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Abstract—We study the scheduling of computational tasks on one local processor and one remote processor with communication

delay. This problem has important application in cloud computing. Although the communication time to transmit a task can be inferred

from the known data size of the task and the transmission bandwidth, the processing time of the task is generally unknown until it is

processed to completion. Given a set of independent tasks with unknown processing times, our objective is to minimize makespan.

We study the problem under two scenarios: 1) the communication times of the tasks to the remote processor are smaller than their

corresponding processing times on the remote processor, and 2) the communication times of the tasks to the remote processor

are larger than their corresponding processing times on the remote processor. For the first scenario we propose the Semi-online

Partitioning and Communication (SPaC) algorithm, and for the second scenario we propose the SPaC-Restart (SPaC-R) algorithm.

Even though the offline version of this problem, with a priori known processing times, is NP-hard, we show that the proposed semi-

online algorithms achieve O(1) competitive ratios for their intended scenarios. We also provide competitive ratios for both algorithms for

more general communication times. We use simulation to demonstrate that SPaC and SPaC-R outperform online list scheduling and

performs comparably well with the best known offline heuristics.

Index Terms—Computational offloading, mobile cloud computing, computation with communication, semi-online algorithms

✦

1 INTRODUCTION

Consider a local processor and a remote processor. The
local processor has some tasks and may enlist the help of
the remote processor to process the tasks. However, offload-
ing a task to the remote processor incurs communication
delay. This system is of particular interest as it models
the most common paradigm in Infrastructure-as-a-Service
cloud computing [1], where a local machine (e.g., personal
computer or mobile device) enlists the help of a remote
server (e.g., Amazon EC2 instance), by breaking down its
jobs into multiple parallel tasks and offloading some of them
to be processed remotely.

We study the problem of minimizing the makespan of
processing a set of independent tasks. In contrast to the
classical literature on parallel processing [2], [3], [4], [5], [6],
[7], where the communication delay is not considered, our
study mainly focuses on the affects of the communication
delay on the makepsan. Some recent studies on grid and
cloud computing [8], [9], [10], [11], [12], and mobile cloud
computing [13] in particular, have considered the effect of
communication delay on makespan. However, as detailed
in Section 2, these works either propose only heuristics or
study highly simplified models.

To illustrate the effect of communication delay on the
makespan of processing multiple tasks, we show in Figure
1 an example of the optimal scheduling of five tasks to
minimize the makespan, obtained by brute-force search. We
observe that there is substantial idle time on the remote
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Fig. 1. Example of optimal offline task partitioning and scheduling. The
local and remote processors are assumed identical. At time 0 we are
given 5 tasks with processing times {3, 12, 18, 16, 2} ms and communi-
cation times {1, 10, 8, 9, 2} ms. The task numbers are as labeled on the
tasks, and the shaded areas indicate idle time.

processor while it waits for the tasks to be delivered. With
sub-optimal scheduling, the wastage in idle time could be
much more severe. Hence, we need to jointly optimize the
partitioning of the set of tasks and the transmission schedule
of tasks. Unfortunately, as we will show in Section 3, this
joint partitioning and scheduling problem is NP-hard even
if all processing times and communication times are known
a priori, i.e., in the offline setting.

Furthermore, even though the communication time to
transmit a task can be reasonably inferred from its data size
and data transmission rate, the processing time required for
the task generally is unknown without first processing it [3].
Therefore, in our work we consider the semi-online version
of the problem where the task processing times are not
known a priori but the communication times of the tasks
are known a priori. We note that the processing time of a
task is often independent of its communication delay. For
example, a task having a single for-loop may have data
size on the order of tens of bytes. With typical LTE uplink
data rates, the task can be transmitted within milliseconds.
However, depending on the number of iterations in the for-
loop, its processing can take an indeterminate amount of
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time. Similarly, tasks that require large input data may incur
long communication delays compared with their processing
times. We note that the unknown processing times of the
tasks, processor idle times introduced by communication,
and the NP-hardness of the original offline problem, all
introduce substantial challenges in the analysis and design
of an effective and computationally efficient solution.

In this work, we initially focus on two special scenarios:
1) the communication times of the tasks to the remote
processor are smaller than their corresponding processing
times on the remote processor, i.e., ηmax ≤ 1, where ηmax is
the maximum ratio between a task’s communication time
and its processing time on the remote processor; and 2) the
communication times of the tasks to the remote processor
are larger than their corresponding processing times on the
remote processor, i.e., ηmin ≥ 1, where ηmin is the minimum
ratio between a task’s communication time and its process-
ing time on the remote processor. For the first case, we pro-
pose a Semi-Online Partitioning and Communication (SPaC)
algorithm, which jointly selects the tasks to be processed
locally or to be offloaded and determines the transmission
schedule to the remote processor. For the second case, we
modify SPaC and propose SPaC-Restart (SPaC-R).

The scenarios ηmax ≤ 1 and ηmin ≥ 1 are important in
practice. In particular, ηmax ≤ 1 is applicable to systems
where tasks with heavy computation and small communi-
cation payload often are prime targets for offloading. This
is particularly the case in mobile cloud computing, since
tasks with a large communication payload would drain too
much battery power to be transmitted wirelessly [13]. The
case of ηmin ≥ 1 is applicable to systems where the remote
processor is powerful and the communication times of the
tasks become the bottleneck.

Furthermore, we study the performance of SPaC and
SPaC-R for the general scenario where the ratio of the
communication time of a task to its remote processing
time is arbitrary. We provide competitive ratios for both
algorithms. Additionally, we illustrate, through simulation,
their effectiveness compared with existing alternatives.

Our main contributions are summarized below:

• We propose the SPaC algorithm, which does not
require a priori knowledge of the processing times.
It has computational complexity O(n log n), where n
is the number of tasks.

• For ηmax ≤ 1 we show that SPaC has a competitive

ratio θ1, where θ1 ≤ 1 + min
{

max{1,ρ}
ρ+1 , 1

ρ
, ρ

}

≤
√
5+1
2 , and ρ is the speed ratio between the remote

and local processors. Furthermore, for ηmax ≤ 1 and
ρ = 1, we show that SPaC is optimal, in the sense
that it provides the minimum competitive ratio of 3

2
among all deterministic semi-online algorithms.

• For ηmin ≥ 1, we propose the SPaC-R algorithm and
prove that it is θ′1-competitive, where

θ′1 =







2 if ρ ≤ 1,
4 + 1

ρ
if 1 < ρ < 2,

9
2 if ρ ≥ 2.

Further, we show that for ρ >> 1, the competitive
ratio 9

2 is tight.

• For general ηmax and ηmin we prove O(ηmax) compet-
itive ratio and O(1/ηmin) competitive ratio for SPaC
and SPaC-R, respectively.

• Finally, using simulation we compare the average
makespan of SPaC and SPaC-R with classical on-
line list scheduling and two of the best known of-
fline heuristics to show that the proposed solutions
significantly outperforms the online alternative and
performs close to the offline heuristics.

The rest of this paper is organized as follows. In Section 2
we discuss the related work. In Section 3, we detail the
system model and the optimization problem. We present
SPaC and SPaC-R in Section 4. Competitive ratio analysis of
SPaC and SPaC-R for ηmax ≤ 1 and ηmin ≥ 1, respectively,
is given in Sections 5 and 6. In Section 7 we discuss the
competitive ratios for SPaC and SPaC-R for general ηmax and
ηmin. Simulation results are given in Section 8. We conclude
in Section 9.

2 RELATED WORK

The related work on computational task offloading and
parallel processing may be categorized based on whether
communication delay plays a role in the system model and
task scheduling.

2.1 Parallel Processing without Communication Delay

In classical computer science literature, one of the most stud-
ied scheduling problems is the partitioning of a set of inde-
pendent tasks for m processors to minimize the makespan.
The celebrated list scheduling [2] is a greedy algorithm that
selects a task from the given set in an arbitrary order and
assigns it to whichever processor that becomes idle first. It
does not require a priori knowledge of the processing times
and has a (2− 1

m
)-approximation ratio when the processors

are identical. More complex online algorithms for various
processor settings were studied in [3]. They are based on a
transformation framework that converts offline algorithms
to online ones via dynamic cancellation and rescheduling of
tasks. Neither [2] nor [3] accounts for communication delay.

In an offline setting, if the processing times are known
and the list of tasks is pre-sorted in the longest-processing-
time-first order, a (43 −

1
3N )-approximation ratio is achieved

by list scheduling on identical processors [2]. For proces-
sors with different speeds, this algorithm was shown to
achieve an approximation ratio of 19

12 in [4], which was
later improved to 1.5773 in [5]. Furthermore, Polynomial
Time Approximation Schemes (PTAS) and Fully Polynomial
Approximation Schemes (FPTAS) exist [6]. More recently,
the authors of [14] studied the performance of different of-
fline heuristics for scheduling independent tasks on parallel
processors under more general settings. For further reading
in this line of work we refer the reader to [6] and [15].

Semi-online scheduling on parallel processors is a rel-
atively new paradigm. All previous works define semi-
online as the case where the individual processing time
of each task is unknown, but the total processing time of
all tasks is known [16], [17], [18], [19], [20]. Under such
an assumption, the authors of [16] studied the problem
of scheduling independent tasks on two identical parallel
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processors. They provided an algorithm with competitive
ratio 4

3 . It is further known that, for the case of identical
processors, the lower bound of the competitive ratio is
1.565 [18], which is achieved by the algorithm proposed
in [19]. In addition, for two processors with different speeds,
the authors of [20] proposed two algorithms and found
their competitive ratios as functions of the ratio of speeds
between the processors.

We note that none of the above works consider commu-
nication delay incurred for offloading a task to a processor
on which it is scheduled for processing, and there is no
straightforward method to accommodate communication
delays into the proposed schemes/algorithms. More impor-
tantly, in the semi-online setting considered in this work, we
assume that neither the task processing times nor the total
processing time is known a priori, which is a natural model
for offloading with communication delay.

2.2 Grid and Cloud Computing with Communication

Delay

The problem of scheduling independent tasks with commu-
nication overhead on multiple processors was considered
in [8], [9], [10] for the grid/cloud computing environment.
The authors proposed a set of heuristics without perfor-
mance bounds. Simplifying assumptions were made in
other works to improve analytical tractability. For example,
the tasks were assumed identical in [11], and they were
assumed infinitely divisible with processing times propor-
tional to their data size in [12, Ch. 7]. Furthermore, all of
these works assume knowledge of the processing times and
hence are offline.

More recently, task offloading and scheduling were con-
sidered in the mobile cloud computing environment. In [13],
the authors proposed a heuristic guideline that tasks should
be offloaded only if the local computing time of the task
is greater than its remote communication and computing
time. In [21], the authors focused on the partitioning of an
application at the software engineering level to improve its
execution time, instead of explicitly considering processor
speeds or communication overhead. Most other studies
focused on energy savings at the mobile device instead of
makespan minimization [22], [23], [24], [25].

Offloading computational tasks to remote servers in a
public cloud was studied in the hybrid cloud paradigm [26],
[27], [28], [29]. However, none of these works consider com-
munication delay to offload tasks in their system model. To
the best of our knowledge, our work is the first to focus on
analytical modeling and optimization of the makespan with
consideration for communication delay, proposing semi-
online algorithms with provable competitive ratios.

3 SYSTEM MODEL

In this section, we describe the task processing model and
detail the makespan minimization problem in the semi-
online setting.

3.1 Processing, Communication, and Scheduling

We index the processors by i ∈ Q = {0, 1}, where 0 and 1
represent the local and remote processors, respectively. Let

n denote the number of tasks to be processed and j ∈ T =
{1, . . . , n} be the task index. We assume that the tasks are
independent and no preemption is allowed.

Let αj denote the time required to process task j on
the remote processor. We assume that the time required
to process the same task on the local processor is given
by ραj , where ρ > 0 represents the speed ratio between
the processors. We consider that ρ is also part of the input
problem instance. In other words, ρ is also not known a
priori. Let αmax = maxj∈T αj .

The remote processor can process a task only after all the
data load of the task is received. The data size of task j is
denoted by βj in bits. The time taken to transmit the task j
to the remote processor may be given by bβj where b is the
inverse of data rate to the remote processor. For simplicity of
presentation, without loss of generality, we suppress writing

b by merging it into βj . Let ηj =
βj

αj
, ηmax = maxj∈T ηj and

ηmin = minj∈T ηj . We further assume that after each task
is processed on the remote processor, a short acknowledge-
ment is returned with negligible delay.

A schedule s consists of a pair of functions (π,g), where
π : T → Q partitions the set T and maps the partitions
to processors. Let Ti(s) ⊆ T denote the partition assigned
to processor i. We use function g to specify the sequence
in which the tasks assigned to remote processor are trans-
mitted, i.e., g : {1, . . . , |T1(s)|} → T1(s), where task g(k) is
transmitted kth in the sequence. Let S denote the set of all
possible schedules.

Throughout this paper, we consider only non-wasteful
scheduling. That is, given a schedule s, the tasks assigned to
the local processor are processed one-by-one without gaps
starting at time 0, and the tasks assigned to the remote
processor are transmitted one-by-one without gaps starting
at time 0. It is clear that this is without loss of generality
with respect to makespan minimization.

We make a note that, there is a significant amount of
work in the literature on scheduling with communication
delays (see [12, Ch. 6]), where the communication delays
are due to inter-task communication that occur when two
dependent tasks are scheduled on different processors. In
contrast, since we focus on independent tasks, the communi-
cation delay we consider in this paper is solely due to the
communication overhead incurred in transmitting a task to
the remote processor.

3.2 Optimization Problem

Given the set of tasks T at time 0, the makespan is defined
as the time when the processing of the last task in T is com-
plete. Let Cmax(s) represent the makespan under schedule
s. It equals max{C0(s), C1(s)}, where Ci(s) represents the
time when processor i finishes processing the tasks assigned
to it. It is clear that C0(s) = ρ

∑

j∈T0(s)
αj . In the following

we establish a closed-form expression for C1(s).
Let I(s) denote the idle time of the remote processor

under schedule s. Any task scheduled on this processor
should go through a communication stage and a processing
stage. We note that this is equivalent to a two-machine flow
shop model [30], and hence we have

I(s) = max
1≤u≤|T1(s)|







g(u)
∑

j=g(1)

βj −

g(u−1)
∑

j=g(1)

αj







. (1)
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Since C1(s) equals the total idle time plus the total process-
ing time of the tasks, we have

C1(s) = I(s) +
∑

j∈T1(s)

αj

= max
1≤u≤|T1(s)|







g(u)
∑

j=g(1)

βj +

g(|T1(s)|)
∑

j=g(u)

αj







.

(2)

We are interested in the following makespan minimiza-
tion problem P :

minimize
(π,g)=s∈S

max{C0(s), C1(s)}.

In the offline setting, all parameter values of the tasks are
known at time 0. In this case, let s∗ denote an optimal offline
schedule and C∗

max denote the minimum makespan. We note
that, when b = 0 and ρ = 1, P is equivalent to the problem
of scheduling independent tasks on two identical processors
to minimize makespan which is NP-hard [12]. Therefore, P
is NP-hard.

3.3 Semi-online Scheduling with Unknown Processing

Times

Even though the communication time to transmit a task can
be reasonably inferred from its data size, the processing time
required for the task generally is unknown without first
processing it [3]. Therefore, we are interested in semi-online
scheduling, where αj , for all j, are not known a priori and
βj , for all j, are known a priori.

The efficacy of an online algorithm is often measured
by its competitive ratio in comparison with the optimal
offline algorithm. We use the same measure for semi-online
algorithms as well. Let P be a problem instance of P , s(P )
be the schedule given by an online algorithm and s∗(P )
be the schedule given by an optimal offline algorithm. The
online algorithm is said to have a competitive ratio θ if and
only if for all P, Cmax(s(P )) ≤ θCmax(s

∗(P )). Furthermore,
θ is said to be tight for the online algorithm if there exists P
such that Cmax(s(P )) = θCmax(s

∗(P )).

4 THE SEMI-ONLINE PARTITIONING AND COMMU-

NICATION ALGORITHM

In this section we first present SPaC. We will show later in
Section 5 that SPaC has O(1) competitive ratio for ηmax ≤ 1.
However, when the communication times are larger relative
to the remote processing times, SPaC does not provide a
strong competitive ratio. Therefore, we modify SPaC and
propose SPaC-R, which will be shown in Section 6 to have
O(1) competitive ratio for ηmin ≥ 1.

4.1 SPaC

The following observations motivate the design of SPaC. We
first note that the tasks to be scheduled on the remote pro-
cessor should be transmitted without any gaps, since there
is no advantage in adding artificial communication delay.
Second, from (1), it is desirable to assign tasks with smaller
communication times to the remote processor, in order to
reduce the idle time. Third, given the set of tasks chosen to
be offloaded to the remote processor, the optimal order in

which they are to be transmitted is known and given by
Johnson’s rule [30]. Unfortunately, Johnson’s rule requires
the knowledge of processing times. Therefore, we resort
to ordering the tasks based on their communication times
alone, while maintaining observation of the task processing
progress. Interestingly, as will be shown in Section V, in the
case of ηmax ≤ 1, the proposed procedure gives a schedule
that satisfies Johnson’s rule.

In SPaC, we list the tasks in the increasing order of their
communication times. We process the tasks one by one from
the end of the list on the local processor, and transmit the
tasks, that are not yet processed to completion, one by one
from the start of the list to the remote processor. At the
remote processor the tasks received are processed in the
same order. The details of SPaC are given in Algorithm 1,
where E1 in line 6 denotes the event that the processing
of a task is complete on either processor and E2 in line
13 denotes the event that the transmission of a task to the
remote processor is complete. Note that the last remaining
task may be processed on both processors at the same time.
In such a case, when the task is processed to completion
on one processor, we terminate its processing on the other
processor. To achieve this, we assume that a short message
indicating task index can be exchanged between the proces-
sors whenever the task is processed to completion.

Algorithm 1: SPaC

1: Sort T in ascending order of communication times.
WLOG, consider β1 ≤ β2 ≤ . . . ≤ βn.

2: j0 = n, j1 = 1 and k = 1.
3: Start processing task j0 on processor 0;

Start transmitting task j1 to processor 1.
4: while j0 6= j1 do
5: Wait until next event E occurs
6: if E = E1 then
7: if E1 is due to processor 0 then
8: j0 = j0 − 1
9: Start processing task j0 on processor 0.

10: else if E1 is due to processor 1 then
11: j1 = j1 + 1
12: end if
13: else if E = E2 then
14: k = k + 1
15: Start transmitting task k to processor 1.
16: end if
17: end while
18: q = j0 = j1
19: Task q is scheduled both on processor 0 and processor

1. If task q is finished processing on processor 0 first,
cancel its execution on processor 1 and vice-versa.

The computational complexity of SPaC is O(n log n),
since line 1 of Algorithm 1 requires sorting the communi-
cation times of all tasks, while the rest of the algorithm has
no more than linear complexity. Throughout this paper, we
use s

S to denote the schedule given by SPaC.

4.2 SPaC-R

The guiding principle behind the design of SPaC-R is the
following. Since ηmin ≥ 1 or βj ≥ αj , for all j, the
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completion time on the remote processor is dominated
by the communication times of the tasks scheduled on it.
Intuitively, in this case, to lower the makespan, a task with
higher ραj value compared with βj should be scheduled on
processor 1 and vice-versa. Therefore, in SPaC-R the tasks
that are scheduled on processor 0 and have ραj greater
than βj are identified, cancelled, and rescheduled, so that
they may be scheduled on processor 1 in the new schedule.
We note that cancelling a task with large ραj on processor
0 may allow some tasks that have smaller ραj values to be
scheduled on that processor. The notion of cancelling and
rescheduling a task is called restart.

Task restart was originally used by Shmoys et. al. [3]
to schedule independent tasks on parallel processors in
online setting. Recently we used this idea to propose an
algorithm for the problem of scheduling and offloading in a
hybrid cloud [29]. We note that in both of the above works
communication delay is not considered in the system model,
and hence the solutions proposed there cannot be applied to
the problem at hand.

SPaC-R runs SPaC for two iterations. In the first iter-
ation, the schedule given by SPaC is implemented with
an exception that any task j scheduled on processor 0
and processed longer than βj duration is cancelled. In the
second iteration, all the tasks that are cancelled in the first
iteration are rescheduled using SPaC. We note that, even
though cancelling a task and rescheduling it penalizes the
makespan, it paves a way for obtaining constant competitive
ratio for the case ηmin ≥ 1. The details of SPaC-R are
presented in Algorithm 2, where E1 and E2 have same
meaning as defined before. We note that SPaC-R similarly
runs in O(n logn) time. We use s

SR to denote the resultant
schedule.

5 SPAC COMPETITIVE RATIO FOR SMALL COM-

MUNICATION TIMES

In this section we derive the competitive ratio of SPaC
for ηmax ≤ 1, i.e., αj ≥ βj , for all j. We first present
several preliminary results that will be used extensively in
the remaining analysis. Lemma 1 below provides a simple
upper bound on the makespan of sS .

Lemma 1. Cmax(s
S) ≤ (1 + ρ)C∗

max.

Proof. By the definition of C0(s), C1(s) and I(s) given in
Section 3, under any schedule s, we have

1

ρ
C0(s) + [C1(s)− I(s)] =

n
∑

j=1

αj .

We use Cmax(s) ≥ C0(s) and Cmax(s) ≥ C1(s) to obtain

Cmax(s) ≥
ρ

ρ+ 1





n
∑

j=1

αj + I(s)



 , ∀s. (3)

Now, if the communication time plus the processing time
of the task at the start of the list formed by SPaC exceeds
ρ
∑n

j=1 αj , in s
S all tasks will be processed on processor 0.

In all other cases it can be easily argued that the makespan

Algorithm 2: SPaC-R

1: l = 1, T (l) = T

2: while l ≤ 2 do

3: Sort T (l) in ascending order of βj . WLOG, re-index

tasks such that β1 ≤ β2 ≤ . . . ≤ β|T (l)|.

4: j0 = |T (l)|, j1 = 1 and k = 1.

5: Start processing task j0 on processor 0;

Start transmitting task j1 to processor 1.

6: if l = 1 then

7: Cancel task j0 if its execution time exceeds βj0 and

include it in T (l+1)

8: end if

9: while j0 6= j1 do

10: Wait until next event E occurs

11: if E = E1 then

12: if E1 is due to processor 0 then

13: j0 = j0 − 1

14: Start processing task j0 on processor 0.

15: if l = 1 then

16: Cancel task j0 if its execution time exceeds

βj0 and include it in T (l+1)

17: end if

18: else if E1 is due to processor 1 then

19: j1 = j1 + 1

20: end if

21: else if E = E2 then

22: k = k + 1

23: Start transmitting task k to processor 1

24: end if

25: end while

26: q = j0 = j1

27: Task q is scheduled both on processor 0 and

transmitted to processor 1. If task q is finished or

cancelled on processor 0 first, cancel its transmission

to processor 1. If processing of task q on processor 1

finishes first, cancel its processing on processor 0.

28: l = l+ 1

29: end while
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under sS will be smaller than that of the schedule where all
the tasks are assigned to processor 0. Therefore,

Cmax(s
S) ≤ ρ

n
∑

j=1

αj ≤ (1 + ρ)C∗
max,

where the second inequality is due to (3) when s = s
∗.

Furthermore, from (3) in the proof above, we have

ραj

ρ+ 1
≤

αmax
∑n

j=1 αj

C∗
max, ∀j. (4)

Finally, the optimal makespan cannot be smaller than the
processing time of any task on the fastest processor. There-
fore,

C∗
max ≥ min{ραj, βj + αj}, ∀j

≥ min{ρ, 1}αj, ∀j.
(5)

In the following we focus on how SPaC minimizes C1(s)
given T1(s). As stated in Section 3.2, scheduling tasks on
processor 1, via the communication and processing stages,
is equivalent to the two-machine flow shop problem. In
Corollary 1 we state that, for ηmax ≤ 1, the optimal Johnson’s
rule for the two-machine flow shop problem degrades to
simply ordering the tasks in the increasing order of their
communication times.

Corollary 1. In the two-machine flow shop problem, under the
condition ηmax ≤ 1, tasks should be scheduled in the increasing
order of their communication times to minimize the makespan.

Proof. Let tasks j1 and j2 be any two tasks in the two-
machine flow shop problem. From Johnson’s rule, in the
optimal schedule, task j1 precedes j2 if and only if

min{βj1 , αj2} ≤ min{βj2 , αj1}.

Since βj1 ≤ αj1 and βj2 ≤ αj2 , a sufficient condition for the
above inequality to hold is βj1 ≤ βj2 . Hence the result.

From Corollary 1 we conclude that, when ηmax ≤ 1, the
SPaC scheduling policy to order the tasks in T1(s) in the
increasing order of communication times serves to minimize
C1(s).

Let I∗(B) denote the idle time when tasks belonging to
some set B are scheduled on processor 1 in the sequence
of increasing order of their communication times. Lemma 2
below helps provide insight into the idle time on processor
1 under SPaC.

Lemma 2. Consider β1 ≤ β2 ≤ . . . ≤ βn and ηmax ≤ 1. Let
B1 = {1, 2, . . . , l}, l ≤ n, and B2 ⊆ T , B2 * {1, 2, . . . , l− 1}.
Then I∗(B1) ≤ I∗(B2).

Proof. Consider any set B ⊆ T . We claim that for any
q ≤ argmaxj∈B βj we have I∗(B ∪ {q}) ≤ I∗(B). To prove
the claim we proceed as follows. Let B = {j1, j2, . . . , j|B|},
where j1 ≤ j2 ≤ . . . ≤ j|B|. Also, for some 1 ≤ k < |B| − 1
let βjk ≤ βq ≤ βjk+1

. Noting that I∗(B) is the idle time
when the tasks from B are scheduled on processor 1 in the
increasing order of their communication times, using (1) we
have

I∗(B) = max
1≤u≤|B|







ju
∑

j=j1

βj −

ju−1
∑

j=j1

αj







=max{I∗1 (B), I
∗
2 (B)},

where

I∗1 (B) = max
1≤u≤k

{βju +

ju−1
∑

j=j1

(βj − αj)}

I∗2 (B) = max
k+1≤u≤|B|

{βju +

ju−1
∑

j=j1

(βj − αj)}.

Furthermore, we observe that

I∗(B ∪ {q}) =max{I∗1 (B), βq +

jk
∑

j=j1

(βj − αj),

I∗2 (B) + (βq − αq)}.

Since βq − αq ≤ 0 and βq ≤ βjk+1
, we obtain

I∗2 (B) ≥ max{βjk+1
+

jk
∑

j=j1

(βj − αj), I
∗
2 (B) + (βq − αq)}

≥ max{βq +

jk
∑

j=j1

(βj − αj), I
∗
2 (B) + (βq − αq)}.

From the above analysis we conclude that I∗(B ∪ {q}) ≤
max{I∗1 (B), I

∗
2 (B)}. Therefore, the claim holds.

Now, let r = argmaxj∈B2
βj and B̄2 = {1, 2, . . . , r}. By

using the claim we can show that I∗(B̄2) ≤ I∗(B2). Also,
from (1) we infer that I∗(B1 ∪ {u}) ≥ I∗(B1) for any u ≥ l.
Therefore, noting that r ≥ l (since B2 * {1, . . . , l − 1}), we
have I∗(B1) ≤ I∗(B̄2). Hence the result.

The implication of Lemma 2 combined with Corollary 1
is the following. When ηmax ≤ 1, suppose given a set of tasks
and a subset B containing tasks with least communication
times, i.e., communication time of a task in B is less than that
of any other task that does not belong to B. The idle time
of a schedule that places all tasks from B on processor 1 in
the increasing order of their communication times cannot be
greater than that of any other schedule applied to any subset
of the original set, unless that subset is a proper subset of B.
Later, in the proof of Theorem 1 we use Lemma 2 to argue
that the idle time on processor 1 under SPaC is no greater
than the idle time under an optimal offline schedule.

We now present one of our key results in Theorem 1.

Theorem 1. If ηmax ≤ 1, then SPaC is θ1-competitive for P ,
where

θ1 = min{θ11, θ12}

θ11 = 1 +
αmax

∑n
j=1 αj

θ12 = 1 +min

{

max{1, ρ}

ρ+ 1
,
1

ρ
, ρ

}

.

Proof. The schedule produced by SPaC is such that T1(sS) =
{1, . . . , k−1} and T0(sS) = {k, . . . , n}, where 1 ≤ k ≤ n+1.
Note that, if k = 1, T1(sS) = ∅, and if k = n+1, T0(sS) = ∅.
We now consider the following cases.

Case 1: C0(s
S) ≤ C1(s

S), i.e., Cmax(s
S) = C1(s

S). For
this case we have k > 1. We claim that T1(s∗) * {1, . . . , k−
2}. Otherwise, scheduling any task j ∈ T1(sS)\T1(s∗) on
processor 0 by SPaC would have reduced the makespan
over Cmax(s

S). In particular, scheduling task k − 1 on
processor 0 by SPaC would have reduced the makespan.
However, this could not be true since, by the definition of k,
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SPaC has already checked for this condition and scheduled
task k− 1 on processor 1. Hence, by contradiction the claim
is true. Therefore, from Corollary 1 and Lemma 2 we have
I(s∗) ≥ I(sS).

Now we know that Cmax(s
S) − ραk−1 ≤ C0(s

S), since
otherwise, the processing of task k − 1 would have com-
pleted on processor 0 first, and under SPaC we would have
k − 1 ∈ T0(sS). Therefore, we obtain

1

ρ
C0(s

S) + C1(s
S)− I(sS) =

n
∑

j=1

αj

⇒
1

ρ
[Cmax(s

S)− ραk−1] + Cmax(s
S)− I(sS) ≤

n
∑

j=1

αj

⇒Cmax(s
S) ≤

ρ

ρ+ 1





n
∑

j=1

αj + αk−1 + I(sS)





⇒Cmax(s
S) ≤

ρ

ρ+ 1





n
∑

j=1

αj + αk−1 + I(s∗)





⇒Cmax(s
S) ≤ C∗

max +
ραk−1

ρ+ 1
. (6)

The last inequality above is due to (3).

We substitute (4) into (6) to obtain Cmax(s
S)

C∗

max
≤ θ11 and

substitute (5) into (6) to obtain

Cmax(s
S)

C∗
max

≤ 1 +
ρ

min{1, ρ}(ρ+ 1)
= 1 +

max{1, ρ}

(ρ+ 1)
.

Furthermore, we have the relation Cmax(s
S) ≤

∑n
j=1 αj +

I(sS). We use I(s∗) ≥ I(sS) and (3) to obtain Cmax(s
S)

C∗

max
≤

1 + 1
ρ

.

Case 2: C0(s
S) ≥ C1(s

S), i.e., Cmax(s
S) = C0(s

S). For
this case we have k ≤ n. We claim that T1(s∗) * {1, . . . , k−
1}. This claim can be proved using a similar argument as
in Case 1. Therefore, from Corollary 1 and Lemma 2 we
have I(s∗) ≥ I(s′) ≥ I(sS), where s

′ is a schedule under
which T1(s

′) = T1(sS) ∪ {k}, and the tasks of set T1(s
′) are

transmitted in the increasing order of their communication
times.

Now, we also have

max{C1(s
S),

k
∑

j=1

βj}+ αk ≥ Cmax(s
S) (7)

since otherwise, the processing of task k would have com-
pleted on processor 1 first and under SPaC we would have

k ∈ T1(sS). If C1(s
S) ≥

∑k
j=1 βj , then Cmax(s

S) − αk ≤
C1(s

S) and similar steps as in (6) can be followed to prove

the bounds θ11 and θ12. If C1(s
S) <

∑k
j=1 βj , then we

proceed as follows. For this case we have the following
inequalities.

k
∑

j=1

βj ≥ Cmax(s
S)− αk

⇒C1(s
S)− I(sS) +

k
∑

j=1

βj −
k−1
∑

j=1

αj

≥ Cmax(s
S)− αk

⇒C1(s
S)− I(sS)

≥ Cmax(s
S)− αk −





k
∑

j=1

βj −
k−1
∑

j=1

αj





≥ Cmax(s
S)− αk − I(s∗).

In the second step above we have used C1(s
S) = I(sS) +

∑k−1
j=1 αj , and in the last inequality, we have used I(s∗) ≥

I(s′) ≥
∑k

j=1 βj −
∑k−1

j=1 αj . Therefore,

1

ρ
C0(s

S) + C1(s
S)− I(sS) =

n
∑

j=1

αj

⇒
1

ρ
Cmax(s

S) + Cmax(s
S)− αk − I(s∗) ≤

n
∑

j=1

αj

⇒Cmax(s
S) ≤

ρ

ρ+ 1





n
∑

j=1

αj + αk + I(s∗)





⇒Cmax(s
S) ≤ C∗

max +
ραk

ρ+ 1
. (8)

We substitute (4) into (8) to obtain Cmax(s
S)

C∗

max
≤ θ11 and

substitute (5) into (8) to obtain

Cmax(s
S)

C∗
max

≤ 1 +
max{1, ρ}

ρ+ 1
.

Furthermore, from (7) we have Cmax(s
S) ≤ Cmax(s

′). There-
fore,

Cmax(s
S) ≤

k
∑

j=1

αj + I(s′) ≤
n
∑

j=1

αj + I(s∗)

We use (3) in the above inequality to obtain Cmax(s
S)

C∗

max
≤ 1+ 1

ρ
.

Finally, from Lemma 1 we have Cmax(s
S)

C∗

max
≤ 1 + ρ. Hence

the result.

The main implication of Theorem 1 is that when ηmax ≤
1, SPaC has O(1) competitive ratio. In the following we
present several additional observations on θ1.

Remark 1: A simple upper bound for θ1 can be obtained
by solving for ρ that maximizes θ12. The solution is ρ =√

5+1
2 and the upper bound is

√
5+1
2 ≈ 1.618.

Remark 2: For ρ <
√
5+1
2 we have θ1 ≤ 1 +

min{max{1,ρ}
1+ρ

, ρ}, and for ρ ≥
√
5+1
2 we have θ1 ≤ 1 + 1

ρ
.

Note that for ρ >> 1, θ1 approaches 1. This is intuitive
because in this case any competent algorithm will schedule
all the tasks on processor 1 and the problem reduces to the
two-machine flow shop problem, for which SPaC gives an
optimal schedule when ηmax ≤ 1 (Corollary 1).

Furthermore, for ρ = 1 and ηmax ≤ 1, SPaC has com-
petitive ratio 3

2 . In Proposition 1 below, we observe that no
deterministic semi-online algorithm can have a competitive
ratio better than 3

2 . This suggests that in this case SPaC is
the most competitive among all deterministic semi-online
algorithms.

Proposition 1. For ηmax ≤ 1 and ρ = 1, the competitive ratio of
any semi-online algorithm with predetermined scheduling order is
at least 3

2 .
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Proof. The proof is presented in Section 10.1.

Remark 3: We observe that SPaC is asymptotically opti-
mal with respect to n under the following regularity condi-
tion [31]:

lim
n→∞

αmax
∑n

j=1 αj

= 0.

This condition describes problem instances where no task
itself is dominating in terms of processing time. By applying
it in the result of Theorem 1, we see that if ηmax ≤ 1,

limn→∞
Cmax(s

S)
C∗

max
= 1. This asymptotic optimality property

of SPaC makes it highly desirable for large n, where the
offline computation of an optimal schedule quickly becomes
intractable.

6 SPAC-R COMPETITIVE RATIO FOR LARGE

COMMUNICATION TIMES

In this section we analyse the competitive ratio of SPaC-R
when ηmin ≥ 1, i.e., αj ≤ βj , for all j. We first establish
the following lemma that finds a closed form expression for
completion time on processor 1 under SPaC-R.

Lemma 3. Given a schedule s where the tasks assigned to
processor 1 are transmitted in the increasing order of their com-
munication times, if ηmin ≥ 1, then C1(s) =

∑

j∈T1(s)
βj + αl,

where task l = argmaxj∈T1(s) βj .

Proof. We have βj ≥ αj , for all j. Also, under s we have
βg(k) ≤ βg(k+1). This implies βg(k+1) ≥ αg(k) . Using these
in (2) we get

C1(s) =
∑

j∈T1(s)

βj + αg(|T1(s)|).

Furthermore, under s we have g(|T1(s)|) = l. Hence the
result.

Since SPaC-R schedules the tasks assigned to processor
1 in the increasing order of their communication times,
from Lemma 3 we conclude that the completion time on
processor 1 is dominated by the communication times of the
tasks. Therefore, the makespan in this case is determined
by the processing times of tasks on processor 0 and their
communication times. As stated in Section 4.2, this fact
forms the guiding principle in the design of SPaC-R. In the
following theorem we present the competitive ratio of SPaC-
R for ηmin ≥ 1.

Theorem 2. If ηmin ≥ 1, then SPaC-R is θ′1-competitive for P ,
where

θ′1 =







2 if ρ ≤ 1,
4 + 1

ρ
if 1 < ρ < 2,

9
2 if ρ ≥ 2.

Proof. We refer to the time to process the set of tasks T (l) in
iteration l of SPaC-R as the schedule length of this iteration.

Let C
(l)
max denote the schedule length in iteration l. Let C

(l)
i

and T
(l)
i denote the schedule length and the set of tasks

scheduled, respectively, on processor i in iteration l. Let
γj = min{ραj , βj}.

We note that in the first iteration of SPaC-R, the process-
ing time of any task j scheduled on processor 0 is γj because

in this case a task j scheduled on processor 0 is cancelled if
ραj exceeds βj . Therefore,

C(1)
max ≤

∑

j∈T
γj . (9)

In the following we derive a lower bound for C∗
max.

Let C∗
0 and C∗

1 denote the completion times, and T ∗
0 and

T ∗
1 the set of tasks scheduled, on processor 0 and processor

1, respectively, under the optimal offline schedule. We have

C∗
0 =

∑

j∈T ∗

0

ρα ≥
∑

j∈T ∗

0

min{ραj , βj} =
∑

j∈T ∗

0

γj .

Also, note that the completion time on processor 1 should
be at least the total communication times of the tasks from
T ∗
1 . Therefore,

C∗
1 ≥

∑

j∈T ∗

1

βj ≥
∑

j∈T ∗

1

γj .

Hence, we have

C∗
0 + C∗

1 ≥
∑

j∈T ∗

0

γj +
∑

j∈T ∗

1

γj .

Furthermore, since C∗
max = max{C∗

0 , C
∗
1} and T = T ∗

0 ∪T
∗
1 ,

we have

C∗
max ≥

1

2
(C∗

0 + C∗
1 ) ≥

1

2

∑

j∈T
γj . (10)

From (9) and (10) we obtain C
(1)
max ≤ 2C∗

max. Now, note
that if ρ ≤ 1, no task scheduled on processor 0 will be
cancelled as βj ≥ αj ≥ ραj , or γj = ραj , for all j. All the
tasks will be finished in the first iteration. Therefore, SPaC-R
is 2-competitive for ρ ≤ 1.

If ρ > 1, then in the second iteration, in the worst
case, SPaC-R may schedule all the tasks on processor 1. The
schedule length of SPaC-R when all the tasks from T (2) are
scheduled on processor 1 can be deduced from Lemma 3
and is given on the right-hand side of the following inequal-
ity:

C(2)
max ≤

∑

j∈T (2)

βj + αl, (11)

where l = argmaxj∈T (2) βj . Using βl ≥ αl in (5), we get

C∗
max ≥ min{ραl, βl + αl}

≥ min{ρ, 2}αl. (12)

Note that for all j in T (2), ραj > βj , because each of
those tasks are cancelled in the first iteration only when ραj

exceeds βj . Now, using (12) and ραj > βj , for all j in T (2),
in (11) we get

C(2)
max ≤

∑

j∈T (2)

min{ραj , βj}+ C∗
max/min{ρ, 2}

≤
n
∑

j=1

γj + C∗
max/min{ρ, 2}

≤ (2 + 1/min{ρ, 2})C∗
max.

In the last inequality we have used (10). The result follows

by noting that Cmax(s
SR) = C

(1)
max + C

(2)
max.
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From Theorem 2 we conclude that the competitive ratio
of SPaC-R is upper bounded by 5.

Remark 4: An interesting feature of SPaC-R is that, if
processor 1 is much faster than processor 0, i.e., ρ >> 1,
then the competitive ratio 9

2 is tight; see Section 10.2 for a
proof.

7 COMPETITIVE RATIO FOR GENERAL ηj

In the previous sections we analysed the performance of
SPaC and SPaC-R for the cases ηmax ≥ 1 and ηmin ≤ 1,
respectively. By leveraging the results from Section 5 and
Section 6, we provide competitive ratios for SPaC and SPaC-
R for general ηj , i.e., no restriction on the values taken by
either ηmax or ηmin, in Theorems 3 and 4, respectively. We
then remark on the performance of SPaC when ηmin ≥ 1
and the performance of SPaC-R for ηmax ≤ 1.

Theorem 3. SPaC is θ-competitive for P , where

θ = min{max{1, ηmax}θ1, 1 + ρ}.

Proof. From Lemma 1 we have Cmax(s
S) ≤ (1+ ρ)C∗

max. For
ηmax ≤ 1, Cmax(s

S) ≤ θ1C
∗
max follows from Theorem 1. For

ηmax > 1 we proceed as follows.
Let αj(P ) and βj(P ) denote the remote processing time

and communication time of task j in a problem instance

P . Let ηmax(P ) = maxj
βj(P )
αj(P ) > 1. Suppose P ′ is another

problem instance related to P as follows. In P ′, the remote
processing time of each task j is ηmax(P )αj(P ) and the
communication time of the task is βj(P ). Note that for
problem instance P ′, the condition ηmax(P

′) ≤ 1 is satisfied.
We use s(P ) to denote a particular schedule s used

to solve problem instance P . To distinguish between
the makespans of P and P ′, we use Cmax(s(P )) and
C′

max(s(P
′)), respectively. We have the following inequali-

ties:

ηmax(P )Cmax(s
∗(P )) ≥ C′

max(s
∗(P ))

≥ C′
max(s

∗(P ′))

≥
C′

max(s
S(P ′))

θ1

≥
Cmax(s

S(P ))

θ1
. (13)

In the above, we note that C′
max(s

∗(P )) is the makespan
evaluated for problem instance P ′ under an optimal sched-
ule given for problem instance P . The third inequality is
due to Theorem 1 applied to problem instance P ′. The final
inequality is due to SPaC being applied to both problems P
and P ′. Since the communication times of the tasks are the
same in both problem instances, the list order of the tasks
for both problem instances is the same. This implies that the
completion times on the processors under P ′ is at least as
late as that of P . Finally, since (13) holds for any problem
instance P with ηmax(P ) > 1, the result follows.

The result in Theorem 3 shows that SPaC has a small
competitive ratio as long as the communication time of any
task is moderate when compared to its processing time at
the remote processing.

Theorem 4. SPaC-R is θ′-competitive for P , where

θ′ = max{1, 1/ηmin}θ
′
1.

Proof. The proof uses a similar approach as the proof of
Theorem 3 and is presented in Section 10.3.

Theorem 4 asserts that SPaC-R is a desirable choice only
when the communication times dominate the processing
times at processor 1.

Remark 5: In the following we comment on the per-
formance of SPaC for the case ηmin ≥ 1. Consider the
following family of problem instances. αj = 1, for all j in
{1, 2, . . . , n − 1}, αn = (n − 1)2, βj = n(n − 1), for all j,
and ρ = n. Note that ηmin ≥ 1 for these problem instances.
Since all βj are equal in this case, SPaC cannot differentiate
the tasks and may schedule task n on processor 0. Then the
rest of the tasks will end up being processed on processor 1.
In this case, C0(s

S) = n(n−1)2 and C1(s
S) = n(n−1)2+1,

and the makespan Cmax(s
S) = n(n− 1)2 + 1.

The optimal schedule is obtained by scheduling task
n on processor 1 and processing all the other tasks on
processor 0. The optimal makespan is C∗

max = n(n− 1) + 1.
Therefore,

Cmax(s
S)

C∗
max

≥
n(n− 1)2 + 1

n(n− 1) + 1
.

From the above analysis we conclude that SPaC has com-

petitive ratio of at least n(n−1)2+1
n(n−1)+1 for ηmin ≥ 1. Therefore,

SPaC-R is better than SPaC in terms of competitive ratio for
this case.

Remark 6: In the following we give a simple example to
show that SPaC-R does not have any better competitive ratio
when compared with SPaC for the scenario ηmax ≤ 1. Con-
sider the following problem instance: n = 3, ρ = 1, αj = 10,
for all j, and βj = 10 − δ, for all j, where δ is a positive
real number close to zero. Clearly, for this problem instance
ηmax < 1. We claim that for this problem instance the
makespan achieved by SPaC-R is 40− 2δ.

Since the communication times of the tasks are the same
in this case, they cannot be differentiated by the algorithm.
Therefore, in the first iteration, the algorithm may schedule
task 1 on processor 0 and start transmitting task 3 to proces-
sor 1. Task 1 will be cancelled since ρα1 > β1. Task 2 will
end up being processed on processor 0 and transmitted to
processor 1 simultaneously. However, it will be cancelled on
processor 0 before its processing is completed on processor
1. Thus tasks {1, 2}will be scheduled in the second iteration.
The schedule length in the first iteration will be 20− δ.

In the second iteration of the algorithm, the schedule
length is again 20 − δ. This is achieved by processing one
task on processor 0 and the other task on processor 1. This
results in a makespan of 40 − 2δ. The optimal makespan is
20, which is achieved by scheduling two tasks on processor
0 and the other task on processor 1. Thus, the competitive
ratio of SPaC-R for this problem instance is 2, since δ can be
chosen close to zero. From the above analysis we conclude
that, for ηmax ≤ 1, the competitive ratio of SPaC-R is at least
2, whereas the competitive ratio of SPaC is upper bounded

by
√
5+1
2 ≈ 1.68.
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Fig. 2. Tightness of competitive ratio of SPaC, for n = 5 and ηmax ≤ 1.

8 SIMULATION RESULTS

In this section, using simulation we first study the tightness
of the derived competitive ratios for SPaC and SPaC-R for
ηmax ≤ 1 and ηmin ≥ 1, respectively. We then compare the
average performance of SPaC and SPaC-R against alternatives
for general η values.

8.1 Tightness of Competitive Ratios θ1 and θ′1

Recall that a competitive ratio is tight if there exits at least
one problem instance P for which the makespan ratio, i.e.,
Cmax(s(P ))
C∗

max(s
∗(P )) , is equal to the competitive ratio. To evaluate

the tightness of the derived competitive ratios, we aim at
estimating the maximum of the makespan ratios achieved
by SPaC and SPaC-R using simulation, and compare them
with θ1 and θ′1, respectively. For each of the algorithms,
under different ρ values, we randomly generate 5000 prob-
lem instances and observe the makespan ratios. To find
C∗

max(s
∗(P )), we use exhaustive search over all possible bi-

partitions of the set of tasks. Given any bi-partition, John-
son’s rule [30] is used to obtain the minimum completion
time on processor 1. Due to the extremely high computa-
tional complexity of this approach, we limit the number
of tasks n to 5. For large n values we study the average
makespan performance of SPaC and SPaC-R in Section 8.2.

In Figure 2, we compare the competitive ratio θ1 with
the makespan ratios achieved by SPaC, for varying ρ when
ηmax ≤ 1. We observe that θ is tight for ρ greater than 2.2,
and it is nearly tight for other values of ρ. In Figure 3, we
compare the competitive ratio θ′1 with the makespan ratios
achieved by SPaC-R, for varying ρ when ηmin ≥ 1. We infer
that θ′1 may not be tight. Recall from Remark 4 that θ′1 is
tight for ρ >> 1. Therefore, it remains an open question
if there exists problem instances for which θ′1 is achieved
for ρ values comparable to 1. If θ′1 is not tight for ρ values
comparable to 1, then another interesting and challenging
question is if a better competitive ratio can be proved for
SPaC-R. We emphasize here that θ′ being not tight simply
means that SPaC-R performs in simulation even better than
what we can analytically predict through the derivation of
θ′.

ρ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Competitive ratio of SPaC-R
Makespan ratios

Fig. 3. Tightness of competitive ratio of SPaC-R, for n = 5 and ηmin ≥ 1.

8.2 Average Performance Comparison

We simulate the two-processor task offloading system in
MATLAB. The default value of ρ is set to 5. The follow-
ing parameter values are chosen based on the well-known
experimental results from MAUI [22]. The data size of a
task is chosen from an exponential distribution with default
mean 562.5 kB (typical data size of tasks are of the order
of hundreds of kB). Typical uplink data rate in today’s
cellular network (e.g. LTE) is 3 Mbps. Thus, βj , for all
j, are determined by the above parameters and its mean
value is 1500 ms. We assume that the processing times
αj , for all j, are exponentially distributed with mean 1500
ms. This choice was made based on the typical execution
time required for one run of face recognition application on
current smartphones [22]. Note that in the above parameter
settings we do not restrict the values of ηmax or ηmin. In other
words, we conduct the simulation for general and random
ratios between communication time and remote processing
time. We note that similar results have been observed when
other distributions are used, but such results are omitted to
avoid redundancy.

Since we are not aware of any semi-online algorithm
that accounts for communication delay, we first compare
the average makespan performance of SPaC and SPaC-R
with the online list scheduling algorithm [2]. We simply
ignore communication delay in applying the list scheduling
decisions to schedule tasks. We further note that comparison
with the online algorithmic framework of [3] is not viable,
since there is no clear means to accommodate communica-
tion delay for the tasks that are cancelled and rescheduled.

To further demonstrate the strength of SPaC and SPaC-
R, we also compare them with offline scheduling algorithms
that account for communication delay. Since the offline
problem is NP-hard, we resort to two heuristics reported
in [9]. For convenience of exposition, we name the two
heuristics offlineMin and offlineMax. Algorithm 3 describes
offlineMin. offlineMax only differs from offlineMin in line
8 of Algorithm 3 where argmin is replaced by argmax.
We note that these heuristics require a priori knowledge of
processing times of tasks and have a time complexity of O(n2).
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Algorithm 3: offlineMin heuristic

1: Initialize B ← T
2: while B 6= ∅ do
3: for each Processor i do
4: for each task j ∈ B do
5: Evaluate f(j, i) = Minimum completion time

of task j if mapped to processor i.
6: end for
7: end for
8: k = argmin

j∈B
min

i∈{0,1}
f(j, i)

9: Schedule task k on processor i immediately
10: B ← B\{k}
11: end while
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Fig. 4. Comparison of average makespan for different algorithms. ρ = 5.

For each parameter setting, we generate 5000 problem
instances to evaluate the average makespan for each algo-
rithm. Figure 4 and Figure 5 compare the algorithms, with
varying mean communication time and ρ, respectively. We
observe that both SPaC and SPaC-R perform significantly
better than list scheduling. Therefore, we conclude that
scheduling tasks without taking communication times into
consideration will have considerably detrimental effect on
the makespan. Furthermore, we observe that the perfor-
mance of SPaC is comparable to or even better than the
offline heuristics. Finally, we note that, although SPaC-
R provides a smaller competitive ratio when ηmin ≥ 1,
on average SPaC outperforms SPaC-R in general. This is
because restarting tasks in SPaC-R penalizes the makespan,
which is not the case for SPaC.

9 CONCLUSIONS

We have studied the problem of computational task offload-
ing with communication delay. Without assuming a priori
knowledge of task processing times, we have proposed the
SPaC algorithm and variant SPaC-R, proving O(1) compet-
itive ratio for ηmax ≤ 1 and ηmin ≥ 1, respectively. We have
also derived competitive ratios for general ηj . Simulation re-
sults further suggest that SPaC provides average makespans
that can be as small as those obtained from the best known
offline heuristics.
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Fig. 5. Comparison of average makespan for different algorithms. Mean
communication time 1500.

In this work we have assumed that all the tasks are
available at time 0. However, using the approach in [3] we
may extend SPaC to schedule tasks that arrive randomly
in time. In such a scenario, a 2θ competitive ratio can be
derived from Theorem 3 and Theorem 2.1 in [3].

10 ADDITIONAL PROOFS

10.1 Proof of Proposition 1

We argue that an adversary can construct problem instances
for any given semi-online algorithm with pre-determined
scheduling order for which the ratio of makespan achieved
by the algorithm to the optimal makespan approaches
3
2 . Consider three tasks with equal communication times,
βj = β ≤ 1, for all j. Let α1 = 1, α2 = 1 and α3 = 2.
We note that the only known information about the tasks is
the communication times which are equal in this problem
instance and hence the tasks are indistinguishable. Now,
given the pre-determined scheduling order of the tasks by
the semi-online algorithm, the adversary can present the
tasks in such a way that the algorithm schedules task 1
and task 2 first, and then schedule task 3, which results
in a makespan of at least 3. The optimal makespan 2 + β
is obtained by scheduling tasks 1 and 2 on processor 0 and
scheduling task 3 on processor 1. Therefore, the competitive
ratio that can be achieved by the semi-online algorithm is at
least 3

2+β
for the given problem instance. The result follows

by noting that β can be chosen arbitrarily small.

10.2 Proof of Remark 4

To show that the competitive ratio 9
2 is tight for ρ >> 1, we

provide the following problem instance, where n = 8,

βj =

{

10− δ j = 1, 2, 3, 4
10 j = 5, 6, 7, 8,

αj =







δ/ρ j = 1, 2, 3, 4
(10 + δ)/ρ j = 5, 6, 7
10 + δ j = 8,

where δ is a positive real number close to zero. Now,
we claim that in the worst case SPaC-R may achieve a
makespan of 90 for the above problem instance. To see this
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we summarize a possible execution sequence of the tasks of
the problem instance in both iterations of the algorithm.

In the first iteration, tasks {5, 6, 7, 8} are scheduled on
processor 0 and tasks {1, 2, 3, 4} are scheduled on processor
1. Since βj < ραj , for all j in {5, 6, 7, 8}, the tasks will be
cancelled in the first iteration. The schedule length in the
first iteration is max{40, 40−4δ+δ/ρ}= 40, since δ is close
to zero and ρ >> 1.

In the second iteration, the communication times of the
tasks {5, 6, 7, 8} are equal and hence cannot be differen-
tiated by the algorithm. This may lead the algorithm to
start processing task 8 on processor 0 and transmit task
5 to processor 1. Since ρ >> 1, task 8 is processed for a
long duration on processor 0 and eventually the algorithm
will transmit task 8 to processor 1 after transmitting tasks
{5, 6, 7}. Therefore, all of the tasks {5, 6, 7, 8} will be com-
pleted on processor 1. This results in a schedule length of 50
in the second iteration. Therefore, in the worst case SPaC-
R may achieve a makespan of 90 for the above problem
instance.

Now, the optimal makespan is obtained by scheduling
tasks {1, 2, 3, 4, 5, 6} on processor 0 and tasks {7, 8} on
processor 1 with task 8 transmitted first. This will result in
an optimal makespan of max{20+ 6δ, 20+ δ+ (10+ δ)/ρ}.
Choosing δ close to zero and ρ >> 1, we can obtain an
optimal makespan arbitrarily close to 20. Therefore, the
makespan ratio of SPaC-R for this problem instance can be
arbitrarily close to 9

2 . Hence the result.

10.3 Proof of Theorem 4

For ηmin ≥ 1, Cmax(s
SR) ≤ θ′1C

∗
max follows from Theorem 2.

For ηmin < 1 we use a similar approach as in the proof of
Theorem 3.

Let αj(P ) and βj(P ) denote the remote processing time
and communication time of task j in a problem instance

P . Let ηmin(P ) = minj
βj(P )
αj(P ) < 1. Suppose P ′ is another

problem instance related to P as follows. In P ′, the commu-
nication time of each task j is βj(P )/ηmin(P ) and processing
time of the task on processor 1 is αj(P ). Note that for
problem instance P ′, the condition ηmin(P

′) ≥ 1 is satisfied.
We use s(P ) to denote a particular schedule s used

to solve problem instance P . To distinguish between
the makespans of P and P ′, we use Cmax(s(P )) and
C′

max(s(P
′)), respectively. We have the following inequali-

ties:

Cmax(s
∗(P ))/ηmin(P ) ≥ C′

max(s
∗(P ))

≥ C′
max(s

∗(P ′))

≥
C′

max(s
SR(P ′))

θ′1

≥
Cmax(s

SR(P ))

θ′1
. (14)

In the above, we note that C′
max(s

∗(P )) is the makespan
evaluated for problem instance P ′ under an optimal sched-
ule given for problem instance P . The third inequality is
due to Theorem 2 applied to problem instance P ′. The final
inequality is due to SPaC-R being applied to both problems
P and P ′. Since the communication times of the tasks in P

are scaled by the same factor 1/ηmin > 1, the list order of the
tasks for both problem instances is the same. This implies
that the completion times on the processors under P ′ is at
least as late as that of P . Finally, since (14) holds for any
problem instance P with ηmin(P ) < 1, the result follows.
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