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Abstract— Node churn and failures exist as fundamental char-
acteristics in both peer-to-peer (P2P) and sensor networks. Peers
in P2P networks are highly dynamic, whereas sensors are not
dependable. As such, maintaining the persistence of periodically
measured data in a scalable fashion has become a critical
challenge in such systems, without the use of centralized servers.
To better cope with node dynamics and failures, we propose
priority random linear codes, as well as their affiliated pre-
distribution protocols, to maintain measurement data in different
priorities, such that critical data have a higher opportunity to
survive node failures than data of less importance. A salient
feature of priority random linear codes is the ability to partially
recover more important subsets of the original data with higher
priorities, when it is not feasible to recover all of them due to
node dynamics. We present extensive analytical and experimental
results to show the effectiveness of priority random linear codes.

Index Terms— Distributed networks, distributed applications,
distributed priority coding, random linear codes

I. I NTRODUCTION

One of the most important challenges in fully autonomous
networks, including peer-to-peer (P2P) networks and wireless
sensor networks, has been the dynamic behavior of peer nodes
and sensors. Peers in P2P architectures tend to participatein
and depart from ongoing sessions in a highly dynamic fashion,
and sensors are widely acknowledged to show strikingly sim-
ilar dynamics, due to their lack of reliability, or the existence
of energy-conserving protocols to periodically put sensors to
the standby mode.

Nevertheless, in both P2P and sensor networks, periodically
measured data are generated on an ongoing basis, which
should be preserved for subsequent analysis at a later time.
In P2P networks, it is critical for operators to monitor the
performance and “health” of live peer-to-peer sessions. For
example, in live media streaming applications, it is essential to
monitor the achieved streaming rate, the number of upstream
and downstream peers, the latency to neighboring peers, and
resource usage such as bandwidth and CPU load. Similarly,
in sensor networks, the task of each sensor is to monitor the
environment, with periodic measurements collected for later
retrieval.

How do we collect such periodically measured data, which
may grow to substantial volumes over time? There are reasons
to believe that centralized servers may not be the appropriate
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answer. In P2P networks, periodic reporting to central logging
servers does not scale well to a large number of peers, and
may morph into ade factodistributed denial-of-service attack
at the logging server. In sensor networks, it may be too costly
and unrealistic to periodically maintain routing structures (e.g.,
aggregation trees) to centralized sinks, again due to frequent
sensor failures and energy-conserving measures.

In this paper, we study the challenges involved when no
centralized servers exist in autonomous networks, and period-
ically measured data must be storedwithin the network itself
in a collaborative fashion. This conforms to the peer-to-peer
mentality, but could be a serious problem when nodes are
inherently dynamic and failure-prone. The objective of this
paper is to propose newcodingtechniques inside the network,
inspired by traditional random linear codes commonly used in
network coding, such that data stored in the network can be
efficiently recovered.

Random linear codes, traditionally used in network coding,
achieves an“all or nothing” paradigm of decoding. When
measured data are segmented asoriginal source blocks, with
random linear codes, we need as many coded blocks as the
original source blocks to decodeanyuseful data. We argue that
such a paradigm is not appropriate for either P2P or sensor
networks, since node departures and failures may easily render
the remainder of coded blocks useless! Having many more
coded blocks than source blocks certainly helps, but we would
prefer to progress beyond simple over-provisioning of cache
storage, especially when cache spaces on nodes are limited.

In this paper, we proposepriority random linear codes
in a generic network model that encompasses both P2P and
sensor networks. A salient feature of priority random linear
codes is the ability topartially recovermore important subsets
of the original data with higher priorities, when it is not
feasible to recover all of them due to node dynamics. In a
nutshell, we achieve this by making sure that coded blocks
for important data are linear combinations offewer source
blocks, as compared to those for non-critical data. In essence,
we assign lower coding rates for important data, such that they
can be recovered with fewer coded blocks, and may survive
higher percentages of node departures and failures.

In addition to our extensive theoretical analysis of priority
random linear codes, we also present their affiliated pre-
distribution protocols. Utilizing the fact that each codedblock
is encoded from a subset of source blocks, our pre-distribution
mechanism ensures that only source blocks in such a subset
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are delivered to their designated receivers for storage, rather
than all source blocks. Furthermore, utilizing the previously
known result that each coded block only needs to be the
linear combination ofO(ln N) random chosen source blocks
for successful decoding [2] (whereN is the total number of
source blocks), our pre-distribution protocol is very efficient.

The remainder of this paper is organized as follows. In
Sec. II, we describe the network model. In Sec. III, we
introduce priority random linear codes and partial decoding
algorithms, with extensive analysis of their properties. In
Sec. IV, we describe the pre-distribution protocol. Perfor-
mance evaluation of priority random linear codes is in Sec. V.
We compare our approach with related work in Sec. VI.
Finally, Sec. VII concludes the paper.

II. N ETWORK MODEL

In this paper, we consider a generic network model of au-
tonomous networks with unreliable nodes, which encompasses
commonly accepted models of both P2P and sensor networks.
We consider such a general model to show that priority random
linear codes can be applied to a wide range of autonomous
networks, rather than specific to any particular type.

Our model of an autonomous network consists of a set of
nodes and the communication links among them. Each node
produces measurement data over time. There does not exist
centralized servers at our disposal; instead, all measureddata
from a particular node must be distributed to other nodes in the
network for peer-to-peer collaborative storage. We assumethat
each node only has a limited amount of storage space, and can
only store a small fraction of the data generated in the network.
At a later time, measured data stored at a random subset of
existing nodes will be retrieved for analysis. All nodes in the
network may depart or fail unpredictably. We partition the
continuously generated measurement data by time slots, where
a source block refers to the amount of the data generated in
one time slot on a node. Clearly, how many time slots of data
can be cached depends on the size of the node cache storage.
In particular, the larger the cache storage is, the more time
slots of data can be cached, assuming new data replace the
oldest data when the cache is full. Without loss of generality,
we focus on caching the source blocks produced in one time
slot on all nodes.

We assume thatN source blocks are produced in one time
slot, which are classified ton different priority levels, in
descending levels of importance — source blocks in priority
level i are more important than those in levelj, if i < j. The
number of source blocks in priority leveli is denoted byai,
where1 ≤ i ≤ n. To facilitate later derivation, we introduce
b1, b2, . . . , bn, where bi =

∑i

j=1 aj , i.e., bi represents the
total number of source blocks from priority level1 to i. In
this case, the source blocks in priority leveli are indexed
as blocks{xj}, where bi−1 + 1 ≤ j ≤ bi. In general, the
methods to segment measurement data to different priority
classes are application dependent. Data segmentation may be
implemented in a distributed way assuming that nodes can
distinguish important observations from unimportant onesin
a real time fashion. On the other hand, data segmentation may

be determined offline if nodes can judge the importance of data
based on locations or historical observations as in some sensor
network applications.

To disseminate source blocks and perform decentralized
encoding in the network, our protocol uses the characteristic
of geometric networks, where each node is identified with a
point in a geometric space. Such networks include instancesof
sensor networks and P2P networks. In particular, the sensors
usually know their locations since the collected data are
more useful if their generation locations are known. In P2P
networks, Distributed Hash Tables (DHT),e.g., Chord [3], are
widely used to improve the network scalability, where each
node has a unique ID in a one-dimensional geometric space.
We further assume ageometric routing protocolcan route
source blocks to a random point in the geometric network such
as GPSR [4] in sensor networks, and DHT routing protocols
in P2P networks.

In this work, we assume astrict priority model for decoding,
such that the data at higher priority levels are strictly more
preferable and are decoded before those at lower priority
levels. This model describes a wide range of scenarios in
practical applications, including multi-resolution sensor image
dissemination [5], layered data compression [6], and any other
application that requires sequential decoding based on priority.
It is also possible to consider a less stringent priority model,
where obtaining a large amount of low priority data may
be preferable to obtaining a small amount of high priority
data. However, such a model requires the specification of an
application-specific utility function over the priority levels.
This is outside the scope of this paper and remains an open
problem for future research.

III. PRIORITY RANDOM L INEAR CODES

We introduce the design and performance analysis frame-
work for two distributed priority random linear coding
schemes, termedStacked Linear Codes(SLC) andProgressive
Linear Codes(PLC). An important outcome of the proposed
analysis is to derive feasibility regions for designing the
distribution of coded blocks over different priority levels given
certain decoding constraints.

A. Stacked and Progressive Linear Codes

Both SLC and PLC are based on Random Linear Codes
(RLC), which were used as a distributed implementation for
network coding [7]. GivenN source blocksx1, x2, . . . , xN ,
RLC generates each coded blockci as a linear combinations of
all N source blocks in the following form:ci =

∑N

j=1 βi,jxj ,
where thecoding coefficientsβi,1, βi,2, . . . , βi,N are randomly
chosen from a Galois field. Such an encoding process for a
coded block essentially constructs a linear equation wherethe
unknown variables are the source blocks, given the coding
coefficients βi,j and the coded blockci are known. The
decoding process of RLC onM coded blocks solves theM
linear equations constructed by the encoding process, where
M ≥ N .

The priority coding schemes deviate from RLC in that most
coded blocks are not linear combinations ofall source blocks,
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(c) PLC

Fig. 1. A comparison among three coding schemes.βi,j is a nonzero coding
coefficient. Three source blocks belong to two priority levels, where the first
one is in level 1 and the second and the third source block are in level 2.
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(a) SLC
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(b) PLC

Fig. 2. Three pairs of corresponding coded blocks in SLC and PLC, where
the first pair is in level 1 and the remaining two are in level 2.

but a subsetof source blocks. In SLC, the source blocks are
encoded in different levels separately. Thus, thekth set of
coded blocks are created by encoding all the source blocks
in the kth level, i.e., ci =

∑bk

j=bk−1+1 βi,jxj , whereβi,j is
a nonzero random number uniformly chosen from a Galois
field and ci denotes the coded block. In PLC, the source
blocks are encoded progressively in descending priority. In
particular, thekth level coded blocks are encoded from source
blocks between levels1 andk, i.e., ci =

∑bk

j=1 βi,jxj . Fig. 1
illustrates these two coding schemes and RLC by simple
examples, where the matrix form of the coding coefficients of
three coded blocks is shown. Specifically, the figure illustrates
the setting where three source blocks belong to two priority
levels, where the first one is in level 1 and the second and the
third source block are in level 2.

Both SLC and PLC enjoy the advantage of allowing partial
recovery of a subset of the source blocks, even when the
number of accumulated coded blocks is less than the total
number of source blocks. In the examples of Fig. 1, RLC
requires at least three coded blocks to decode any useful
information. However, for both PLC and SLC, as long as the
first coded block is received, the first source block can be
decoded.

Furthermore, with SLC, because the source blocks in each
level are coded separately, the decoding results of different
levels in SLC are independent. With PLC, to decode the source
blocks in levelk, all the source blocks between levels 1 and
k − 1 must be already decoded, or be decoded at the same
time. However, we can show that PLC outperforms SLC in
terms of the number of required coded blocks to recover the
same set of source blocks, as stated in Theorem 1 below.

We first define thecorresponding coded blocksat levelk of
SLC and PLC as the coded blocks that share the same coding
coefficients for the source blocks at levelk. For example, in
Fig. 2 (a) and (b), the1×1 submatrix at the top left corner and
the 2 × 2 submatrix at the bottom right corner are identical,
leading to corresponding coded blocks. Furthermore, we say
that a set of coded blocksC1 in SLC is correspondingto
another set of coded blocksC2 in PLC, if each coded block
in C1 is corresponding to one coded block inC2 and vice
versa. Then, we have the following theorem.

Theorem 1:If SLC can decode the firstk priority levels

following the strict priority model from a set of coded blocks
C1, then PLC can at least decode the firstk priority levels
from C2, the corresponding set ofC1. The reverse is not true.

Proof: We prove the theorem by induction. First, we show
the basis is true. When SLC can decode level1, PLC can also
decode level1, since the corresponding coded blocks in level
1 are identical. Furthermore, the decoding algorithms are also
identical for both coding schemes in level1 as they reduce to
RLC.

Second, we show the induction step is true. Assume that
the statement is true fork, we need to show it is also true for
k+1. If SLC can decode the firstk+1 levels, PLC can decode
the firstk levels by the induction hypothesis. Given the firstk
levels are both known in SLC and PLC, and the corresponding
coded blocks at levelk + 1 have the same coding coefficients
for the source blocks in thek + 1th level, the linear system
induced by the coded blocks in levelk+1 of SLC and PLC are
identical. Therefore, since SLC can decode the source blocks
in level k +1, PLC can also decode the source blocks in level
k + 1. Hence, PLC can decode the source blocks in the first
k + 1 levels.

We show the reverse is not true by a counter example.
Assume there are two source blocks such that the first source
block belongs to level 1 and the second belongs to level 2. The
coded blocks in level 2 of PLC are the linear combination of
both source blocks. Hence, PLC can decode all source blocks
with high probability, when receiving two linearly independent
coded blocks in level 2. However, SLC cannot decode the first
source block with two corresponding coded blocks in level 2.

⊓⊔
The implication of Theorem 1 is clear when noting that,

given the same set of source blocks and a set of coded blocks
C1 encoded by SLC, PLC can encode the corresponding coded
blocks C2 of C1 by choosing the same coding coefficients
for the kth level source blocks inside thekth level coded
blocks. This can be achieved by using the same random
seed. Similarly, SLC can also encodeC1 corresponding to
C2 encoded by PLC.

B. Partial Decoding Algorithms

Next, we describe decoding algorithms that can be used
to partially decode source blocks from a set of coded blocks
accumulated in a data collecting server. For SLC, the partial
decoding algorithm is essentially the decoding algorithm of
RLC for the coded blocks in each level. Once the accumulated
coded blocks in a level are sufficient to decode all the source
blocks in this level, they are decoded despite the source blocks
in other levels may not be decoded.

For PLC, we useGauss-Jordan eliminationrather than
usual Gaussian elimination since it is unable to partially solve
a underdetermined linear system. Gauss-Jordan elimination
transforms a matrix to itsreduced row-echelon form(RREF)
[8] (e.g., Fig. 3(3)). The benefit of the RREF is that, given the
first k unknown variables can be solved with the firstk rows,
once thesek rows have been processed, the firstk elements
of the resulting vector on the right-hand-side of the equations
constitute the partial solution. Therefore, with Gauss-Jordan
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Fig. 3. (a) The decoding matrix. (b) The RREF of the decoding matrix after
Gauss-Jordan elimination.

elimination, the decoding process can beprogressive. The
decoding process starts as soon as the first coded block
has arrived, and decodes coded blocks as soon as they are
decodable, when new coded blocks are accumulated. Thus,
the data collecting server can stop collecting coded data once
the partial decoded data fulfill the application requirement.
For example, Fig. 3 shows the decoding matrix and its RREF
after Gauss-Jordan elimination. From the RREF, we observe
that the first 3 source blocks are partially decoded from the 5
coded blocks.

C. Decoding Performance

Under the strict priority model, it is natural to characterize
the decoding performance of SLC and PLC bym′ decoding
constraints, in the form (Mi, ki), where 1 ≤ i ≤ m′, and
the ith tuple refers to the constraint that givenMi randomly
accumulated coded blocks, on average, the firstki levels of
source blocks can be decoded. It is apparent that the smaller
Mi is, the more severe node failures that the data in the first
ki levels can survive.

We introduce the protocol parameters that can be controlled
to achieve different decoding performance:priority distribu-
tion, which is defined as the percentage of the coded blocks
of each level among all coded blocks. The priority distribution
can be attained in a decentralized way by the protocols
presented in Sec. IV. By adjusting the priority distribution, the
coding schemes can achieve different decoding constraints. For
example, if we increase the percentage of coded blocks in the
first ki levels, the probability to accumulate such coded blocks
is increased. Hence, we can fulfill more stringent decoding
constraint(Mi, ki) with a smallerMi. However, given that the
total storage space in all nodes is fixed, the consequence is that
the percentage of coded blocks from levelki+1 to n decreases
such that the number of required randomly accumulated coded
blocks to decode the source blocks in these levels will increase.
Hence, the priority distribution must be carefully chosen in
order to meet all decoding constraints.

We then derive the numerical relation between the priority
distribution and the decoding constraints for SLC and PLC.
With such numerical analysis, we can formulate different
optimization problems to search for the feasible priority dis-
tribution for a particular set of decoding constraints. The
notations used throughout this section are summarized in
Table I.

1) Decoding Performance of SLC:We introduce the ran-
dom variableX to denote the number of priority levels that
can be decoded fromM randomly accumulated coded blocks.

N : total number of source blocks
n: number of priority levels

M : number of coded blocks
m: maximal number of coded blocks that can be decoded

from M coded blocks,i.e., arg maxi{bi ≤ M}
xi: the ith source block
ai: number of source blocks in leveli
bi: number of source blocks in the firsti levels
pi: priority distribution, i.e., the probability that a coded

block belongs to leveli
Di: number of coded blocks in leveli

Di,j : number of coded blocks between leveli and levelj, i.e.,
Pj

k=i
Dk

B(n, k, p): binomial term
`

n

k

´

pk(1 − p)n−k

Pi,j : sum of priority probabilities from leveli to level j, i.e.,
Pj

k=i
pk

TABLE I

TABLE OF NOMENCLATURE

The expected value ofX is then

E(X) =
n

∑

k=1

kPr(X = k). (1)

To compute (1), we derive Pr(X = k). In SLC, each level
corresponds to a RLC and is independent of other levels.
That is,ai source blocks in leveli can be decoded with high
probability as long as the number of accumulated coded blocks
in level i is larger than or equal toai

1. To decode exactlyk
levels of source blocks, we need two sets of conditions. First,
the source blocks of the firstk levels can be decoded. Second,
the source blocks in levelk + 1 cannot be decoded. These
conditions are summarized as the following events:

Ai = {Di ≥ ai} for i = 1, 2, . . . , k

Ak+1 = {Dk+1 ≤ ak+1 − 1}. (2)

whereDi is the number of coded blocks in leveli. Therefore,
we have Pr(X = k) = Pr(A1 ∩ A2 ∩ · · · ∩ Ak+1).

Let D denote the vector of[D1, . . . ,Dk+1,Dk+2,n], where
Di,j is the number of coded blocks between leveli and level
j, i.e.,

∑j

k=i Dk. The sum of the elements inD should be the
total number of the coded blocksM ,

M = D1 + . . . + Dk+1 + Dk+2,n. (3)

Moreover,Dk+1 andDk+2,n should meet the constraints:

Dk+1 ≥ 0,

Dk+2,n ≥ 0. (4)

SinceD is a partition ofM , the probability that a given vector
D appears is a function ofD and the priority distribution
P = [p1, . . . , pk+1, Pk+2,n]:

f(D,P) =

(

M

D1, . . . ,Dk+1,Dk+2,n

)

pD1
1 · · · pDk+1

k+1 P
Dk+2,n

k+2,n .

(5)
Let B denote the set of vectors satisfying the constraints

(2), (3), and (4). The probability to decodek levels is

Pr(X = k) =
∑

D∈B

f(D,P). (6)

1We assume a sufficiently large Galois field such as GF(28) is used to
generate coding coefficients.
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Then, we can compute the expected number of decoded levels
in (1). We use a similar efficient algorithm in [9] to compute
(6) with a complexity ofO(M2(k+2) log(k+2)) by dynamic
programming instead of simply enumerating the vectors inB,
which has complexityO(Mk+1). We present the details of the
efficient algorithm in Appendix I.

2) Decoding Performance of PLC:We again useX to
denote the number of levels that can be decoded fromM
random coded blocks. Hence, the expected number of decoded
levels E(X) can be computed by (1), by first deriving the
probability to decodek levels of source blocks Pr(X = k),
which is the probability that there is an invertablebk × bk

submatrix W at the left of the decoding matrix and the
elements in the submatrix at the right ofW are all zero after
row sorting on the decoding matrix as illustrated in Sec. III-B.
We then have

Theorem 2:PLC decodes the source blocks in the firstk
levels if and only if eventsA1, . . . , Am all happen, where

Ai = {Di,k ≥ bk − bi−1} for i = 1, . . . , k,

Aj = {Dk+1,j ≤ bj − bk − 1} for j = k + 1, . . . ,m, (7)
wherem is the maximal number of coded blocks that can be
decoded fromM coded blocks,i.e., arg maxi{bi ≤ M}, and
b0 = 0. The proof of this theorem follows immediately from
the following lemmas, whose proofs are given in Appendix II
and III, respectively.

Lemma 3:The source blocks in the firstk levels can be
decoded from the coded blocks between level 1 and levelk if
and only if eventsA1, A2, . . . , Ak all happen.

Lemma 4:Given the source blocks in the firstk lev-
els are decoded, none of the source blocks between level
k + 1 and level m can be decoded if and only if events
Ak+1, Ak+2, . . . , Am all happen.

Thus, the probability that PLC decodesk levels is

Pr(X = k) = Pr(∩m
i=1Ai). (8)

The detailed derivations of (8) is shown in Appendix IV, where
approximations are used to reduce computational complexity.

D. Designing Priority Distribution under Decoding Con-
straints

With the analytical result presented above, we formulate a
numerical feasibility problem to design the priority distribu-
tion, p1, p2, . . . , pn, under a given set of decoding constraints,
defined in Sec. III-C. The obtained feasibility region can be
used to optimize the design of priority coding. Since the
optimization objectives are application dependent, instead of
limiting our analysis on any such particular objective, here we
demonstrate the effectiveness of our general approach by the
following feasibility formulation.

Let XMi
denote the random variable representing the num-

ber of levels that can be decoded fromMi coded blocks. The
priority distribution must satisfy the constraints:

E(XMi
) ≥ ki, for i = 1, 2, . . . ,m′, (9)

where E(XMi
), derived in (1), is a function of the priority

distribution. In addition, we may impose a special constraint

to ensure that the number of coded blocks to recover all source
blocks is controlled within a reasonable range:

Pr(XαN = n) ≥ 1 − ǫ, (10)

whereN is the total number of source blocks,α is a number
greater than 1, andǫ is a small positive number close to 0.
This constraint guarantees that the number of coded blocks
to recover all source blocks is smaller thanαN with high
probability. Finally, the priority distribution must satisfy the
following constraints according to the definition of probability:

pi ≥ 0,
n

∑

j=1

pj = 1, for i = 1, . . . , n (11)

We emphasize that the constraints defined by in (9), (10),
and (11) are fairly general. They can be a building block to
combine with other constraints and optimization objectives to
determine the priority distribution with a wide range of diverse
goals.

IV. D ISTRIBUTED ENCODING ALGORITHMS

In this section, we describe a protocol to disseminate the
source blocks and the distributed encoding algorithm to encode
them in the network. Fig. 4(b) shows an example. Node 1
disseminates its source blockx1 to node 5, 6, and 7. Similarly,
node 2, 3 and 4 disseminate their source blocksx2, x3, x4 to
a subset of nodes in the network. A node encodes all received
source blocks to one or more coded blocks by random linear
combination. For example, node 7 produces two coded block,
11x1 and6x1 + 5x2 + x3 + 7x4.

In a nutshell, the protocol should encode source blocks in
a way such that the coded blocks constitute an erasure code
with the priority coding distribution described in Sec. III-D.
We summarize the protocol requirements in more details. First,
the protocol must satisfy thecoding requirementsimposed by
SLC and PLC. For example, for SLC, the protocol must deliver
different source blocks in the same level to the same set of
caching nodes for encoding and storage. As an illustration,
Fig. 4(a) shows that node 2 and 3 transmitx2 and x3, the
two source blocks in level 2, to the same node, node 6, to
encode them together. Furthermore, the dissemination protocol
needs to ensure the designed priority distribution for the coded
blocks in the network. Second, the dissemination protocol
should be efficient, due to the energy constraints in wireless
sensor networks, or the bandwidth conservation requirements
in P2P networks. The ideal protocol will disseminate a source
block to a node only if the source block will be encoded with
the coded blocks on that node. For example,x2 should be
sent to only node 6 and 7 for encoding in Fig. 4(b). Finally,
the protocol should be implemented in a fully distributed
way. Our protocol achieves these requirements by utilizingthe
characteristic of geometric networks (described in Sec. II), and
the sparse coding result from [2].

To meet the coding requirement to encode source blocks
generated from different locations together, all nodes should be
aware of the same subset of nodes to cache coded blocks of the
same priority level. Furthermore, this subset of nodes should



6

Fig. 4. Distributed encoding with (a) SLC (b) PLC. The rectangles and
circles denote data blocks and nodes, respectively. Black,gray, and white
rectangles represent the data blocks in priority level 1, 2,and 3, respectively.
The dotted lines define the Vononoi diagram of the nodes.

be randomlydistributed among all nodes to tolerate different
failure patterns. To achieve these goals, in our protocol, all
nodes memorize the same set of caching nodes. Then the
protocol selects the same random subsets from them to cache
coded blocks in different priority levels. To memorize the same
set of caching nodes without actually storing the addressesof
all of them, all nodes are assigned with a common random seed
such that each node can use this random seed to generate the
same set ofM random points in the geometric space. These
random points are used to identify the nodes to cache the
coded blocks. In particular, a random point corresponds to
a coded block, and the node closest to the random point is
used to cache the coded block corresponding to the random
point. Hence, the source blocks produced in one time slot
are encoded intoM coded blocks in the network, andM is
upper-bounded by the average total storage space allocatedfor
the source blocks produced in one time slot in the network.
In the following, we use random point and coded block
interchangeably. In Fig. 4(a) and (b), the dotted lines define
the Vononoi diagram [10] of all nodes such that all points
(coded blocks) in a polygon are cached on the node belong to
that polygon. For example, the random points corresponding
to coded blocks11x1 and 7x4, are cached on node 4 in
Fig. 4(a). Finally, the protocol disseminates all source blocks
the nodes closest to theM random locations in the network

by a geometric routing protocol (described in Sec. II).
Upon receiving a new source blockx, the node in charge of

the random location will encode it with the coded blockc in
that location, withc = c+βx, whereβ is a coding coefficient
randomly chosen from a Galois field. Fig. 4 illustrates the
destinations of source blocks according to their priorities. Let
pi denote the percentage of coded blocks in leveli. For SLC,
the coded blocks in a particular level are encoded from the
source blocks in the same level. Hence, we divide theM
random locations ton parts, where theith part hasMpi

locations and is used to store the coded blocks for theith
level. The source blocks in leveli are only disseminated to
the ith part of random locations. For PLC, the coded blocks
in level i are encoded from the source blocks from level 1
to level i. Therefore, the source blocks in leveli are only
disseminated to the set ofM(

∑n

j=i pj) locations from theith
to thenth part of random locations. As an example, Fig. 4(b)
shows that the source blocks in level 1 are disseminated to
coded blocks in all priority levels, whereas the source blocks
in level 2 are disseminated to the coded blocks in level 2 and
level 3.

Since each node is in charge of a small area in the geometric
space, multiple random locations may fall on the same node
such that each node stores multiple coded blocks, and the
number of coded blocks on each node is generally not equiva-
lent because of different area sizes and randomness. It is well
known that “the power of two choices” can be used to achieve
load balance with the maximal loadΘ(ln lnM/ ln 2) [11]. The
basic idea of “the power of two choices” is as follows. To
find the node to cache a coded block, two uniformly random
locations are generated first. Afterwards, with a geometric
routing protocol, the two nodes closest to the two random
locations are located and the number of coded blocks already
cached on them are obtained. The node with fewer coded
blocks is then chosen to cache this coded block. To integrate
this idea into our system, rather than using the original set
of M random locations, we seek a different set ofload-
balancedM random locations. Without loss of generality, we
consider the process to generate thei-th random location in the
load-balanced set. Two random locations are generated as the
candidates to be thei-th random location. After locating the
two nodes nearest to these two random locations, the protocol
uses the random location corresponding to the node with the
least load as thei-th random location in the load-balanced set.

In the above protocol, each source block is disseminated to
all locations in its corresponding subset of theM random
locations. Dimakisel al. [2] have shown that for RLC,
with O(ln N) nonzero coding coefficients on each row, the
decoding matrix can be inverted with high probability. This
reduces the number of source blocks need to be disseminated
from N locations toO(lnN) locations. Clearly, SLC enjoys
such a result since it is essentially composed ofn RLC. It
is easy to see PLC also benefits from such a result, which is
further confirmed by simulations in Sec. V-D.

The asymptotic result in [2] serves as a guideline. However,
we would like to know the exact number of locations needed
to disseminate a source block to, when implementing real
systems. In the following, we computeγi, referred to as
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densityhereafter, the lower bound of the fraction of locations
that a source block needs to be disseminated to among its
corresponding random locations. Our computation is based on
the following observation. In order to decode a source block
xj in level i from any Mi coded blocks, the data collecting
server should accumulate at least a coded block encoded from
xj .

Let qi denote the probability that the data collecting server
collects a coded block encoded from source blockxj when
visiting a coded block. We first calculateqi in order to obtain
γi. It is easy to see that the server does not obtain a coded
block encoded fromxj with probability (1 − qi)

Mi after
visiting Mi random locations. Hence, the server decodes the
source blockxj with a success probability1 − (1 − qi)

Mi .
Finally, since we haveNi source blocks in leveli, the
probability (1 − (1 − qi)

Mi)Ni to decode all of them should
be close to 1, given the fact that the dissemination of allNi

source blocks are independent. Therefore, we have

(1 − (1 − qi)
Mi)Ni ≥ 1 − ǫ, (12)

whereǫ is a small positive number close to zero. By solving
(12), we have the lower bound ofqi.

Next, we describe the relation betweenqi andγi. We first
notice that theMi coded blocks that the data collecting server
collects may be anyMi out of theM total number of coded
blocks. However, a node may disseminate a source block to all
M coded blocks. Hence, each copy of this source block has
probability Mi

M
to be encoded into any coded block among the

Mi coded blocks the server visits. Furthermore, as discussed
previously in this section, a source block in leveli is only
disseminated to

∑n

j=i pi fraction of random locations for
PLC2, wheren is the total number of priority levels. Therefore,
we haveqi = γi

Mi

M
(
∑n

j=i pi). Hence, we have

γi =
qi

Mi

M
(
∑n

j=i pi)
(13)

whereqi is derived from (12).

V. PERFORMANCEEVALUATION

In this section, we validate our numerical analysis and study
the decoding performance of SLC and PLC. In all experi-
ments and numerical results, we measure the differentiated
performance of our priority coding schemes in thedecoding
curveswhere the expected number of decoded priority levels
are shown against the number of processed coded blocks.
With an example feasibility problem, we demonstrate the
effectiveness of our priority coding schemes. We also explore
how much transmission cost can be saved by using a sparse
decoding matrix and study the performance of our priority
coding schemes under realistic settings with imperfect priority
information.

To illustrate the communicational encoding cost of our
coding schemes, we simulate them in a wireless network with
1024 nodes in a square with size17×17 units. The radio range
of all nodes is 1. The average number of neighbors of a node
is 9.53516. Nodes are placed in a grid network with random

2This number ispi for the case of SLC.

0 500 1000
0

1

2

3

4

5

Number of coded blocks

E
x
p
e
c
te

d
 n

u
m

b
e
r 

o
f 
d
e
c
o
d
e
d
 l
e
v
e
ls

simulation

analysis

0 500 1000
0

10

20

30

40

50

Number of coded blocks

E
x
p

e
c
te

d
 n

u
m

b
e

r 
o

f 
d

e
c
o

d
e

d
 l
e

v
e

ls

simulation

analysis

(a) Number of priority levels is 5. (b) Number of priority levels is 50.

Fig. 5. The analysis of PLC agrees with experiments.
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(a) Number of priority levels is 5. (b) Number of priority levels is 50.

Fig. 6. The analysis of SLC agrees with experiments.

perturbation. In particular, each node deviates from its grid
location with a random distance of 0.3 along each axis. We
implement greedy geographical routing algorithm to deliver a
source block from the node generating this data fragment to
a random location in network.

In all simulations, where GF(28) is used, we randomly
generate a set of coded blocks according to the priority
distribution and the encoding algorithms, and use the partial
decoding algorithms to recover the maximal number of source
blocks from the coded blocks. The number of coded blocks
is varied in each experiment to observe the decoding curve.
To mitigate randomness in simulations, we show, for each
data point in all figures, the average and the 95% confidence
intervals from 100 independent experiments.

A. Validating Numerical Analysis

For both SLC and PLC, we set the number of source blocks
to 1000 and the priority distribution to uniform. Two sets
of experiments are executed with 5 and 50 levels and 200
and 20 source blocks in each level, respectively. Fig. 5(a)
shows that our analysis for PLC agrees with the experiments
when the number of levels is 5. On the other hand, Fig. 5(b)
shows that our analysis deviates slightly from experiments
when the number of priority is 50. The reason is that our
approximation in Sec. III-C for PLC is related to the number of
levels. In particular, the more priority levels, the less accurate
the approximation is. Fig. 6 shows the analysis agrees with
experiments very well for SLC.

B. PLC Outperforms SLC

As we have shown in Theorem 1 of Sec. III-A, PLC
outperforms SLC under the strict priority model in terms of
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Fig. 7. PLC outperforms SLC.

the number of coded blocks to recover the same set of source
blocks. In this section, we run experiments to explore the per-
formance gap between them with the following experimental
parameters. The number of source blocks is 1000. The number
of levels is 10 and 50, and each level contains 100 and 20
source blocks, respectively. Fig. 7 shows that when the number
of levels is 10, the decoding performance gap between SLC
and PLC is modest. However, when the number of levels is
50, the performance gap between SLC and PLC is significant.
Furthermore, the number of levels do not have much impact
on the decoding performance of PLC, but do have significant
impact on SLC. In particular, the more priority levels, the
smaller amount of source blocks can be recovered by SLC
with the same number of coded blocks. This is because if
the number of levels is large, the source blocks in SLC are
less mixed. In the extreme case where each level contains
one source block, SLC degrades to the scheme of no coding.
Hence, the “coupon collector” effect comes into play [12],
where recovering allN source blocks requiresO(N lnN)
coded blocks. On the other hand, even if each level contains
one source block, PLC does still mix source blocks together
and enjoy the coding advantage. In the following, we only
show the results for PLC.

C. Differentiated Decoding

We proceed to show examples using the constrained fea-
sibility framework introduced in Sec. III-D to find a priority
distribution satisfying a given set of decoding constraints. Our
experimental settings are as follows. 512 source blocks are
divided to three levels with 50, 100, and 362 source blocks
in each level. We perform the experiments for three different
sets of decoding constraints, in the form of(Mi, ki) in (9),
and are shown in the first column of Table II. For example,
(130, 1) in the first row of Table II requires that the expected
number of priority levels decoded from 130 coded blocks is
1. We further enforce the constraint (10) withα = 2 and
ǫ = 0.01 and (11) in all three sets of experiments. We solve
the three numerical feasibility problems with MATLAB, using
uniform distribution as the initial searching point. MATLAB
terminates and produces a feasible solution which is the first
solution it finds such that all constraints are satisfied. The
priority distributions produced by the feasibility problem are
shown in the last three columns in Table II.

Decoding Constraints p1 p2 p3

Case 1 (130, 1) (980, 2) 0.5130 0.0791 0.4079
Case 2 (270, 1) (385, 2) 0.0739 0.5141 0.4120
Case 3 (240, 1) (500, 2) 0.3304 0.2813 0.3883

TABLE II

THE PRIORITY DISTRIBUTION SOLVED FROM THE OPTIMIZATION

PROBLEM.
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Fig. 8. The decoding curves from the priority distribution of Table II.

Fig. 8 shows the decoding curve for three priority distri-
butions with the following observations. First, in comparison
with RLC, which requires at least 512 coded blocks to decode
any source block, PLC can decode the first level with only
130 coded blocks in “Case 1” and the second level with only
385 coded blocks in “Case 2”. Second, all decoding curves
satisfy their decoding constraints and the decoding of higher
priority levels precedes lower priority levels. Finally, different
decoding constraints produce significantly different decoding
curves, which demonstrates the flexibility of our approach
towards a diverse set of differentiated decoding requirements.

Since we are searching for one of the feasible solutions, the
produced decoding curve may not exactly match the decoding
constraints. For example, the decoding curve of “Case 3”
climbs to level 2 with slightly more than 400 coded blocks,
whereas the decoding constraint is to decode level 2 with 500
coded blocks. Moreover, it is possible that no feasible solutions
are found given a set of decoding constraints. This implies the
decoding constraints cannot be fulfilled.

D. Reducing Transmission Cost with Sparse Decoding Matri-
ces

In this section, we investigate the communication cost of
PLC. We use the same source blocks distribution as in Sec. V-
C, and the decoding constraints in the third row of Table II.
By (13) with ǫ = 0.01, we have the densities for the three
priority levels: 0.1487, 0.0558, and 0.0263. We refer to the
PLC with such densities as(0.1487, 0.0558, 0.0263)-sparse
codes, and the original PLC asdense codes. We conduct
the experiments with the densities(0.0743, 0.0279, 0.0132) as
well for comparison. Fig. 9 shows the results. In particular,
the decoding curve of(0.1487, 0.0558, 0.0263)-sparse codes
is almost the same as the dense codes. Hence, reducing code
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Fig. 9. The decoding curves of the dense codes and sparse codes.

TABLE III

THE DISSEMINATION COST IN TRANSMITTING A SOURCE BLOCK.

code density average level 1 level 2 level 3

dense 72536 14702 12655 4733
sparse 403.4 2196 520.5 123.5

densities appropriately does not degrade the coding perfor-
mance. On the other hand,(0.0743, 0.0279, 0.0132)-sparse
codes deviate from the dense codes significantly and does not
meet the decoding constraints. Therefore, the code densities
computed from (13) are relatively tight. In the following, we
omit the result of(0.0743, 0.0279, 0.0132)-sparse codes since
it does not satisfy the coding requirement, and we simply refer
to (0.1487, 0.0558, 0.0263)-sparse codes as sparse codes.

We next investigate the communication cost in construct-
ing PLC using greedy geographic routing in wireless sensor
networks. The network setup is described in details at the
beginning of Sec. V. We define the number of hop trans-
missions involved in disseminating one source block as the
communication cost. Table III compares the communication
cost between dense codes and sparse codes. As a benchmark,
the communication cost to transmit a packet to all nodes by
flooding is at least 1024 since the total number of nodes in the
network is 1024. We observe that the average communication
cost to deliver one source block in dense codes is much
higher than flooding since the asymptotic cost isΘ(N

√
N)

[2]. On the other hand, the average communication cost for
the sparse codes is significantly lower than flooding as the
cost isΘ(log N

√
N) [2]. Finally, we notice that the cost to

disseminate source blocks in higher priority levels is higher
than the cost in lower priority levels. This is because the source
blocks in the higher levels need to be disseminated to more
random locations. Furthermore, the code densities of higher
priority levels are also higher.

E. Impact of Imprecise Priority Information

Up until now, all analysis and experiments assume precise
knowledge of priority information. In this section, we explore
how imprecise priority information affects the performance of
our algorithms with two sets of experiments. We use the same
experimental settings as the dense codes in Sec. V-D except for
assuming that the network nodes use different sets of imprecise

TABLE IV

THE PRIORITY DISTRIBUTION COMPUTED WITH IMPRECISE PRIORITY

INFORMATION. SET 1 AND SET 2 HAVE IMPRECISE PRIORITY

INFORMATION ON THE FIRST TWO AND LAST TWO PRIORITY LEVELS,

RESPECTIVELY.

Type Priority Information p1 p2 p3

Precise (70,140,490) 0.2691 0.3380 0.3929

Set 1
(60,150,490) 0.2396 0.3807 0.3797
(80,130,490) 0.2817 0.3203 0.3980

Set 2
(70,130,500) 0.2906 0.3225 0.3869
(70,150,480) 0.2634 0.3642 0.3724
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Fig. 10. (a) Decoding curves of set 1. (b) Decoding curves of set 2. The 3-
tuples represent priority information used to compute the priority distribution.

priority information to derive different priority distributions.
The correct priority information is always 70, 140, and 490
source blocks for the three priority levels. However, the
priority distribution is computed from different sets of priority
information with an error of 10 source blocks as shown in
Table IV. We observe that the priority distributions derived
from slightly imprecise priority information is similar tothe
priority distribution derived from precise information. This fact
is further confirmed by Fig. 10, where the decoding curves of
the experiments with precise and imprecise information are
shown to be similar.

VI. RELATED WORK

In sensor networks, extensive research efforts have stud-
ied various distributed source coding schemes to save data
transmissions by exploring the spatial and temporal data
correlations such as in [13]. In contrast, our work along with
recent research work in sensor networks [14], [2], [15], [16]
and distributed storage systems [17], [18], [19] belongs to
distributed channel coding, which provides data redundancy
such that original data can be efficiently recovered when data
loss are common due to node failures. However, most existing
distributed channel coding schemes either recover all dataor
nothing. To cope with such coding disadvantage, Growth codes
[14] have been proposed to maximize partially recovered data
on the sink in case not all data can be recovered in sensor
networks. Growth Codes treat all data equivalently despite
data may have different importance in many applications.
Therefore, if it is used, unimportant data may be recovered at
the expense of failing to recover important data. In contrast to
Growth Codes, we encode data in different priorities such that
important data always have higher opportunity to be recovered.
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Wangel al. [5] introduce adistributed source codingscheme
to support partial decoding where partially decoded data from
incomplete coded data are an approximation of the true data.
The more coded data are collected and processed by the data
collecting server, the closer is the decoded data to the true
data.

Network coding [20], [21] and its distributed implemen-
tations utilizing random linear codes [7], [22] allow coding
operations besides replication and forwarding on the inter-
mediate nodes and achieve the maximal multicast capacity
of a network. Chouel al. [22] consider priority encoding in
network coding to achieve network multicast capacity, which
is different from our problem. Chunked Codes [23] reduce the
complexity of random linear codes by partitioning message
to “chunks” and utilizing pre-coding. Although SLC uses
similar partitioning, we focus on partial decoding whereasthey
concentrate on reducing complexity. Furthermore, in Chunked
Codes, all data have to be pre-encoded in the source node
before dissemination, whereas in our work, data are encoded
in different nodes in a decentralized way.

The research work on priority encoding of data has been
considered for multimedia system,e.g., Priority Encoding
Transmission (PET) in [24]. To the best of our knowledge,
there is no known way to implement PET in a distributed way.
Furthermore, we believe a naive implementation of PET under
a distributed setting may incur much higher communication
cost than our proposal due to the following reason. Each coded
block in PET consists of the information of all priority levels.
Hence, the data from any priority level are required to be
disseminated to all nodes caching coded blocks. In contract,
in our schemes, a coded block in most priority levels is not
encoded from all priority levels but a part of them. Hence,
a source block from one priority level need to be delivered
to only the nodes with thesubsetof coded blocks where it
is required for encoding. Therefore, our schemes incur much
lower communication cost than a naively implemented PET
system.

VII. C ONCLUSION

In this paper, we introduce priority encoding under a dis-
tributed setting, where data are generated in different nodes
and encoding operations are executed in a decentralized
manner. The proposed priority random linear codes can be
applied to a wide range of autonomous networks, including
P2P and sensor networks with node churn and failure, to
partially recover data cached on the network nodes. Our study
is based on extensive mathematical analysis and simulation
experiments. We show that with our priority coding, important
data can be recovered with much fewer coded blocks as
compared with random linear codes, hence they are more
likely to survive under severe network instability. Furthermore,
the proposed theoretical analysis provides insights into the
fundamental tradeoffs in priority coding, leading to a flexible
framework for optimal coding design based on application
requirements.
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APPENDIX I
EFFICIENT COMPUTATION OF EQ. (6)

We compute

RN
K(q1, . . . , qK) =

∑

h1+...+hK=N
hi≥ai,hK−1≤aK−1−1

for i = 1, . . . , K − 2

N !

h1! · · ·hK !
qh1
1 · · · qhK

K ,

(14)
where

∑K

i=1 qi = 1 andhi ≥ 0. Clearly, Pr(X = k) in Eq. (6)
is RN

K(q1, . . . , qK) if N = M , K = k+2, Di = hi, Dk+2,n =
hK , pi = qi, Pk+2,n = qK .

Let Qi,j =
∑j

l=i ql. Then we define

TK,N,i = RN
K

(

qi

Qi,i+K−1
, . . . ,

qi+K

Qi,i+K−1

)

. (15)

With such a definition, it is apparent thatRN
K(q1, . . . , qK) =

TK,N,1, and (6) is equivalent toTK,M,1.
Then it is easy to verify that we have the following recursive

form to computeTK,N,i:

TK,N,i =

N
∑

N1=0

N !

N1!N2!

(

Qi,i+K1−1

Qi,i+K−1

)N1
(

Qi+K1,i+K−1

Qi,i+K−1

)N2

· TK1,N1,iTK2,N2,i+K1
, (16)

whereK2 = K − K1 andN2 = N − N1, and the constraints
of hi ≥ ai andhK−1 ≤ aK−1 − 1 in (14) will be integrated
later when computing the initial values.

Next, we present the dynamic-programming algorithm to
efficiently computeTK,M,1, utilizing (16). The initial values
are computed from (15) with the constraintshi ≥ ai and
hK−1 ≤ aK−1. For N = 0, . . . ,M , we have

T1,N,i =

{

0 if N < ai,

1 if N ≥ ai,
(17)

for i = 1, . . . ,K − 2. Wheni = K − 1,

T1,N,K−1 =

{

1 if N ≤ aK−1 − 1,

0 if N > aK−1 − 1.
(18)

Furthermore, we haveT1,N,K = 1 for all N .
Afterwards, we build a table for dynamic programming with

a standard doubling trick, utilizing (16). We have

T2j ,N,i =

N
∑

N1=0

N !

N1!N2!

(

Qi,i+2j−1−1

Qi,i+2j−1

)N1
(

Qi+2j−1,i+2j−1

Qi,i+2j−1

)N2

· T2j−1,N1,iT2j−1,N2,i+2j−1 , (19)

for j = 1, . . . , ⌊log(K)⌋, N = 0, . . . ,M , and i = 1, 1 +
2j , . . . , 1 + 2j(l − 1), wherel = ⌊K/2j⌋.

Finally, we computeTK,M,1 based on the table built by (17),
(18), and (19). We decomposeK as the sum of the powers of
2.

K = x⌊log(K)⌋2
⌊log(K)⌋ + . . . + x12 + x0, (20)



11

wherexi is either 0 or 1. LetXj represent the sum of the
first j items in (20). The initial valuesTX1,N,1 are

TX1,N,1 = T2⌊log(K)⌋,N,1, for N = 0, . . . ,M, (21)

and are given in the table built by (17), (18), and (19).
ThenTXj ,N,1 are computed as follows:

TXj ,N,1 = TXj−1,N,1, (22)

if xj = 0. Otherwise,

TXj ,N,1 =

N
∑

N1=0

N !

N1!N2!

(

Q1,Xj−1

Q1,Xj

)N1
(

QXj−1+1,Xj

Q1,Xj

)N2

· TXj−1,N1,1T2Xj−Xj−1 ,N2,Xj−1+1, (23)

where N2 = N − N1, and for j = 2, . . . , ⌊log(K)⌋.
T2Xj−Xj−1 ,N2,Xj−1+1 are given in table built by (19).

It is easy to see the complexity of the above algorithm is
determined by the four levels of loops (on variablesN1, j,
N , andi1) in building the table for dynamic programming in
(19). Therefore, the computational complexity ofTK,M,1 (i.e.,
(6)) is O(M2K log(K)).

APPENDIX II
PROOF OFLEMMA 3

We introduce two notations to facilitate the proofs of
Lemma 3 here and Lemma 4 in Appendix III. First, let
Mi,j denote the submatrix of the decoding matrix with rows
corresponding to the coded blocks between leveli and levelj
and columns corresponding to the source blocks between level
i and levelj. For example,M2,3 in Fig. 3(b) is

[ 17 0 0
193 0 0
88 124 3

]

.
Second, letIi,j denote a submatrix composed of a maximal
set of linearly independent rows inMi,j . For instance, one
I2,3 in Fig. 3(b) is

[

17 0 0
88 124 3

]

and anotherI2,3 is
[

193 0 0
88 124 3

]

.
Hence,Ii,j is a submatrix ofMi,j and bothMi,j and Ii,j

have widthbj − bi−1, assumingb0 = 0. Furthermore, it is
easy to see that the elements of the submatrix at the right of
Mi,j is always zero. Therefore, as long as there arebk linearly
independent rows inM1,k, we can decode the source blocks
in the firstk levels. We show the detailed proof of Lemma 3
in the following.

Proof of Lemma 3:We prove the following equivalent
statement. There arebk linearly independent rows inM1,k if
and only if eventsA1, A2, . . . , Ak all happen. This equivalent
statement is proved by induction. The basis is the following
statement. There existsbk − bk−1 independent rows inMk,k

if and only if event Ak happen. This is true since any
bk − bk−1 rows in Mk,k are linearly independent with high
probability given the coding coefficients are randomly chosen
from GF(28).

Assume the statement is true fork − 1, i.e., there are
bk − b1 linearly independent rows inM2,k if and only if event
A2, A3, . . . , Ak all happen, we prove the statement is true for
k. Suppose eventsA1, A2, . . . , Ak all happen, there arebk−b1

linearly independent rows inM2,k by the induction hypothesis.
We need to prove there arebk linearly independent rows in
M1,k.

There are two types of linearly independent rows inM1,k

besides thebk − b1 linearly independent rows expanded from
I2,k with the first b1 columns. First, the additional linearly
independent rows may come from the coded blocks in level 1.
Note that anyb1 rows from the coded blocks in level 1 can be
the linearly independent rows inM1,k. Second, the additional
linearly independent rows may be expanded from the rows in
M2,k but not inI2,k. The number of theith level rows inI2,k

is smaller thanbi − b1, since otherwise these rows are linearly
dependent inI2,k, contradicting with the assumption that any
subset of rows inI2,k are linearly independent. Hence, anyb1

rows in level i expanded from the rows inM2,k but not in
I2,k can be linearly independent rows inM1,k. Therefore, it
is easy to find the additionalb1 linearly independent rows in
M1,k, given A1 = {D1,k ≥ bk} happens. Hence, there arebk

linearly independent rows inM1,k.
Conversely, suppose there arebk linearly independent rows

(columns) inM1,k. M2,k is transformed fromM1,k in two
steps. First, the firstb1 columns ofM1,k are removed. Second,
any rows with all zero in the submatrix from the previous
step are also removed. Since the firstb1 columns ofM1,k

can contribute at mostb1 linearly independent columns,M2,k

hence contains at leastbk − b1 linearly independent columns.
Furthermore, there are onlybk − b1 columns inM2,k. There-
fore,M2,k consists ofbk−b1 linearly independent rows. By the
induction hypothesis,A2, A3, . . . , Ak all happen. Furthermore,
A1 should happen, since the fact thatbk linearly independent
rows exist inM1,k implies that there are more thanbk coded
blocks from level 1 to levelk, i.e., A1 = {D1,k ≥ bk}
happens. ⊓⊔

APPENDIX III
PROOF OFLEMMA 4

Proof: Since the source blocks in the firstk levels are
decoded, we focus onMk+1,m. We use induction to prove
this with the following basis statement. None of the source
blocks in levelk+1 can be decoded if and only if eventAk+1

happens. SinceMk+1,k+1 is in the form of a RLC decoding
matrix, none of thebk+1 − bk source blocks in levelk + 1
can be decoded if and only if the number of coded blocks
Dk+1,k+1 ≤ bk+1 − bk − 1 with high probability. Hence, the
basis is true.

Assume the statement is true form − 1, i.e., none of
the source blocks in levelk + 1 to level m − 1 can be
decoded if and only if eventAk+1, Ak+2, . . . , Am−1 happen,
we need to prove the statement is true form. Suppose
Ak+1, Ak+2, . . . , Am happen, then none of the source blocks
in level k +1 to level m− 1 can be decoded by the induction
hypothesis. SinceAm = {Dk+1,m ≤ bm − bk − 1} happens,
the source blocks in levelm cannot be decoded either, because
it requires at leastbm − bk coded blocks in order to decode
the bm − bk source blocks from levelk + 1 to level m.

Conversely, since none of the source blocks from levelk+1
to level m − 1 are decoded, eventsAk+1, Ak+2, . . . , Am−1

happen by the induction hypothesis. We need to show that
Am happens. We claim the rows in the submatrixMk+1,m are
linearly independent, given none of source blocks from level
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k + 1 to level m can be decoded. This claim can be proved
by induction as well. If the coded blocks in levelk+1 cannot
be decoded, the number of rows inMk+1,k+1 is less than
the number of columns, and the rows are linearly independent
with high probability, sinceMk+1,k+1 is in the form of a RLC
decoding matrix (all coding efficnets are nonzero). Assume
that the rows inMk+1,m−1 are linearly independent, we need
to prove that the rows inMk+1,m are also linearly indepen-
dent. Following the above hypothesis, any rows inMk+1,m

expanded fromMk+1,m−1 are linearly independent, given all
rows inMk+1,m−1 are linearly independent. Furthermore, they
are independent from all rows in levelm because they have
less nonzero elements than any rows in levelm. Finally,
any bm − bk (or less thanbm − bk) rows in level m are
also linearly independent. Hence, all rows inMk+1,m are
linearly independent as long asDk+1,m ≤ bm−bk. Therefore,
the eventAm = {Dk+1,m ≤ bm − bk − 1} should occur;
otherwise, all source blocks in levelk+1 to m can be decoded,
contradicted with the hypothesis. ⊓⊔

APPENDIX IV
DERIVING PR(X = k) IN PLC

In this appendix, we show the detailed derivation of Pr(X =
k) in (8). This probability can be expanded as follows by the
chain rule:

Pr(X = k) = Pr(∩m
i=1Ai)

= Pr(∩k
i=1Ai)Pr(∩m

i=k+1Ai| ∩k
i=1 Ai). (24)

Hence, we derive Pr(X = k) in (24) with the following two
steps: deriving Pr(∩k

i=1Ai) and deriving Pr(∩m
i=k+1Ai| ∩k

i=1

Ai).

A. Deriving Pr(∩k
i=1Ai)

By the chain rule, Pr(∩k
i=1Ai) is

Pr(∩k
i=1Ai) = Pr(Ak)Pr(Ak−1|Ak) · · ·Pr(A1|∩k

i=2Ai). (25)

To simply notations, we useB(n, k, p) to denote the bi-
nomial term

(

n

k

)

pk(1 − p)n−k. Since the number of level-k
coded blocks in theM coded blocks conforms to the binomial
distribution, we have

Pr(Ak) = Pr(Dk,k ≥ bk − bk−1)

=
M
∑

z=bk−bk−1

B(M, z, pk). (26)

Next, we derive Pr(Ai−1| ∩k
j=i Aj). DefineCi = {Di,k ≥

bk − bi−2} and Ci,z = {Di,k = z}, wherebk − bi−1 ≤ z ≤
bk − bi−2 − 1. Ci andCi,z partition Ai as follows:

Ai = {Di,k ≥ bk − bi−1}
= {Di,k ≥ bk − bi−2} ∪ (∪bk−bi−2−1

z=bk−bi−1
{Di,k = z})

= Ci ∪ (∪bk−bi−2−1
z=bk−bi−1

Ci,z). (27)

Let Wi denote∩k
j=i+1Aj . Hence, Pr(Ai−1| ∩k

j=i Aj) =
Pr(Ai−1|Ai ∩ Wi). By the law of total probability on the
conditional space of eventAi ∩ Wi, we have

Pr(Ai−1|Ai∩Wi) = Pr(Ai−1|Ci∩Wi)Pr(Ci∩Wi|Ai∩Wi)+
bk−bi−1

∑

z=bk−bi−2

Pr(Ai−1|Ci,z ∩ Wi)Pr(Ci,z ∩ Wi|Ai ∩ Wi), (28)

sinceCi andCi,z are subsets ofAi. We derive the unknown
elements in (28). First, we have

Pr(Ai−1|Ci ∩ Wi) = 1. (29)

This follows becauseCi = {Di,k ≥ bk − bi−2} andDi−1,k =
Di−1,i−1 +Di,k ≥ Di,k imply Ai−1 = {Di−1,k ≥ bk−bi−2}.

Second,Ai−1 andWi are conditionally independent given
Ci,z. This is because given the number of coded blocks from
level i to levelk, the number of coded blocks from leveli−1
to level k is independent of the number of coded blocks from
level j to level k, wherej > i. Hence, we have

Pr(Ai−1|Ci,z ∩ Wi) = Pr(Ai−1|Ci,z)

= Pr(Di−1,k ≥ bk − bi−2|Di,k = z)

= Pr(Di−1,i−1 ≥ bk − bi−2 − z|Di,k = z)

=

M
∑

l=bk−bi−2−z

B(M − z, l,
pi−1

1 − Pi,k

),

(30)

where the second and the third equality follow from the
definition of Ai−1, Ci,z, andDi,j . The fourth equality holds
because given the number of coded blocks from leveli to
level k is z, the number of coded blocks in leveli − 1 in
the remainingM − z coded blocks is a binomial distribution
where the probability to choose a coded block in leveli − 1
is pi−1

1−Pi,k
.

Third, we derive Pr(Ci,z ∩ Wi|Ai ∩ Wi). We show that
the exact derivation of this probability involves recursion and
is computationally extremely complex. Hence, we give an
approximated derivation. We start with the exact derivation
as follows:

Pr(Ci,z ∩ Wi|Ai ∩ Wi) =
Pr(Ci,z ∩ Wi)

Pr(Ai ∩ Wi)
, (31)

since Ci,z ⊂ Ai. Pr(Ai ∩ Wi) can be calculated using
intermediately computed result as follows:

Pr(Ai ∩ Wi) = Pr(∩k
j=iAj)

= Pr(Ak)Pr(Ak−1|Ak) · · ·Pr(Ai| ∩k
j=i+1 Aj),

(32)

where Pr(Ak) and Pr(Al| ∩k
j=l+1 Aj), l = i, . . . , k − 1, are

derived prior to Pr(Ai ∩ Wi) in (26) and (28). Pr(Ci,z ∩ Wi)
in (31) can be computed as follows:

Pr(Ci,z ∩ Wi) = Pr(Ci,z)Pr(Wi|Ci,z)

= Pr(Di,k = z)Pr(∩k
j=i+1Aj |Di,k = z)

= B(M, z, Pi,k)Pr(∩k
j=i+1Aj |Di,k = z),

(33)
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where computing Pr(∩k
j=i+1Aj |Di,k = z) is the same problem

as computing (25), although the former is defined on the
conditional space on event{Di,k = z}. Hence, we can use the
same method in deriving (25) to derive Pr(∩k

j=i+1Aj |Di,k =
z). However, since the computation of this probability is
encountered for eachz and recursively, the computational
cost of (25) is too high by this method. Hence, we give the
approximated derivation for Pr(Ci,z∩Wi|Ai∩Wi) as follows:

Pr(Ci,z ∩ Wi|Ai ∩ Wi) ≈ Pr(Ci,z|Ai) =
Pr(Ci,z)

Pr(Ai)

=
Pr(Di,k = z)

Pr(Di,k ≥ bk − bi−1)

=
B(M, z, Pi,k)

∑M

l=bk−bi−1
B(M, l, Pi,k)

, (34)

where the first equality follows sinceCi,z ⊂ Ai and the second
and third equality follow from the definition ofDi,j . The
approximation in (34) is reasonable sinceWi = ∩k

j=i+1Aj has
much smaller impact to Pr(Ci,z ∩Wi|Ai ∩Wi) thanCi,z and
Ai. However, if k grows larger, the approximation becomes
less accurate. We verify that such approximation is sufficiently
accurate with simulations in Section V-A.

Finally, we have

Pr(Ci ∩Wi|Ai ∩Wi) = 1−
bk−bi−2−1

∑

z=bk−bi−1

Pr(Ci,z ∩Wi|Ai ∩Wi),

(35)
sinceCi andCi,z partition Ai.

By substituting (29), (30), (34), and (35) to (28), and
substituting (26) and (28) into (25), we derive the formula
to compute Pr(∩k

i=1Ai).

B. Deriving Pr(∩m
i=k+1Ai| ∩k

i=1 Ai)

Similarly, we derive Pr(∩m
i=k+1Ai| ∩k

i=1 Ai). Let H denote
∩k

i=1Ai. By the chain rule, we have

Pr(∩m
i=k+1Ai|H) = Pr(Am|H) · · ·Pr(Ak+1| ∩m

i=k+2 Ai ∩ H).
(36)

First, we derive Pr(Am|H). We defineC1 = {D1,k ≥ M −
bm +bk +1}, C1,z = {D1,k = z}, wherebk ≤ z ≤ M −bm +
bk. C1 andC1,z partition A1 as follows:

A1 = {D1,k ≥ bk}
= {D1,k ≥ M − bm + bk + 1} ∪ ∪M−bm+bk

z=bk
{D1,k = z}

= C1 ∪ ∪M−bm+bk

z=bk
C1,z. (37)

Let W1 denote∩k
i=2Ai, by the law of total probability on the

conditional space of eventA1 ∩ W1,

Pr(Am|A1∩W1) = Pr(Am|C1∩W1)Pr(C1∩W1|A1∩W1)+
M−bm+bk

∑

z=bk

Pr(Am|C1,z ∩ W1)Pr(C1,z ∩ W1|A1 ∩ W1), (38)

sinceC1 andC1,z are subsets ofA1.

We proceed to derive the unknown elements in (38). First,
becauseC1 = {D1,k ≥ M−bm+bk +1}, we haveDk+1,m =
M − D1,k ≤ bm − bk − 1, i.e., Am happens. Hence, we have

Pr(Am|C1 ∩ W1) = 1. (39)

Second,Am and W1 are conditionally independent given
C1,z. This is because given the number of coded blocks from
level 1 to levelk, the number of coded blocks fromk + 1 to
m is independent of the number of coded blocks from leveli
to level k, wherei > 1. Hence, we have

Pr(Am|C1,z ∩ W1) = Pr(Am|C1,z)

= Pr(Dk+1,m ≤ bm − bk − 1|D1,k = z)

=

bm−bk−1
∑

l=0

B(M − z, l,
Pk+1,m

1 − P1,k

), (40)

where the second equality follows from the definition ofAm

andC1,z, the third equality holds because given the number of
coded blocks from level 1 to levelk is z, the number of coded
blocks from levelk + 1 to level m in the remainingM − z
coded blocks is a binomial distribution where the probability
to choose a coded block in levelk + 1 to level m is Pk+1,m

1−P1,k
.

Third, similar to (34) we have the approximated derivation
of Pr(C1,z ∩ W1|A1 ∩ W1) in order to avoid the infeasible
computation of exact derivation:

Pr(C1,z ∩ W1|A1 ∩ W1) ≈ Pr(C1,z|A1) =
Pr(C1,z)

Pr(A1)

=
Pr(D1,k = z)

Pr(D1,k ≥ bk)

=
B(M, z, P1,k)

∑M

l=bk
B(M, l, P1,k)

, (41)

where the first equality holds sinceC1,z ⊂ A1 and the second
and third equality follow from the definition ofDi,j . Finally,
we have

Pr(C1∩W1|A1∩W1) = 1−
M−bm+bk

∑

z=bk

Pr(C1,z∩W1|A1∩W1),

(42)
sinceC1 andC1,z partition A1.

By substituting (39), (40), (41), and (42) to (38), we derive
the probability Pr(Am|H).

We proceed to derive the probability Pr(Ai−1|∩m
j=i Aj ∩H)

for i = k + 2 to m. DefineCi = {Dk+1,i ≤ bi−1 − bk − 1}
andCi,z = {Dk+1,i = z}, wherebi−1− bk ≤ z ≤ bi− bk −1.
Ci andCi,z partition Ai as follows:

Ai = {Dk+1,i ≤ bi − bk − 1}
= {Dk+1,i ≤ bi−1 − bk − 1} ∪ (∪bi−bk−1

z=bi−1−bk
{Dk+1,i = z})

= Ci ∪ (∪bi−bk−1
z=bi−1−bk

Ci,z). (43)

Let Wi denote∩m
j=i+1Aj∩H. By the law of total probability

on the conditional space of eventAi ∩ Wi, we have

Pr(Ai−1|Ai∩Wi) = Pr(Ai−1|Ci∩Wi)Pr(Ci∩Wi|Ai∩Wi)+
bi−bk−1

∑

z=bi−1−bk

Pr(Ai−1|Ci,z ∩ Wi)Pr(Ci,z ∩ Wi|Ai ∩ Wi), (44)
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sinceCi andCi,z are subsets ofAi.
We derive the unknown elements in (44). First, because

Ci = {Dk+1,i ≤ bi−1 − bk − 1} and Dk+1,i−1 ≤ Dk+1,i ≤
bi−1 − bk − 1, Ai−1 happens. Hence, we have

Pr(Ai−1|Ci ∩ Wi) = 1. (45)

Second,Ai−1 andWi are conditionally independent given
Ci,z. This is because given the number of coded blocks from
level k + 1 to level i, the number of coded blocks fromk + 1
to i − 1 is independent of the number of coded blocks from
level 1 to levelk and from levelk+1 to level j, wherej > i.
Hence, we have

Pr(Ai−1|Ci,z ∩ Wi) = Pr(Ai−1|Ci,z)

= Pr(Dk+1,i−1 ≤ bi−1 − bk − 1|Dk+1,i = z)

= Pr(z − bi−1 + bk + 1 ≤ Di,i ≤ z|Dk+1,i = z)

=

z
∑

l=z−bi−1+bk+1

B(z, l,
Pi,i

Pk+1,i

), (46)

where the second and third equality follow from the definition
of Ai−1 andC1,z, the fourth equality holds because given the
number of coded blocks from levelk + 1 to level i is z, the
number of coded blocks in leveli in thesez coded blocks is a
binomial distribution where the probability to choose a coded
block in level i is Pi,i

Pk+1,i
.

Third, similar to (34), we have the approximated derivation
of Pr(Ci,z ∩ Wi|Ai ∩ Wi) in order to avoid the infeasible
computation of exact derivation:

Pr(Ci,z ∩ Wi|Ai ∩ Wi) ≈ Pr(Ci,z|Ai) =
Pr(Ci,z)

Pr(Ai)

=
Pr(Dk+1,i = z)

Pr(Dk+1,i ≤ bi − bk − 1)

=
B(M, z, Pk+1,i)

∑bi−bk−1
l=0 B(M, l, Pk+1,i)

, (47)

where the first equality holds sinceCi,z ⊂ Ai and the second
and third equality follow from the definition ofDi,j . Finally,
we have

Pr(Ci ∩Wi|Ai ∩Wi) = 1−
bi−bk−1

∑

z=bi−1−bk

Pr(Ci,z ∩Wi|Ai ∩Wi),

(48)
sinceCi andCi,z partition Ai.

By substituting (45), (46), (47), and (48) to (44), we derive
Pr(Ai−1|H ∩ ∩m

j=iAj). By substituting (38) and (44) to (36),
we derive Pr(∩m

i=k+1Ai|∩k
i=1Ai). With (25) and (36), we have

derived Pr(X = k) in (24).
Due to the approximations in (34), (41), and (47), the sum

of Pr(X = k), wherek = 0, 1, . . . ,m, derived in this appendix
is less than 1. Therefore, we normalize these probabilitiessuch
that their sum equals 1.
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