
1

Multi-Resource Fair Allocation in Heterogeneous
Cloud Computing Systems

Wei Wang, Student Member, IEEE, Ben Liang, Senior Member, IEEE, Baochun Li, Senior Member, IEEE

Abstract—We study the multi-resource allocation problem in cloud computing systems where the resource pool is constructed from a
large number of heterogeneous servers, representing different points in the configuration space of resources such as processing,
memory, and storage. We design a multi-resource allocation mechanism, called DRFH, that generalizes the notion of Dominant
Resource Fairness (DRF) from a single server to multiple heterogeneous servers. DRFH provides a number of highly desirable
properties. With DRFH, no user prefers the allocation of another user; no one can improve its allocation without decreasing that of
the others; and more importantly, no coalition behavior of misreporting resource demands can benefit all its members. DRFH also
ensures some level of service isolation among the users. As a direct application, we design a simple heuristic that implements DRFH
in real-world systems. Large-scale simulations driven by Google cluster traces show that DRFH significantly outperforms the traditional
slot-based scheduler, leading to much higher resource utilization with substantially shorter job completion times.

Index Terms—Cloud computing, heterogeneous servers, job scheduling, multi-resource allocation, fairness.

F

1 INTRODUCTION

Resource allocation under the notion of fairness and efficiency
is a fundamental problem in the design of cloud computing
systems. Unlike traditional application-specific clusters and
grids, cloud computing systems distinguish themselves with
unprecedented server and workload heterogeneity. Modern
datacenters are likely to be constructed from a variety of
server classes, with different configurations in terms of pro-
cessing capabilities, memory sizes, and storage spaces [2].
Asynchronous hardware upgrades, such as adding new servers
and phasing out existing ones, further aggravate such diversity,
leading to a wide range of server specifications in a cloud
computing system [3]–[7]. Table 1 illustrates the heterogeneity
of servers in one of Google’s clusters [3], [8]. Similar server
heterogeneity has also been observed in public clouds, such
as Amazon EC2 and Rackspace [4], [5].

In addition to server heterogeneity, cloud computing sys-
tems also represent much higher diversity in resource demand
profiles. Depending on the underlying applications, the work-
load spanning multiple cloud users may require vastly differ-
ent amounts of resources (e.g., CPU, memory, and storage).
For example, numerical computing tasks are usually CPU
intensive, while database operations typically require high-
memory support. The heterogeneity of both servers and work-
load demands poses significant technical challenges on the
resource allocation mechanism, giving rise to many delicate
issues—notably fairness and efficiency—that must be carefully
addressed.

Despite the unprecedented heterogeneity in cloud com-

• W. Wang, B. Liang and B. Li are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON, Canada.
E-mail: {weiwang, liang}@ece.utoronto.ca, bli@ece.toronto.edu.

• Part of this paper has appeared in [1]. This new version contains substan-
tial revision with new illustrative examples, property analyses, proofs, and
discussions.

TABLE 1
Configurations of servers in one of Google’s clusters [3],

[8]. CPU and memory units are normalized to the
maximum server (highlighted below).

Number of servers CPUs Memory

6732 0.50 0.50
3863 0.50 0.25
1001 0.50 0.75
795 1.00 1.00

126 0.25 0.25
52 0.50 0.12
5 0.50 0.03
5 0.50 0.97
3 1.00 0.50
1 0.50 0.06

puting systems, state-of-the-art computing frameworks em-
ploy rather simple abstraction that falls short. For example,
Hadoop [9] and Dryad [10], the two most widely deployed
cloud computing frameworks, partition a server’s resources
into bundles—known as slots—that contain fixed amounts
of different resources. The system then allocates resources
to users at the granularity of these slots. Such a single
resource abstraction ignores the heterogeneity of both server
specifications and demand profiles, inevitably leading to a
fairly inefficient allocation [11].

Towards addressing the inefficiency of the current allocation
module, many recent works focus on multi-resource allocation
mechanisms. Notably, Ghodsi et al. [11] suggest a com-
pelling alternative known as the Dominant Resource Fairness
(DRF) allocation, in which each user’s dominant share—
the maximum ratio of any resource that the user has been
allocated—is equalized. The DRF allocation possesses a set of
highly desirable fairness properties, and has quickly received
significant attention in the literature [12]–[15]. While DRF
and its subsequent works address the demand heterogeneity of
multiple resources, they all limit the discussion to a simplified

2

model where resources are pooled in one place and the
entire resource pool is abstracted as one big server1. Such
an all-in-one resource model not only contrasts the prevalent
datacenter infrastructure—where resources are distributed to a
large number of servers—but also ignores the server hetero-
geneity: the allocations depend only on the total amount of
resources pooled in the system, irrespective of the underlying
resource distribution of servers. In fact, when servers are
heterogeneous, even the definition of dominant resource is not
so clear. Depending on the underlying server configurations,
a computing task may bottleneck on different resources in
different servers. We shall see that naive extensions, such as
applying the DRF allocation to each server separately, may
lead to a highly inefficient allocation (details in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[11]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that whenever a coalition of users
collude with each other to misreport their resource demands,
there is a member of the coalition that cannot strictly gain.
As a result, the coalition is better off not formed. In addition,
DRFH offers some level of service isolation by ensuring the
sharing incentive property in a weak sense—it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[8]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate

1. While [11] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

Memory

CPUs

Server 1 Server 2
(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

the allocation problem with heterogeneous servers in Sec. 3,
where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [11] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [11]. Suppose that a computing system has
9 CPUs and 18 GB memory, and is shared by two users. User
1 wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system

3

consists of heterogeneous servers. For example, suppose that
the resource pool is provided by two servers. Server 1 has 1
CPU and 14 GB memory, and server 2 has 8 CPUs and 4
GB memory. As shown in Fig. 1, even allocating both servers
exclusively to user 1, at most two tasks can be scheduled, one
in each server. Moreover, even for some server specifications
where the DRF allocation is feasible, the mechanism only
gives the total amount of resources each user should receive.
It remains unclear how many resources a user should be
allocated in each server. These problems significantly limit the
application of the DRF mechanism. In general, the allocation
is valid only when the system contains a single server or
multiple homogeneous servers, which is rarely a case under
the prevalent datacenter infrastructure.

Despite the limitation of the all-in-one resource model,
DRF is shown to possess a set of highly desirable allocation
properties for cloud computing systems [11], [15]. A natural
question is: how should the DRF intuition be generalized to a
heterogeneous environment to achieve similar properties? Note
that this is not an easy question to answer. In fact, with hetero-
geneous servers, even the definition of dominant resource is
not so clear. Depending on the server specifications, a resource
most demanded in one server (in terms of the fraction of the
server’s availability) might be the least-demanded in another.
For instance, in the example of Fig. 1, user 1 demands CPU the
most in server 1. But in server 2, it demands memory the most.
Should the dominant resource be defined separately for each
server, or should it be defined for the entire resource pool?
How should the allocation be conducted? And what properties
do the resulting allocation preserve? We shall answer these
questions in the following sections.

3 SYSTEM MODEL AND ALLOCATION PROP-
ERTIES
In this section, we model multi-resource allocation in a cloud
computing system with heterogeneous servers. We formalize
a number of desirable properties that are deemed the most
important for allocation mechanisms in cloud computing en-
vironments.

3.1 Basic Settings
Let S = {1, . . . , k} be the set of heterogeneous servers
a cloud computing system has in its resource pool. Let
R = {1, . . . ,m} be the set of m hardware resources pro-
vided by each server, e.g., CPU, memory, storage, etc. Let
cl = (cl1, . . . , clm)

T be the resource capacity vector of server
l 2 S, where each component clr denotes the total amount of
resource r available in this server. Without loss of generality,
we normalize the total availability of every resource to 1, i.e.,

X

l2S

clr = 1, 8r 2 R .

Let U = {1, . . . , n} be the set of cloud users sharing the
entire system. For every user i, let Di = (Di1, . . . , Dim)

T

be its resource demand vector, where Dir is the amount of
resource r required by each instance of the task of user i. For
simplicity, we assume positive demands, i.e., Dir > 0 for all

Memory

CPUs

Server 1 Server 2
(2 CPUs, 12 GB) (12 CPUs, 2 GB)

Fig. 2. An example of a system containing two heteroge-
neous servers shared by two users. Each computing task
of user 1 requires 0.2 CPU time and 1 GB memory, while
the computing task of user 2 requires 1 CPU time and 0.2
GB memory.

user i and resource r. We say resource r⇤i the global dominant
resource of user i if

r⇤i 2 argmax

r2R
Dir .

In other words, resource r⇤i is the most heavily demanded
resource required by each instance of the task of user i, over
the entire resource pool. For each user i and resource r, we
define

dir = Dir/Dir⇤i

as the normalized demand and denote by di = (di1, . . . , dim)

T

the normalized demand vector of user i.
As a concrete example, consider Fig. 2 where the system

consists of two heterogeneous servers. Server 1 is high-
memory with 2 CPUs and 12 GB memory, while server
2 is high-CPU with 12 CPUs and 2 GB memory. Since
the system has 14 CPUs and 14 GB memory in total,
the normalized capacity vectors of server 1 and 2 are
c1 = (CPU share,memory share)T = (1/7, 6/7)T and c2 =

(6/7, 1/7)T , respectively. Now suppose that there are two
users. User 1 has memory-intensive tasks each requiring 0.2
CPU time and 1 GB memory, while user 2 has CPU-heavy
tasks each requiring 1 CPU time and 0.2 GB memory. The
demand vector of user 1 is D1 = (1/70, 1/14)T and the nor-
malized vector is d1 = (1/5, 1)T , where memory is the global
dominant resource. Similarly, user 2 has D2 = (1/14, 1/70)T

and d2 = (1, 1/5)T , and CPU is its global dominant resource.
For now, we assume users have an infinite number of tasks

to be scheduled, and all tasks are divisible [11], [13]–[16]. We
shall discuss how these assumptions can be relaxed in Sec. 5.

3.2 Resource Allocation
For every user i and server l, let Ail = (Ail1, . . . , Ailm)

T

be the resource allocation vector, where Ailr is the amount
of resource r allocated to user i in server l. Let Ai =

(Ai1, . . . ,Aik) be the allocation matrix of user i, and A =

(A1, . . . ,An) the overall allocation for all users. We say an
allocation A feasible if no server is required to use more than
any of its total resources, i.e.,

X

i2U

Ailr clr, 8l 2 S, r 2 R .

4

For each user i, given allocation Ail in server l, let Nil(Ail)

be the maximum number of tasks (possibly fractional) it can
schedule. We have

Nil(Ail)Dir Ailr, 8r 2 R .

As a result,

Nil(Ail) = min

r2R
{Ailr/Dir} .

The total number of tasks user i can schedule under allocation
Ai is hence

Ni(Ai) =

X

l2S

Nil(Ail) . (1)

Intuitively, a user prefers an allocation that allows it to
schedule more tasks.

A well-justified allocation should never give a user more
resources than it can actually use in a server. Following the
terminology used in the economics literature [17], we call such
an allocation non-wasteful:

Definition 1: For user i and server l, an allocation Ail is
non-wasteful if reducing any resource decreases the number
of tasks scheduled, i.e., for all A0

il � Ail
2, we have

Nil(A
0
il) < Nil(Ail) .

Further, user i’s allocation Ai = (Ail) is non-wasteful if Ail

is non-wasteful for all server l, and allocation A = (Ai) is
non-wasteful if Ai is non-wasteful for all user i.

Note that one can always convert an allocation to non-
wasteful by revoking those resources that are allocated but
have never been actually used, without changing the number
of tasks scheduled for any user. Unless otherwise specified,
we limit the discussion to non-wasteful allocations.

3.3 Allocation Mechanism and Desirable Properties
A resource allocation mechanism takes user demands as input
and outputs the allocation result. In general, an allocation
mechanism should provide the following essential properties
that are widely recognized as the most important fairness and
efficiency measures in both cloud computing systems [11],
[12], [18] and the economics literature [17], [19].

Envy-freeness: An allocation mechanism is envy-free if no
user prefers the other’s allocation to its own, i.e.,

Ni(Ai) � Ni(Aj), 8i, j 2 U .

This property essentially embodies the notion of fairness.
Pareto optimality: An allocation mechanism is Pareto op-

timal if it returns an allocation A such that for all feasible
allocations A0, if Ni(A0

i) > Ni(Ai) for some user i, then
there exists a user j 6= i such that Nj(A0

j) < Nj(Aj). In other
words, allocation A cannot be further improved such that all
users are at least as well off and at least one user is strictly
better off. This property ensures the allocation efficiency and
is critical to achieve high resource utilization.

Group strategyproofness: An allocation mechanism is
group strategyproof if whenever a coalition of users misreport

2. For any two vectors x and y, we say x � y if xi yi, 8i and for
some j we have strict inequality: xj < yj .

their resource demands (assuming a user’s demand is its
private information), there is a member of the coalition who
would schedule less tasks and hence has no incentive to join
the coalition. Specifically, let M ⇢ U be the coalition of
manipulators in which user i 2 M misreports its demand as
D0

i 6= Di. Let A0 be the allocation returned. Also, let A be
the allocation returned when all users truthfully report their
demands. The allocation mechanism is group strategyproof if
there exists a manipulator i 2 M who cannot schedule more
tasks than being truthful, i.e.,

Ni(A
0
i) Ni(Ai) .

In other words, user i is better off quiting the coalition.
Group strategyproofness is of a special importance for a cloud
computing system, as it is common to observe in a real-world
system that users try to manipulate the scheduler for more
allocations by lying about their resource demands [11], [18].

Sharing incentive is another critical property that has
been frequently mentioned in the literature [11]–[13], [15]. It
ensures that every user’s allocation is not worse off than that
obtained by evenly dividing the entire resource pool. While
this property is well defined for a single server, it is not for
a system containing multiple heterogeneous servers, as there
is an infinite number of ways to evenly divide the resource
pool among users, and it is unclear which one should be
selected as a benchmark to compare with. We shall give a
specific discussion to Sec. 4.5, where we justify between two
reasonable alternatives.

In addition to the four essential allocation properties above,
we also consider four other important properties as follows:

Single-server DRF: If the system contains only one server,
then the resulting allocation should be reduced to the DRF
allocation.

Single-resource fairness: If there is a single resource in the
system, then the resulting allocation should be reduced to a
max-min fair allocation.

Bottleneck fairness: If all users bottleneck on the same
resource (i.e., having the same global dominant resource), then
the resulting allocation should be reduced to a max-min fair
allocation for that resource.

Population monotonicity: If a user leaves the system and
relinquishes all its allocations, then the remaining users will
not see any reduction in the number of tasks scheduled.

To summarize, our objective is to design an allocation
mechanism that guarantees all the properties defined above.

3.4 Naive DRF Extension and Its Inefficiency
It has been shown in [11], [15] that the DRF allocation
satisfies all the desirable properties mentioned above when
the entire resource pool is modeled as one server. When
resources are distributed to multiple heterogeneous servers, a
naive generalization is to separately apply the DRF allocation
per server. For instance, consider the example of Fig. 2. We
first apply DRF in server 1. Because CPU is the dominant
resource of both users, it is equally divided for both of them,
each receiving 1. As a result, user 1 schedules 5 tasks onto
server 1, while user 2 schedules one. Similarly, in server 2,

5

50%

CPU Memory

100%

0%

50%

CPU Memory

100%

0%

User1 User2

Server 1 Server 2

42%

8%

Fig. 3. DRF allocation for the example shown in Fig. 2,
where user 1 is allocated 5 tasks in server 1 and 1 in
server 2, while user 2 is allocated 1 task in server 1 and
5 in server 2.

memory is the dominant resource of both users and is evenly
allocated, leading to one task scheduled for user 1 and five
for user 2. The resulting allocations in the two servers are
illustrated in Fig. 3, where both users schedule 6 tasks.

Unfortunately, this allocation violates the Pareto optimality
and is highly inefficient. If we instead allocate server 1
exclusively to user 1, and server 2 exclusively to user 2, then
both users schedule 10 tasks, almost twice the number of tasks
scheduled under the DRF allocation. In fact, a similar example
can be constructed to show that the per-server DRF may lead
to arbitrarily low resource utilization. The failure of the naive
DRF extension to the heterogeneous environment necessitates
an alternative allocation mechanism, which is the main theme
of the next section.

4 DRFH ALLOCATION AND ITS PROPERTIES

In this section, we present DRFH, a generalization of DRF in
a heterogeneous cloud computing system where resources are
distributed in a number of heterogeneous servers. We analyze
DRFH and show that it provides all the desirable properties
defined in Sec. 3.

4.1 DRFH Allocation

Instead of allocating separately in each server, DRFH jointly
considers resource allocation across all heterogeneous servers.
The key intuition is to achieve the max-min fair allocation for
the global dominant resources. Specifically, given allocation
Ail, let

Gil(Ail) = Nil(Ail)Dir⇤i
= min

r2R
{Ailr/dir} . (2)

be the amount of global dominant resource user i is allocated
in server l. Since the total availability of resources is normal-
ized to 1, we also refer to Gil(Ail) the global dominant share
user i receives in server l. Simply adding up Gil(Ail) over all
servers gives the global dominant share user i receives under
allocation Ai, i.e.,

Gi(Ai) =

X

l2S

Gil(Ail) =

X

l2S

min

r2R
{Ailr/dir} . (3)

DRFH allocation aims to maximize the minimum global dom-
inant share among all users, subject to the resource constraints
per server, i.e.,

max

A
min

i2U
Gi(Ai)

s.t.
X

i2U

Ailr clr, 8l 2 S, r 2 R .
(4)

Recall that without loss of generality, we assume non-
wasteful allocation A (see Sec. 3.2). We have the following
structural result. Its proof is deferred to the appendix3.

Lemma 1: For user i and server l, an allocation Ail is
non-wasteful if and only if there exists some gil such that

Ail = gildi .

In particular, gil is the global dominant share user i receives
in server l under allocation Ail, i.e.,

gil = Gil(Ail) .

Intuitively, Lemma 1 indicates that under a non-wasteful
allocation, resources are allocated in proportion to the user’s
demand. Lemma 1 immediately suggests the following rela-
tionship for every user i and its non-wasteful allocation Ai:

Gi(Ai) =

X

l2S

Gil(Ail) =

X

l2S

gil .

Problem (4) can hence be equivalently written as

max

{gil}
min

i2U

X

l2S

gil

s.t.
X

i2U

gildir clr, 8l 2 S, r 2 R ,
(5)

where the constraints are derived from Lemma 1. Now let
g = mini

P
l2S gil. Via straightforward algebraic operations,

we see that (5) is equivalent to the following problem:
max

{gil},g
g

s.t.
X

i2U

gildir clr, 8l 2 S, r 2 R ,

X

l2U

gil = g, 8i 2 U .

(6)

Note that the second constraint embodies the fairness in terms
of equalized global dominant share g. By solving (6), DRFH
allocates each user the maximum global dominant share g,
under the constraints of both server capacity and fairness. The
allocation received by each user i in server l is simply Ail =

gildi.
For example, Fig. 4 illustrates the resulting DRFH allocation

in the example of Fig. 2. By solving (6), DRFH allocates
server 1 exclusively to user 1 and server 2 exclusively to user
2, allowing each user to schedule 10 tasks with the maximum
global dominant share g = 5/7.

We next analyze the properties of DRFH allocation obtained
by solving (6). Our analyses of DRFH start with the four
essential resource allocation properties, namely, envy-freeness,
Pareto optimality, group strategyproofness, and sharing incen-
tive.

3. The appendix is given in a supplementary document as per the TPDS
submission guidelines.

6

CPU Memory

5/7

0
CPU Memory

0

User1 User2

Server 1 Server 2

1/7 1/7

6/7 6/7

Resource
Share

Fig. 4. An alternative allocation with higher system uti-
lization for the example of Fig. 2. Server 1 and 2 are
exclusively assigned to user 1 and 2, respectively. Both
users schedule 10 tasks.

4.2 Envy-Freeness
We first show by the following proposition that under the
DRFH allocation, no user prefers other’s allocation to its own.

Proposition 1 (Envy-freeness): The DRFH allocation ob-
tained by solving (6) is envy-free.

Proof: Let {gil}, g be the solution to problem (6). For all
user i, its DRFH allocation in server l is Ail = gildi. To show
Ni(Aj) Ni(Ai) for any two users i and j, it is equivalent
to prove Ni(Aj) Ni(Ai). We have

Gi(Aj) =
P

l Gil(Ajl)

=

P
l minr{gjldjr/dir}

P

l gjl

= Gi(Ai) ,

where the inequality holds because

min

r
{djr/dir} djr⇤i /dir⇤i = djr⇤i 1 ,

where r⇤i is user i’s global dominant resource.

4.3 Pareto Optimality
We next show that DRFH leads to an efficient allocation under
which no user can improve its allocation without decreasing
that of the others.

Proposition 2 (Pareto optimality): The DRFH allocation
obtained by solving (6) is Pareto optimal.

Proof: Let {gil}, g be the solution to problem (6). For all
user i, its DRFH allocation in server l is Ail = gildi. Since
(5) and (6) are equivalent, {gil} is also the solution to (5), and
g is the maximum value of the objective of (5).

Assume, by way of contradiction, that allocation A is not
Pareto optimal, i.e., there exists some allocation A0, such that
Ni(A0

i) � Ni(Ai) for all user i, and for some user j we have
strict inequality: Nj(A0

j) > Nj(Aj). Equivalently, this im-
plies Gi(A0

i) � Gi(Ai) for all user i, and Gj(A0
j) > Gj(Aj)

for user j. Without loss of generality, let A0 be non-wasteful.
By Lemma 1, for all user i and server l, there exists some g0il
such that A0

il = g0ildi. We show that based on {g0il}, one can
construct some {ĝil} such that {ĝil} is a feasible solution to
(5), yet leads to a higher objective than g, contradicting the
fact that {gil}, g optimally solve (5).

To see this, consider user j. We have

Gj(Aj) =
P

l gjl = g < Gj(A0
j) =

P
l g

0
jl.

For user j, there exists a server l0 and some ✏ > 0, such that
after reducing g0jl0 to g0jl0 � ✏, the resulting global dominant
share remains higher than g, i.e.,

P
l g

0
jl � ✏ � g. This leads

to at least ✏dj idle resources in server l0. We construct {ĝil}
by redistributing these idle resources to all users to increase
their global dominant share, therefore strictly improving the
objective of (5).

Denote by {g00il} the dominant share after reducing g0jl0 to
g0jl0 � ✏, i.e.,

g00il =

⇢
g0jl0 � ✏, i = j, l = l0;
g0il, o.w.

The corresponding non-wasteful allocation is A00
il = g00ildi for

all user i and server l. Note that allocation A00 is preferred to
the original allocation A by all users, i.e., for all user i, we
have

Gi(A
00
i) =

X

l

g00il =

⇢ P
l g

0
jl � ✏ � g = Gj(Aj), i = j;P

l g
0
il = Gi(A0

i) � Gi(Ai), o.w.

We now construct {ĝil} by redistributing the ✏dj idle
resources in server l0 to all users, each increasing its global
dominant share g00il0 by � = minr{✏djr/

P
i dir}, i.e.,

ĝil =

⇢
g00il0 + �, l = l0;
g00il, o.w.

It is easy to check that {ĝil} remains a feasible allocation. To
see this, it suffices to check server l0. For all its resource r,
we have

P
i ĝil0dir =

P
i(g

00
il0

+ �)dir

=

P
i g

0
il0
dir � ✏djr + �

P
i dir

 cl0r � (✏djr � �
P

i dir)

 cl0r .

where the first inequality holds because A0 is a feasible
allocation.

On the other hand, for all user i 2 U , we have
P

l ĝil =
P

l g
00
il + � = Gi(A00

i) + � � Gi(Ai) + � > g .

This contradicts the premise that g is optimal for (5).

4.4 Group Strategyproofness
For now, all our discussions are based on a critical assump-
tion that all users truthfully report their resource demands.
However, in a real-world system, it is common to observe
users to attempt to manipulate the scheduler by misreporting
their resource demands, so as to receive more allocation
[11], [18]. More often than not, these strategic behaviours
would significantly hurt those honest users and reduce the
number of their tasks scheduled, inevitably leading to a fairly
inefficient allocation outcome. Fortunately, we show by the
following proposition that DRFH is immune to these strategic

7

behaviours, as reporting the true demand is always the dom-
inant strategy for all users, even if they form a coalition to
misreport together with others.

Proposition 3 (Group strategyproofness): The DRFH
allocation obtained by solving (6) is group strategyproof in
that the coalition behavior of misreporting demands cannot
strictly benefit every member.

Proof: Let M ⇢ U be the set of strategic users form-
ing a coalition to misreport the normalized demand vector
d0
M = (d0

i)i2M , where d0
i 6= di. for all i 2 M . Let d0 be

the collection of normalized demand vectors submitted by all
users, where d0

i = di, for all i 2 U\M . Let A0 be the resulting
allocation obtained by solving (6). In particular, A0

il = g0ild
0
i

for each user i and server l, and g0 =
P

l g
0
il, where {g0il}, g0

solve (6). On the other hand, let A be the allocation returned
when all users truthfully report their demands, and {gil}, g
the solution to (6) with the truthful d. Similarly, for each user
i and server l, we have Ail = gildi, and g =

P
l gil. We

check the following two cases and show that there exists a
user i 2 M , such that Gi(A0

i) Gi(Ai), which is equivalent
to Ni(A0

i) Ni(Ai).
Case 1: g0 g. In this case, let ⇢i = minr{d0ir/dir} be

defined for all user i 2 M . Clearly,

⇢i = minr{d0ir/dir} d0ir⇤i /dir
⇤
i
= d0ir⇤i 1 ,

where r⇤i is the dominant resource of user i. We then have

Gi(A
0
i) =

P
l Gil(A0

il)

=

P
l Gil(g0ild

0
i)

=

P
l minr{g0ild0ir/dir}

= ⇢ig0

 g

= Gi(Ai).

Case 2: g0 > g. We first consider users that are not
manipulators. Since they truthfully report their demands, we
have

Gj(A
0
j) = g0 > g = Gj(Aj), 8j 2 U \M. (7)

Now for those manipulators, there is a user i 2 M such
that Gi(A0

i) < Gi(Ai). Otherwise, allocation A0 is strictly
preferred to allocation A by all users. This contradicts the
facts that A is a Pareto optimal allocation and A0 is a feasible
allocation.

4.5 Sharing Incentive
In addition to the aforementioned three properties, sharing
incentive is another critical allocation property that has been
frequently mentioned in the literature, e.g., [11]–[13], [15],
[18]. The property ensures that every user can execute at least
the number of tasks it schedules when the entire resource pool
is evenly partitioned. The property provides service isolations
among the users.

While the sharing incentive property is well defined in the
all-in-one resource model, it is not for the system with multiple
heterogeneous servers. In the former case, since the entire
resource pool is abstracted as a single server, evenly dividing

every resource of this big server would lead to a unique
allocation. However, when the system consists of multiple
heterogeneous servers, there are many different ways to evenly
divide these servers, and it is unclear which one should be used
as a benchmark for comparison. For instance, in the example
of Fig. 2, two users share a system with 14 CPUs and 14 GB
memory in total. The following two allocations both allocate
each user 7 CPUs and 7 GB memory: (a) User 1 is allocated
1/2 resources of server 1 and 1/2 resources of server 2, while
user 2 is allocated the rest; (b) user 1 is allocated (1.5 CPUs,
5.5 GB) in server 1 and (5.5 CPUs, 1.5 GB) in server 2,
while user 2 is allocated the rest. It is easy to verify that the
two allocations lead to different number of tasks scheduled
for the same user, and can be used as two different allocation
benchmarks. In fact, one can construct many other allocations
that evenly divide all resources among the users.

Despite the general ambiguity explained above, in the next
two subsections, we consider two definitions of the sharing
incentive property, strong and weak, depending on the choice
of the benchmark for equal partitioning of resources.

4.5.1 Strong Sharing Incentive

Among various allocations that evenly divide all servers, per-
haps the most straightforward approach is to evenly partition
each server’s availability cl among all n users. The strong
sharing incentive property is defined by using this per-server
partitioning as a benchmark.

Definition 2 (Strong sharing incentive): Allocation A
satisfies the strong sharing incentive property if each user
schedules fewer tasks by evenly partitioning each server, i.e.,

Ni(Ai) =

X

l2S

Ni(Ail) �
X

l2S

Ni(cl/n), 8i 2 U .

Before we proceed, it is worth mentioning that the per-
server partitioning above cannot be directly implemented in
practice. With a large number of users, in each server, ev-
eryone will be allocated a very small fraction of the server’s
availability. In practice, such a small slice of resources usually
cannot be used to run any computing task. However, per-
server partitioning may be interpreted as follows. Since a cloud
system is constructed by pooling hundreds of thousands of
servers [2], [3], the number of users is typically far smaller
than the number of servers [11], [18], i.e., k � n. An equal
partition could randomly allocate to each user k/n servers,
which is equivalent to randomly allocating each server to each
user with probability 1/n. It is easy to see that the mean
number of tasks scheduled for each user under this random
allocation is

P
l Ni(ci/n), the same as that obtained under

the per-server partitioning.
Unfortunately, the following proposition shows that DRFH

may violate the sharing incentive property in the strong sense.
The proof gives a counterexample.

Proposition 4: DRFH does not satisfy the property of strong
sharing incentive.

Proof: Consider a system consisting of two servers. Server
1 has 1 CPU and 2 GB memory; server 2 has 4 CPUs and 3
GB memory. There are two users. Each instance of the task of
user 1 demands 1 CPU and 1 GB memory; each of user 2’s

8

tasks demands 3 CPUs and 2 GB memory. In this case, we
have c1 = (1/5, 2/5)T , c2 = (4/5, 3/5)T , D1 = (1/5, 1/5)T ,
D2 = (3/5, 2/5)T , d1 = (1, 1)T , and d2 = (1, 2/3)T . It is
easy to verify that under DRFH, the global dominant share
both users receive is 12/25. On the other hand, under the
per-server partitioning, the global dominant share that user 2
receives is 1/2, higher than that received under DRFH.

While DRFH may violate the strong sharing incentive
property, we shall show via trace-driven simulations in Sec. 6
that this only happens in rare cases.

4.5.2 Weak Sharing Incentive

The strong sharing incentive property is defined by choosing
the per-server partitioning as a benchmark, which is only one
of many different ways to evenly divide the total availability.
In general, any equal partition that allocates an equal share of
every resource can be used as a benchmark. This allows us to
relax the sharing incentive definition. We first define an equal
partition as follows.

Definition 3 (Equal partition): Allocation A is an equal
partition if it divides every resource evenly among all users,
i.e.,

X

l2S

Ailr = 1/n, 8r 2 R, i 2 U .

It is easy to verify that the aforementioned per-server
partition is an equal partition. We are now ready to define
the weak sharing incentive property as follows.

Definition 4 (Weak sharing incentive): Allocation A
satisfies the weak sharing incentive property if there exists
an equal partition A0 under which each user schedules fewer
tasks than those under A, i.e.,

Ni(Ai) � Ni(A
0
i), 8i 2 U .

In other words, the property of weak sharing incentive only
requires the allocation to be better off than one equal partition,
without specifying its specific form. It is hence a more relaxed
requirement than the strong sharing incentive property.

The following proposition shows that DRFH satisfies the
sharing incentive property in the weak sense. The proof is
constructive.

Proposition 5 (Weak sharing incentive): DRFH satisfies
the property of weak sharing incentive.

Proof: Let g be the global dominant share each user receives
under a DRFH allocation A, and gil the global dominant share
user i receives in server l. We construct an equal partition A0

under which users schedule fewer tasks than those under A.
Case 1: g � 1/n. In this case, let A0 be any equal partition.

We show that each user schedules fewer tasks under A0 than
those under A. To see this, consider the DRFH allocation A.
Since it is non-wasteful, the number of tasks user i schedules
is

Ni(Ai) = g/Dir⇤i
� 1/nDir⇤i

.

On the other hand, the number of tasks user i schedules under
A0 would be at most

Ni(A
0
i) =

P
l2S minr{A0

ilr/Dir}

P
l2S A0

ilr/Dir⇤i

= 1/nDir⇤i

 Ni(Ai) .

Case 2: g < 1/n. In this case, no resource has been fully
allocated under A, i.e.,

X

i2U

X

l2S

Ailr =

X

i2U

X

l2S

gildir
X

i2U

X

l2S

gil =
X

i2U

g < 1

for all resource r 2 R. Let

Llr = clr �
X

i2U

Ailr

be the amount of resource r left unallocated in server l,
Further, let

Lr =

X

l2S

Llr = 1�
X

i2U

X

l2S

Ailr

be the total amount of resource r left unallocated.
We are now ready to construct an equal partition A0 based

on A. Since A0 should allocate each user 1/n of the total
availability of every resource r, the additional amount of
resource r user i needs to obtain is

uir = 1/n�
X

l2S

Ailr .

It is easy to see that uir > 0, 8i 2 U, r 2 R. The demanded
fraction of unallocated resource r for user i is

fir = uir/Lr .

As a result, we can construct A0 by reallocating those leftover
resources in each server to users, in proportion to their
demands, i.e.,

A0
ilr = Ailr + Llrfir, 8i 2 U, l 2 S, r 2 R .

It is easy to verify that A0 is an equal partition, i.e.,
X

l2S

A0
ilr =

X

l2S

Llrfir +
X

l2S

Ailr

= (uir/Lr)

X

l2S

Llr +

X

l2S

Ailr

= uir +

X

l2S

Ailr

= 1/n , 8i 2 U, r 2 R .

We now compare the number of tasks scheduled for each
user under both allocations A and A0. Because A0 allo-
cates more resources to each user than A does, we have
Ni(A0

i) � Ni(Ai) for all i. On the other hand, by the Pareto
optimality of allocation A, no user can schedule more tasks
without decreasing the number of tasks scheduled for others.
Therefore, we must have Ni(A0

i) = Ni(Ai) for all i.

9

4.5.3 Discussion

Strong sharing incentive provides more predictable service
isolation than weak sharing incentive does. It assures a user
a priori that it can schedule at least the number of tasks
when every server is evenly allocated. This gives users a
concrete idea on the worst Quality of Service (QoS) they may
receive, allowing them to accurately predict their computing
performance. While weak sharing incentive also provides
some degree of service isolation, a user cannot infer the
guaranteed number of tasks it can schedule a priori from this
weaker property, and therefore cannot predict the computing
performance.

We note that the root cause of such degradation of service
isolation is due to the heterogeneity among servers. When all
servers are of the same specification of hardware resources,
DRFH reduces to DRF, and strong sharing incentive is guar-
anteed. This is also the case for schedulers adopting the single-
resource abstraction. For example, in Hadoop, each server is
divided into several slots (e.g., reducers and mappers). Hadoop
Fair Scheduler [20] allocates these slots evenly to all users. We
see that predictable service isolation is achieved: each user
receives at least ks/n slots, where ks is the number of slots,
and n is the number of users.

In general, one can view weak sharing incentive as the
price paid by DRFH to achieve high resource utilization. In
fact, naively applying DRF allocation separately to each server
retains strong sharing incentive: in each server, the DRF allo-
cation ensures that a user can schedule at least the number of
tasks when resources are evenly allocated [11], [15]. However,
as we have seen in Sec. 3.4, such a naive DRF extension may
lead to extremely low resource utilization that is unacceptable.
Similar problem also exists for traditional schedulers adopting
single-resource abstractions. By artificially dividing servers
into slots, these schedulers cannot match computing demands
to available resources at a fine granularity, resulting in poor
resource utilization in practice [11]. For these reasons, we
believe that slightly trading off the degree of service isolation
for much higher resource utilization is well justified. We shall
use trace-driven simulation to show in Sec. 6.3 that DRFH only
violates strong sharing incentive in rare cases in the Google
cluster.

4.6 Other Important Properties

In addition to the four essential properties shown in the
previous subsection, DRFH also provides a number of other
important properties. First, since DRFH generalizes DRF to
heterogeneous environments, it naturally reduces to the DRF
allocation when there is only one server contained in the
system, where the global dominant resource defined in DRFH
is exactly the same as the dominant resource defined in DRF.

Proposition 6 (Single-server DRF): The DRFH leads to the
same allocation as DRF when all resources are concentrated
in one server.

Next, by definition, we see that both single-resource fairness
and bottleneck fairness trivially hold for the DRFH allocation.
We hence omit the proofs of the following two propositions.

Proposition 7 (Single-resource fairness): The DRFH allo-
cation satisfies single-resource fairness.

Proposition 8 (Bottleneck fairness): The DRFH allocation
satisfies bottleneck fairness.

Finally, we see that when a user leaves the system and
relinquishes all its allocations, the remaining users will not
see any reduction of the number of tasks scheduled. Formally,

Proposition 9 (Population monotonicity): The DRFH
allocation satisfies population monotonicity.

Proof: Let A be the resulting DRFH allocation, then for
all user i and server l, Ail = gildi and Gi(Ai) = g, where
{gil} and g solve (6). Suppose that user j leaves the system,
changing the resulting DRFH allocation to A0. By DRFH, for
all user i 6= j and server l, we have A0

il = g0ildi and Gi(A0
i) =

g0, where {g0il}i 6=j and g0 solve the following optimization
problem:

max

g0
il,i 6=j

g0

s.t.
X

i 6=j

g0ildir clr, 8l 2 S, r 2 R ,

X

l2U

g0il = g0, 8i 6= j .

(8)

To show Ni(A0
i) � Ni(Ai) for all user i 6= j, it is

equivalent to prove Gi(A0
i) � Gi(Ai). It is easy to verify

that g, {gil}i 6=j satisfy all the constraints of (8) and are
hence feasible to (8). As a result, g0 � g, which is exactly
Gi(A0

i) � Gi(Ai).

5 PRACTICAL CONSIDERATIONS
So far, all our discussions are based on several assumptions
that may not be the case in a real-world system. In this section,
we relax these assumptions and discuss how DRFH can be
implemented in practice.

5.1 Weighted Users with a Finite Number of Tasks
In the previous sections, users are assumed to be assigned
equal weights and have infinite computing demands. Both
assumptions can be easily removed with some minor modi-
fications of DRFH.

When users are assigned uneven weights, let wi be the
weight associated with user i. DRFH seeks an allocation
that achieves the weighted max-min fairness across users.
Specifically, we maximize the minimum normalized global
dominant share (w.r.t the weight) of all users under the same
resource constraints as in (4), i.e.,

max

A
min

i2U
Gi(Ai)/wi

s.t.
X

i2U

Ailr clr, 8l 2 S, r 2 R .

When users have a finite number of tasks, the DRFH allo-
cation is computed iteratively. In each round, DRFH increases
the global dominant share allocated to all active users, until
one of them has all its tasks scheduled, after which the user
becomes inactive and will no longer be considered in the
following allocation rounds. DRFH then starts a new iteration

10

and repeats the allocation process above, until no user is active
or no more resources could be allocated to users. Because
each iteration saturates at least one user’s resource demand,
the allocation will be accomplished in at most n rounds, where
n is the number of users4 Our analysis presented in Sec. 4 also
extends to weighted users with a finite number of tasks.

5.2 Scheduling Tasks as Entities
Until now, we have assumed that all tasks are divisible.
In a real-world system, however, fractional tasks may not
be accepted. To schedule tasks as entities, one can apply
progressive filling as a simple implementation of DRFH5.
That is, whenever there is a scheduling opportunity, the
scheduler always accommodates the user with the lowest
global dominant share. To do this, it picks the first server
whose remaining resources are sufficient to accommodate the
request of the user’s task. While this First-Fit algorithm offers
a fairly good approximation to DRFH, we propose another
simple heuristic that can lead to a better allocation with higher
resource utilization.

Similar to First-Fit, the heuristic also chooses user i with
the lowest global dominant share to serve. However, instead of
randomly picking a server, the heuristic chooses the “best” one
whose remaining resoruces most suitably matches the demand
of user i’s tasks, and is hence referred to as the Best-Fit
DRFH. Specifically, for user i with resource demand vector
Di = (Di1, . . . , Dim)

T and a server l with available resource
vector ¯cl = (c̄l1, . . . , c̄lm)

T , where c̄lr is the share of resource
r remaining available in server l, we define the following
heuristic function to quantitatively measure the fitness of the
task for server l:

H(i, l) = kDi/Di1 � ¯cl/c̄l1k1 , (9)

where k·k1 is the L1-norm. Intuitively, the smaller H(i, l),
the more similar the resource demand vector Di appears to
the server’s available resource vector ¯cl, and the better fit user
i’s task is for server l. Best-Fit DRFH schedules user i’s tasks
to server l with the least H(i, l).

As an illustrative example, suppose that only two types of
resources are concerned, CPU and memory. A CPU-heavy task
of user i with resource demand vector Di = (1/10, 1/30)T

is to be scheduled, meaning that the task requires 1/10 of
the total CPU availability and 1/30 of the total memory
availability of the system. Only two servers have sufficient
remaining resources to accommodate this task. Server 1 has
the available resource vector ¯c1 = (1/5, 1/15)T ; Server 2 has
the available resource vector ¯c2 = (1/8, 1/4)T . Intuitively,
because the task is CPU-bound, it is more fit for Server 1,
which is CPU-abundant. This is indeed the case as H(i, 1) =
0 < H(i, 2) = 5/3, and Best-Fit DRFH places the task onto
Server 1.

Both First-Fit and Best-Fit DRFH can be easily imple-
mented by searching all k servers in O(k) time, which is fast

4. For medium- and large-sized cloud clusters, n is in the order of thousands
[3], [8].

5. Progressive filling has also been used to implement the DRF allocation
[11]. However, when the system consists of multiple heterogeneous servers,
progressive filling will lead to a DRFH allocation.

enough for small- and medium-sized clusters. For a large clus-
ter containing tens of thousands of servers, this computation
can be fast approximated by adapting the power of two choices
load balancing technique [21]. Instead of scanning through all
servers, the scheduler randomly probes two servers and places
the task on the server that fits the task better.

It is worth mentioning that the definition of the heuristic
function (9) is not unique. In fact, one can use more complex
heuristic function other than (9) to measure the fitness of a
task for a server, e.g., cosine similarity [22]. However, as we
shall show in the next section, Best-Fit DRFH with (9) as its
heuristic function already improves the utilization to a level
where the system capacity is almost saturated. Therefore, the
benefit of using more complex fitness measure is very limited,
at least for the Google cluster traces [8].

6 TRACE-DRIVEN SIMULATION

In this section, we evaluate the performance of DRFH via
extensive simulations driven by Google cluster-usage traces
[8]. The traces contain resource demand/usage information of
over 900 users (i.e., Google services and engineers) on a clus-
ter of 12K servers. The server configurations are summarized
in Table 1, where the CPUs and memory of each server are
normalized so that the maximum server is 1. Each user submits
computing jobs, divided into a number of tasks, each requiring
a set of resources (i.e., CPU and memory). From the traces,
we extract the computing demand information—the required
amount of resources and task running time—and use it as the
demand input of the allocation algorithms for evaluation.

6.1 Dynamic Allocation
Our first evaluation focuses on the allocation fairness of the
proposed Best-Fit DRFH when users dynamically join and
depart the system. We simulate 3 users submitting tasks
with different resource requirements to a small cluster of
100 servers. The server configurations are randomly drawn
from the distribution of Google cluster servers in Table 1,
leading to a resource pool containing 52.75 CPU units and
51.32 memory units in total. User 1 joins the system at the
beginning, requiring 0.2 CPU and 0.3 memory for each of its
task. As shown in Fig. 5, since only user 1 is active at the
beginning, it is allocated 40% CPU share and 62% memory
share. This allocation continues until 200 s, at which time
user 2 joins and submits CPU-heavy tasks, each requiring 0.5
CPU and 0.1 memory. Both users now compete for computing
resources, leading to a DRFH allocation in which both users
receive 44% global dominant share. At 500 s, user 3 starts
to submit memory-intensive tasks, each requiring 0.1 CPU
and 0.3 memory. The algorithm now allocates the same global
dominant share of 26% to all three users until user 1 finishes
its tasks and departs at 1080 s. After that, only users 2 and
3 share the system, each receiving the same share on their
global dominant resources. A similar process repeats until all
users finish their tasks. Throughout the simulation, we see that
the Best-Fit DRFH algorithm precisely achieves the DRFH
allocation at all times.

11

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

Time (s)

C
P

U
 S

h
a

re
 (

%
)

User 1 User 2 User 3

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

Time (s)

M
e

m
o

ry
 S

h
a

re
 (

%
)

User 1 User 2 User 3

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

Time (s)

D
o

m
in

a
n

t
S

h
a

re
 (

%
)

User 1 User 2 User 3

Fig. 5. CPU, memory, and global dominant share for three
users on a 100-server system with 52.75 CPU units and
51.32 memory units in total.

TABLE 2
Resource utilization of the Slots scheduler with different

slot sizes.

Number of Slots CPU Utilization Memory Utilization

10 per maximum server 35.1% 23.4%
12 per maximum server 42.2% 27.4%
14 per maximum server 43.9% 28.0%
16 per maximum server 45.4% 24.2%
20 per maximum server 40.6% 20.0%

6.2 Resource Utilization
We next evaluate the resource utilization of the proposed Best-
Fit DRFH algorithm. We take the 24-hour computing demand
data from the Google traces and simulate it on a smaller cloud
computing system of 2,000 servers so that fairness becomes
relevant. The server configurations are randomly drawn from
the distribution of Google cluster servers in Table 1. We
compare Best-Fit DRFH with two other benchmarks, the
traditional Slots schedulers that schedules tasks onto slots of
servers (e.g., Hadoop Fair Scheduler [20]), and the First-Fit
DRFH that chooses the first server that fits the task. For the
former, we try different slot sizes and chooses the one with
the highest CPU and memory utilization. Table 2 summarizes
our observations, where dividing the maximum server (1 CPU
and 1 memory in Table 1) into 14 slots leads to the highest
overall utilization.

Fig. 6 depicts the time series of CPU and memory utilization
of the three algorithms. We see that the two DRFH implemen-
tations significantly outperform the traditional Slots scheduler
with much higher resource utilization, mainly because the
latter ignores the heterogeneity of both servers and workload.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Time (min)

C
P

U
 U

til
iz

a
tio

n

Best−Fit DRFH First−Fit DRFH Slots

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Time (min)

M
e

m
o

ry
 U

til
iz

a
tio

n

Best−Fit DRFH First−Fit DRFH Slots

Fig. 6. Time series of CPU and memory utilization.

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Job Completion Time (s)

Best−Fit DRFH
Slots

(a) CDF of job completion times.

0

20

40

60

80

Job Size (tasks)

C
o

m
p

le
tio

n
 T

im
e

 R
e

d
u

ct
io

n

1−50
51−100

101−500

501−1000
>1000

−1% 2%

25%

43%

62%

(b) Job completion time reduction.

Fig. 7. DRFH improvements on job completion times over
Slots scheduler.

This observation is consistent with findings in the homoge-
neous environment where all servers are of the same hardware
configurations [11]. As for the DRFH implementations, we
see that Best-Fit DRFH leads to uniformly higher resource
utilization than the First-Fit alternative at all times.

The high resource utilization of Best-Fit DRFH naturally
translates to shorter job completion times shown in Fig. 7a,
where the CDFs of job completion times for both Best-Fit
DRFH and Slots scheduler are depicted. Fig. 7b offers a more
detailed breakdown, where jobs are classified into 5 categories
based on the number of its computing tasks, and for each
category, the mean completion time reduction is computed.

12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Task completion ratio w/ Slots

T
a

sk
 c

o
m

p
le

tio
n

 r
a

tio
 w

/
D

R
F

H

← y = x

Fig. 8. Task completion ratio of users using Best-Fit DRFH
and Slots schedulers, respectively. Each bubble’s size is
logarithmic to the number of tasks the user submitted.

While DRFH shows no improvement over Slots scheduler
for small jobs, a significant completion time reduction has
been observed for those containing more tasks. Generally,
the larger the job is, the more improvement one may expect.
Similar observations have also been found in the homogeneous
environments [11].

Fig. 7 does not account for partially completed jobs and
focuses only on those having all tasks finished in both Best-
Fit and Slots. As a complementary study, Fig. 8 computes the
task completion ratio – the number of tasks completed over
the number of tasks submitted – for every user using Best-
Fit DRFH and Slots schedulers, respectively. The radius of
the circle is scaled logarithmically to the number of tasks the
user submitted. We see that Best-Fit DRFH leads to higher
task completion ratio for almost all users. Around 20% users
have all their tasks completed under Best-Fit DRFH but do
not under Slots.

6.3 Sharing Incentive

Our final evaluation is on the sharing incentive property of
DRFH. While we have shown in Sec. 4.5 that DRFH may not
satisfy the property in the strong sense, it remains unclear
how often this property would be violated in practice. Is
it frequently happened or just a rare case? We answer this
question in this subsection.

We first compute the task completion ratio under the bench-
mark per-server partition. To do this, we randomly choose
dk/ne servers, where k is the number of servers and n is
the number of users in the traces. We then allocate these
dk/ne servers to a user and schedule its tasks onto them.
These dk/ne servers form a dedicated cloud exclusive for this
user. We compute the task completion ratio obtained in this
dedicated cloud and compare it with the one obtained under
the DRFH allocation. Fig. 9 illustrates the comparison results
for all users. We see that most users would prefer DRFH
allocation as compared with running tasks in a dedicated
cloud. In particular, only 2% users see fewer tasks finished
under the DRFH allocation. Even for these users, the task
completion ratio decreases only slightly, as shown in Fig. 9.
As a result, we see that DRFH only violates the property of
strong sharing incentive in rare cases in the Google traces.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Task completion ratio in a dedicated cloud

T
a

sk
 c

o
m

p
le

tio
n

 r
a

tio
 w

/
D

R
F

H

← y = x

Fig. 9. Comparison of task completion ratios under DRFH
and that obtained in dedicated clouds (DCs). Each circle’s
radius is logarithmic to the number of tasks submitted.

7 RELATED WORK

Despite the extensive computing system literature on fair re-
source allocation, many existing works limit their discussions
to the allocation of a single resource type, e.g., CPU time [23],
[24] and link bandwidth [25]–[29]. Various fairness notions
have also been proposed throughout the years, ranging from
application-specific allocations [30], [31] to general fairness
measures [25], [32], [33].

As for multi-resource allocation, state-of-the-art cloud com-
puting systems employ naive single resource abstractions. For
example, the two fair sharing schedulers currently supported
in Hadoop [20], [34] partition a node into slots with fixed
fractions of resources, and allocate resources jointly at the
slot granularity. Quincy [35], a fair scheduler developed for
Dryad [10], models the fair scheduling problem as a min-cost
flow problem to schedule jobs into slots. The recent work [18]
takes the job placement constraints into consideration, yet it
still uses a slot-based single resource abstraction.

Ghodsi et al. [11] are the first in the literature to present
a systematic investigation on the multi-resource allocation
problem in cloud computing systems. They proposed DRF
to equalize the dominant share of all users, and show that
a number of desirable fairness properties are guaranteed in
the resulting allocation. DRF has quickly attracted a substan-
tial amount of attention and has been generalized to many
dimensions. Notably, Joe-Wong et al. [12] generalized the
DRF measure and incorporated it into a unifying framework
that captures the trade-offs between allocation fairness and
efficiency. Dolev et al. [13] suggested another notion of
fairness for multi-resource allocation, known as Bottleneck-
Based Fairness (BBF), under which two fairness properties
that DRF possesses are also guaranteed. Gutman and Nisan
[14] considered another settings of DRF with a more general
domain of user utilities, and showed their connections to
the BBF mechanism. Parkes et al. [15], on the other hand,
extended DRF in several ways, including the presence of zero
demands for certain resources, weighted user endowments, and
in particular the case of indivisible tasks. They also studied
the loss of social welfare under the DRF rules. Kash et al. [16]
extended the DRF model to allow users to join the system over
time but will never leave. Bhattacharya et al. [36] generalized
DRF to a hierarchical scheduler that offers service isolations

13

in a computing system with a hierarchical structure. All these
works assume, explicitly or implicitly, that resources are either
concentrated into one super computer, or are distributed to a
set of homogeneous servers with exactly the same resource
configuration.

However, server heterogeneity has been widely observed
in today’s cloud computing systems. Specifically, Ahmad et
al. [6] noted that datacenter clusters usually consist of both
high-performance servers and low-power nodes with different
hardware architectures. Reiss et al. [3], [8] illustrated a wide
range of server specification in Google clusters. As for public
clouds, Farley et al. [4] and Ou et al. [5] observed significant
hardware diversity among Amazon EC2 servers that may
lead to substantially different performance across supposedly
equivalent VM instances. Ou et al. [5] also pointed out
that such server heterogeneity is not limited to EC2 only,
but generally exists in long-lasting public clouds such as
Rackspace.

To our knowledge, the very recent paper [37] is the only
work that studied allocation properties in the presence of
server heterogeneity, where a randomized allocation algorithm,
called Constrained-DRF (CDRF), is proposed to schedule
discrete jobs. While CDRF possess all the desirable properties
discussed in this paper, it is too complex for a job scheduler,
and an efficient algorithm remains an open problem [37]. More
recently, Grandl et al. [38] proposed an efficient heuristic al-
gorithm for multi-resource scheduling in heterogeneous com-
puter clusters. Their work mainly focuses on designing a good
heuristic algorithm, not studying the allocation properties, and
is therefore orthogonal to our work.

Other related works include fair-division problems in the
economics literature, in particular the egalitarian division
under Leontief preferences [17] and the cake-cutting problem
[19]. These works also assume the all-in-one resource model,
and hence cannot be directly applied to cloud computing
systems with heterogeneous servers.

8 CONCLUDING REMARKS

In this paper, we study a multi-resource allocation problem in
a heterogeneous cloud computing system where the resource
pool is composed of a large number of servers with differ-
ent configurations in terms of resources such as processing,
memory, and storage. The proposed multi-resource allocation
mechanism, known as DRFH, equalizes the global dominant
share allocated to each user, and hence generalizes the DRF
allocation from a single server to multiple heterogeneous
servers. We analyze DRFH and show that it retains almost
all desirable properties that DRF provides in the single-server
scenario. Notably, DRFH is envy-free, Pareto optimal, and
group strategyproof. It also offers the sharing incentive in a
weak sense. We design a Best-Fit heuristic that implements
DRFH in a real-world system. Our large-scale simulations
driven by Google cluster traces show that, compared to the
traditional single-resource abstraction such as a slot scheduler,
DRFH achieves significant improvements in resource utiliza-
tion, leading to much shorter job completion times.

REFERENCES

[1] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud
computing systems with heterogeneous servers,” in Proc. IEEE INFO-
COM, 2014.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in
Proc. ACM SoCC, 2012.

[4] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift, “More for your money: Exploiting performance
heterogeneity in public clouds,” in Proc. ACM SoCC, 2012.

[5] Z. Ou, H. Zhuang, A. Lukyanenko, J. Nurminen, P. Hui, V. Mazalov,
and A. Yla-Jaaski, “Is the same instance type created equal? exploiting
heterogeneity of public clouds,” IEEE Trans. Cloud Computing, vol. 1,
no. 2, pp. 201–214, 2013.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: Optimizing mapreduce on heterogeneous clusters,” in Proc.
ACM ASPLOS, 2012.

[7] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity
for power efficient data centers,” in Proc. USENIX ICAC, 2007.

[8] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google Cluster-Usage
Traces,” http://code.google.com/p/googleclusterdata/.

[9] “Apache Hadoop,” http://hadoop.apache.org.
[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,” in
Proc. EuroSys, 2007.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011.

[12] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. IEEE
INFOCOM, 2012.

[13] D. Dolev, D. Feitelson, J. Halpern, R. Kupferman, and N. Linial, “No
justified complaints: On fair sharing of multiple resources,” in Proc.
ACM ITCS, 2012.

[14] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proc.
AAMAS, 2012.

[15] D. Parkes, A. Procaccia, and N. Shah, “Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities,” in Proc. ACM EC,
2012.

[16] I. Kash, A. Procaccia, and N. Shah, “No agent left behind: Dynamic
fair division of multiple resources,” in Proc. AAMAS, 2013.

[17] J. Li and J. Xue, “Egalitarian division under Leontief preferences,” Econ.
Theory, vol. 54, no. 3, pp. 597–622, 2013.

[18] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min
fair sharing for datacenter jobs with constraints,” in Proc. ACM EuroSys,
2013.

[19] A. D. Procaccia, “Cake cutting: Not just child’s play,” Commun. ACM,
2013.

[20] “Hadoop Fair Scheduler,” http://hadoop.apache.org/docs/r0.20.2/fair
scheduler.html.

[21] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094–
1104, 2001.

[22] A. Singhal, “Modern information retrieval: A brief overview,” IEEE
Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[23] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic tasks
on multiple resources,” in Proc. IEEE IPPS, 1995.

[24] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress:
A notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6,
pp. 600–625, 1996.

[25] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

[26] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567,
2000.

[27] J. Kleinberg, Y. Rabani, and É. Tardos, “Fairness in routing and load
balancing,” in Proc. IEEE FOCS, 1999.

[28] J. Blanquer and B. Özden, “Fair queuing for aggregated multiple links,”
in Proc. ACM SIGCOMM, 2001.

[29] Y. Liu and E. Knightly, “Opportunistic fair scheduling over multiple
wireless channels,” in Proc. IEEE INFOCOM, 2003.

14

[30] C. Koksal, H. Kassab, and H. Balakrishnan, “An analysis of short-term
fairness in wireless media access protocols,” in Proc. ACM SIGMET-
RICS (poster session), 2000.

[31] M. Bredel and M. Fidler, “Understanding fairness and its impact on
quality of service in IEEE 802.11,” in Proc. IEEE INFOCOM, 2009.

[32] R. Jain, D. Chiu, and W. Hawe, A quantitative measure of fairness
and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

[33] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory
of fairness in network resource allocation,” in Proc. IEEE INFOCOM,
2010.

[34] “Hadoop Capacity Scheduler,” http://hadoop.apache.org/docs/r0.20.2/
capacity scheduler.html.

[35] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,” in
Proc. ACM SOSP, 2009.

[36] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” in
Proc. ACM SoCC, 2013.

[37] E. Friedman, A. Ghodsi, and C.-A. Psomas, “Strategyproof allocation
of discrete jobs on multiple machines,” in Proc. ACM EC, 2014.

[38] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. ACM SIG-
COMM, 2014.

PLACE
PHOTO
HERE

Wei Wang received the B.Engr. and M.A.Sc.
degrees from the Department of Electrical Engi-
neering, Shanghai Jiao Tong University, in 2007
and 2010. He is currently a Ph.D. candidate
in the Department of Electrical and Computer
Engineering at the University of Toronto. His
general research interests cover the broad area
of computer networking, with special empha-
sis on resource management and scheduling in
cloud computing systems. He is also interested
in problems at the intersection of computer net-

working and economics.

PLACE
PHOTO
HERE

Ben Liang received honors-simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in Electri-
cal Engineering from Polytechnic University in
Brooklyn, New York, in 1997 and the Ph.D.
degree in Electrical Engineering with Computer
Science minor from Cornell University in Ithaca,
New York, in 2001. In the 2001 - 2002 academic
year, he was a visiting lecturer and post-doctoral
research associate at Cornell University. He
joined the Department of Electrical and Com-
puter Engineering at the University of Toronto in

2002, where he is now a Professor. His current research interests are in
mobile communications and networked systems. He is an editor for the
IEEE Transactions on Wireless Communications and an associate editor
for the Wiley Security and Communication Networks journal, in addition
to regularly serving on the organizational or technical committee of a
number of conferences. He is a senior member of IEEE and a member
of ACM and Tau Beta Pi.

PLACE
PHOTO
HERE

Baochun Li received the B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, in 1997 and
2000. Since 2000, he has been with the Depart-
ment of Electrical and Computer Engineering at
the University of Toronto, where he is currently a
Professor. He holds the Nortel Networks Junior
Chair in Network Architecture and Services from

October 2003 to June 2005, and the Bell Canada Endowed Chair
in Computer Engineering since August 2005. His research interests
include large-scale multimedia systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks. Dr.
Li was the recipient of the IEEE Communications Society Leonard G.
Abraham Award in the Field of Communications Systems in 2000. In
2009, he was a recipient of the Multimedia Communications Best Paper
Award from the IEEE Communications Society, and a recipient of the
University of Toronto McLean Award. He is a member of ACM and a
senior member of IEEE.

15

APPENDIX
Proof of Lemma 1: (() We start with the necessity proof.
Since Ail = gildi, for all resource r 2 R, we have

Ailr/Dir = gildir/Dir = gilDir⇤i
.

As a result,

Nil(Ail) = min

r2R
{Ailr/Dir} = gilDir⇤i

.

Now for any A0
il � Ail, suppose that A0

ilr0
< Ailr0 for some

resource r0. We have

Nil(A
0
il) = min

r2R
{A0

ilr/Dir}

 A0
ilr0/Dir0

< Ailr0/Dir0 = Nil(Ail) .

Hence by definition, allocation Ail is non-wasteful.
()) We next present the sufficiency proof. Since Ail is

non-wasteful, for any two resources r1, r2 2 R, we must have

Ailr1/Dir1 = Ailr2/Dir2 .

Otherwise, without loss of generality, suppose that
Ailr1/Dir1 > Ailr2/Dir2 . There must exist some ✏ > 0, such
that

(Ailr1 � ✏)/Dir1 > Ailr2/Dir2 .

Now construct an allocation A0
il, such that

A0
ilr =

⇢
A0

ilr1
� ✏, r = r1;

Ailr, o.w. (10)

Clearly, A0
il � Ail. However, it is easy to see that

Nil(A
0
il) = min

r2R
{A0

ilr/Dir}

= min

r 6=r1
{A0

ilr/Dir}

= min

r 6=r1
{Ailr/Dir}

= min

r2R
{Ailr/Dir}

= Nil(Ail) ,

which contradicts the fact that Ail is non-wasteful. As a result,
there exits some nil, such that for all resource r 2 R, we have

Ailr = nilDir = nilDir⇤i
dir .

Now letting gil = nilDir⇤i
, we see Ail = gildi.

