wireless spectrum auctions,” in Proc. ACM Mobi-
Com, 2008.

[5] X. Zhou and H. Zheng, “TRUST: A general framework for truthful
double spectrum auctions,” in Proc. IEEE INFOCOM, 2009.

[6] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue generation for
truthful spectrum auction in dynamic spectrum access,” in Proc.
ACM MobiHoc, 2009.

[7] H. Xu and B. Li, “A secondary market for spectrum,” in Proc.
IEEE INFOCOM, 2010.

[8] S. Wang, P. Xu, X. Xu, S. Tang, X. Li, and X. Liu, “TODA:
Truthful online double auction for spectrum allocation in wireless
networks,” in Proc. IEEE DySpan, 2010.

[9] A. Gopinathan, Z. Li, and C. Wu, “Strategyproof auctions for
balancing social welfare and fairness in secondary spectrum
markets,” in Proc. IEEE INFOCOM, 2011.

[10] R. P. McAfee, “A dominant strategy double auction,” J. Econ.
Theory, vol. 56, no. 2, pp. 434–450, 1992.

[11] R. B. Myerson, “Optimal auction design,” Math. Oper. Res., vol. 6,
no. 1, p. 58, 1981.

[12] V. Krishna, Auction Theory. Academic Press, 2009.
[13] J. McMillan, “Selling spectrum rights,” J. Econ. Perspect., vol. 8,

no. 3, pp. 145–162, 1994.
[14] R. McAfee and J. McMillan, “Analyzing the airwaves auction,” J.

Econ. Perspect., vol. 10, no. 1, pp. 159–175, 1996.
[15] P. Cramton, “The FCC spectrum auctions: An early assessment,”

J. Econ. Manage. Strategy, vol. 6, no. 3, pp. 431–495, 1997.
[16] P. Cramton and J. Schwartz, “Collusive bidding: Lessons from

the FCC spectrum auctions,” J. Regul. Econ., vol. 17, no. 3, pp.
229–252, 2000.

[17] J. Huang, R. Berry, and M. Honig, “Auction mechanisms for
distributed spectrum sharing,” in Proc. Allerton Conf., 2004.

[18] M. Buddhikot and K. Ryan, “Spectrum management in coordi-
nated dynamic spectrum access based cellular networks,” in Proc.
IEEE DySpan, 2005.

[19] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, “A
general framework for wireless spectrum auctions,” in Proc. IEEE
DySpan, 2007.

[20] A. Subramanian, M. Al-Ayyoub, H. Gupta, S. Das, and M. Bud-
dhikot, “Near-optimal dynamic spectrum allocation in cellular
networks,” in Proc. IEEE DySpan, 2008.

[21] F. Wu and N. Vaidya, “Small: A strategy-proof mechanism for
radio spectrum allocation,” in Proc. IEEE INFOCOM, 2011.

[22] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algo-
rithmic Game Theory. Cambridge, U.K.: Cambridge Univ. Press,
2007.

[23] R. B. Myerson and M. A. Satterthwaite, “Efficient mechanisms for
bilateral trading,” J. Econ. Theory, vol. 29, no. 2, pp. 265–281, 1983.
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