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Abstract—The large-scale integration of renewable generation
directly affects the reliability of power grids. We investigate the
problem of power balancing in a general renewable-integrated
power grid with storage and flexible loads. We consider a power
grid that is supplied by one conventional generator (CG) and mul-
tiple renewable generators (RGs) each co-located with storage,
and is connected with external markets. An aggregator operates
the power grid to maintain power balance between supply and
demand. Aiming at minimizing the long-term system cost, we first
propose a real-time centralized power balancing solution, taking
into account the uncertainty of the renewable generation, loads,
and energy prices. We then provide a distributed implementation
algorithm, significantly reducing both computational burden and
communication overhead. We demonstrate that our proposed
algorithm is asymptotically optimal as the storage capacity
increases and the CG ramping constraint loosens. Moreover, the
distributed implementation enjoys a fast convergence rate, and
enables each RG and the aggregator to make their own decisions.
Simulation shows that our proposed algorithm outperforms
alternatives and can achieve near-optimal performance for a wide
range of storage capacity.

Index Terms—Distributed algorithm, energy storage, flexible
loads, renewable generation, stochastic optimization.

I. INTRODUCTION

With increasing environmental concerns, more and more

renewable energy sources such as wind and solar are expected

to be integrated into the power grids. Renewable generation is

often intermittent with limited dispatchability. Thus, its large-

scale integration could upset the balance between supply and

demand, and affect the system reliability [1].

To mitigate the randomness of renewable generation, one

can employ fast-responsive generators such as natural gas,

whose services are nevertheless expensive. Alternative solu-

tions include energy storage and flexible loads, which may

be less costly and meanwhile more environmentally friendly

[2] [3]. In particular, storage can be exploited to shift energy

across time; many loads, such as thermostatically controlled

loads, electric vehicles, and other smart appliances, can be

controlled through curtailment or time shift. Together, storage

and flexible loads enable adaptive energy absorption and

buffering to counter the fluctuation in renewable generation.

In this paper, we investigate the problem of power balancing

in a general renewable-integrated power grid with storage and

flexible loads, through the coordination of supply, demand,
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and storage. Practical power systems are typically operated

under multiple time scales. To model this, we consider power

balancing for each time scale separately (e.g., [4]). More

precisely, we focus on energy management within a single time

scale and aim at proposing a distributed real-time algorithm for

power balancing. Real-time control is mainly motivated by the

unpredictability of renewable sources, which can potentially

render off-line algorithms inefficient. The distributed imple-

mentation is to reduce the computational burden of the system

operator and also to limit the communication requirement.

Earlier works on power balancing commonly ignore system

uncertainty by considering a deterministic operational environ-

ment. There are many recent works explicitly incorporating

system uncertainty into energy management of power grids.

Due to page limitation, we are only able to select some

representative papers that are more related to our work. These

works emphasize on various issues of the system in energy

management (see Table I for a summary). For example, the

authors of [5] and [6] consider supply side management by

assuming that all loads are uncontrollable, the authors of [7]

study demand side management by optimally scheduling non-

interruptible and deferrable loads of individual users, and the

authors of [4], [8], and [9] propose to employ energy storage

to clear power imbalance. In some other works, the authors

combine supply side and demand side managements [10], or

supply side and storage managements [11], or demand side

and storage managements [12]–[14].

Among existing works, [15] and [16] are mostly related

to our work, in which all three types of energy management

(i.e., supply, demand, and storage) are jointly considered for

power balancing. However, in [15], although the uncertainty

of the renewable generation is considered and characterized

by a polyhedral set, the uncertainty of the loads and energy

prices is ignored. Moreover, the algorithm is designed for off-

line use such as in day-ahead scheduling, and therefore cannot

be implemented in real time. In [16], a real-time algorithm is

proposed to minimize the cost of a conventional generator

(CG) only. Furthermore, the ramping constraint of the CG is

not considered in the algorithm design. As we will see in this

paper, the incorporation of such a constraint can significantly

complicate the analysis of the real-time algorithm. In addition,

the energy management there is performed centrally by a

system operator.

In this paper, we include all issues listed in Table I when

studying the problem of power balancing. In particular, we

consider a general power grid supplied by a CG and multiple

RGs, and each RG is co-located with an energy storage unit.
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TABLE I
COMPARISON WITH EXISTING WORKS

[5] [6] [7] [8] [9] [4] [10] [11] [12] [13] [14] [15] [16]
Proposed

Supply management Y Y Y Y Y Y Y

Demand management Y Y Y Y Y Y Y Y

Storage management Y Y Y Y Y Y Y Y Y Y

Uncertainty/dynamics Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Ramping constraint Y Y Y Y Y

Real-time algorithm Y Y Y Y Y Y Y Y Y Y Y Y Y

Distributed algorithm Y Y Y Y Y

An aggregator operates the grid by coordinating supply, de-

mand, and storage units to maintain the power balancing. Our

goal is to minimize the long-term system cost subject to the

operational constraints and the quality-of-service requirement

of flexible loads.

Our formulated optimization problem is stochastic in nature,

and is technically challenging especially for real-time control.

First, owing to the practical operational constraints, such as

the finite storage capacity and the CG ramping constraint, the

control actions are coupled over time, which complicates the

real-time decision making. Second, centralized control of a

potentially large number of RGs by the aggregator may lead

to large communication overhead and heavy computation. To

overcome the first difficulty, we leverage Lyapunov optimiza-

tion [17] and develop special techniques to tackle our problem.

To address the second challenge, we exploit the structure of

the optimization problem and employ the alternating direction

method of multipliers (ADMM) [18] to offer a distributed

algorithm. Our main contribution is summarized as follows.

• We formulate a stochastic optimization problem for

power balancing by taking into account all design issues

listed in Table I.

• We propose a distributed real-time algorithm for the

power balancing optimization problem. We characterize

the performance gap of the proposed algorithm away

from an optimal algorithm, and show that the proposed

algorithm is asymptotically optimal as the storage ca-

pacity increases and the CG ramping constraint loosens.

The algorithm can be implemented in a distributed way,

by which each RG and the aggregator can make their

own decisions. The distributed implementation enjoys a

fast convergence rate and requires limited communication

between the aggregator and each RG.

• We compare the proposed algorithm with alternative

algorithms by simulation. We show that our proposed

algorithm outperforms the alternatives and is near-optimal

even with small energy storage.

Energy storage has been used widely in power grids for

combating the variability of renewable generation. A large

amount of works have been reported in literature on storage

control and the assessment of its role in renewable integration

(e.g., [19]–[23]). Compared with these references, this paper

focuses on the problem of power balancing, and additionally

includes the control of flexible loads in energy management.

A traditional approach for storage control is to formulate the

problem as a linear-quadratic regulator (LQR) (e.g., [20]).

Compared with the Lyapunov optimization approach employed

in this paper, the LQR approach is different in terms of its

application and the derivation of the control action at each

time step. Specifically, the LQR approach applies when the

system states evolve according to a set of linear equations

and the objective function is quadratic. Obtaining the optimal

control action analytically is generally hard and requires sys-

tem statistics. In contrast, the Lyapunov optimization approach

has no such requirements on the problem structure, and can

additionally deal with long-term time-averaged constraints.

Furthermore, in the Lyapunov optimization approach, the

control action at each time step is derived by solving an

optimization problem with no need for system statistics.

A preliminary version of this work has been presented in

[24]. In this paper, we significantly extend [24] in two ways:

first, we offer a distributed algorithm for practical implementa-

tion; second, we provide more in-depth performance analysis

of the proposed algorithm both theoretically and numerically,

and reveal insights into the interactions of supply, demand and

storage units in maintaining the power balancing of a grid.

The remainder of this paper is organized as follows. In

Section II, we describe the system model and formulate the

problem of power balancing. In Section III, we propose a real-

time algorithm and analyze its performance theoretically. In

Section IV, we provide a distributed algorithm for solving

the real-time problem. In Section V, we present simulation

results. Finally, we conclude and discuss some future direc-

tions in Section VI. The main symbols used in this paper are

summarized in Table II.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, we consider a power grid supplied by

one CG (e.g., nuclear, coal-fired, or gas-fired generator) and N
RGs (e.g., wind or solar generators). Each RG is co-located

with one on-site energy storage unit. The grid is connected

to external energy markets and is operated by an aggregator,

who is responsible for satisfying the loads by managing energy

from various sources. The information flow and the energy

flow are also depicted in Fig. 1. Assume that the system

operates in discrete time with time slot t ∈ {0, 1, 2, · · · }.

For notational simplicity, throughout the paper we work with

energy units instead of power units. The details of each

component in the power grid are described below.
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TABLE II
LIST OF MAIN SYMBOLS

N number of RGs

lb,t requested amount of base loads during time slot t

lf,t requested amount of flexible loads during time slot t

lm,t total amount of satisfied loads during time slot t

α portion of unsatisfied flexible loads

ai renewable generation amount of the i-th RG during time slot t

ai,max maximum amount of renewable generation of the i-th RG
during each time slot

xi,t charging/discharging amount of the i-th storage unit during
time slot t

|xi,min| maximum discharging amount

xi,max maximum charging amount

bi,t contributed energy amount by the i-th RG during time slot t

si,t energy state of the i-th storage unit at the beginning of time
slot t

Di(·) degradation cost function of the i-th storage unit

gt output of the CG during time slot t

gmax maximum output of the CG during each time slot

r ramping coefficient

C(·) generation cost function of the CG

pb,t unit buying price of external energy markets at time slot t

ps,t unit selling price of external energy markets at time slot t

eb,t amount of energy bought from external energy markets during
time slot t

es,t amount of energy sold to external energy markets during time
slot t

qt system states at time slot t

ut control actions at time slot t

wt system cost at time slot t

Information flow

Energy flow

Aggregator

CG

Storage 1 RG 1

External energy markets

Storage N RG N

Storage 2 RG 2

Flexible loads

Base loads

Power grid

Fig. 1. Schematic representation of the considered power grid.

1) Loads: The loads include base loads and flexible loads.

The base loads represent critical energy demands such as

lighting, which must be satisfied once requested. The flexible

loads here represent some controllable energy requests that

can be partly curtailed if the energy provision cost is high. At

time slot t, denote the amount of the total requested base loads

by lb,t ∈ [lb,min, lb,max], and the amount of the total requested

flexible loads by lf,t ∈ [lf,min, lf,max]. The amounts lb,t and

lf,t are generated by users based on their own needs and are

considered random. Let the amount of the total satisfied loads

be lm,t, which should satisfy

lb,t ≤ lm,t ≤ lb,t + lf,t. (1)

The control of flexible loads needs to meet certain quality-

of-service requirement. In this work, we impose an upper

bound on the portion of unsatisfied flexible loads. Formally,

we introduce a long-term time-averaged constraint

lim sup
T→∞

1

T

T−1
∑

t=0

E

[

lb,t + lf,t − lm,t

lf,t

]

≤ α (2)

where α ∈ [0, 1] is a pre-designed threshold with a small value

indicating a tight quality-of-service requirement.

2) RG and On-Site Storage: At the i-th RG, denote the

amount of the renewable generation during time slot t by ai,t ∈
[0, ai,max], where ai,max is the maximum generated energy

amount. Due to the stochastic nature of renewable sources,

ai,t is random.

We assume that each RG is co-located with one on-site

energy storage unit capable of charging and discharging.

Denote the charging or discharging energy amount of the i-th
storage unit during time slot t by xi,t, with xi,t > 0 (resp.

xi,t < 0) indicating charging (resp. discharging). Because of

the battery design and hardware constraints, the value of xi,t

is bounded as follows:

xi,min ≤ xi,t ≤ xi,max, (xi,min < 0 < xi,max) (3)

where |xi,min| and xi,max represent the maximum discharging

and charging amounts, respectively. For the i-th storage unit,

denote its energy state at the beginning of time slot t by si,t.
Due to charging and discharging operations, the evolution of

si,t is given by1

si,t+1 = si,t + xi,t. (4)

Furthermore, the battery capacity and operational constraints

require the energy state si,t be bounded as follows:

si,min ≤ si,t ≤ si,max (5)

where si,min is the minimum allowed energy state, and si,max

is the maximum allowed energy state and can be interpreted

as the storage capacity. It is known that fast charging or

discharging can cause battery degradation, which shortens

battery lifetime [25]. To model this cost on storage, we use

Di(·) to represent the degradation cost function associated

with the charging or discharging amount xi,t.

During every time slot, the RG supplies energy to the

aggregator. Denote the amount of the contributed energy by

the i-th RG during time slot t by bi,t. Since the energy flows

of the RG should be balanced, we have

bi,t = ai,t − xi,t, bi,t ≥ 0. (6)

In particular, if xi,t > 0 (charging), the contributed energy

bi,t directly comes from the renewable generation; if xi,t < 0
(discharging), bi,t comes from both the renewable generation

and the storage unit.

1In this work we use a simplified energy storage model. The mathemat-
ical framework carries over when other modeling factors such as charging
efficiency, discharging efficiency, and storage efficiency are considered.
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3) CG: Different from the RGs, the energy output of the

CG is controllable. Denote gt as the energy output of the CG

during time slot t, satisfying

0 ≤ gt ≤ gmax (7)

where gmax is the maximum amount of the energy output.

Due to the operational limitations of the CG, the change of

the outputs in two consecutive time slots is bounded. This is

typically reflected by a ramping constraint on the CG outputs

[26]. Assuming that the ramp-up and ramp-down constraints

are identical, we express the overall ramping constraint as

|gt − gt−1| ≤ rgmax (8)

where the coefficient r ∈ [0, 1] indicates the tightness of

the ramping requirement. In particular, for r = 0, the CG

produces a fixed output over time, while for r = 1, the ramping

requirement becomes non-effective. Furthermore, we denote

the generation cost function of the CG by C(·).
4) External Energy Markets: In addition to the internal

energy resources, the aggregator can resort to the external

energy markets if needed. For example, the aggregator can

buy energy from the external energy markets in the case of

energy deficit, or sell energy to the markets in the case of

energy surplus. At time slot t, denote the unit prices of the

external energy markets for buying and selling energy by

pb,t ∈ [pb,min, pb,max] and ps,t ∈ [ps,min, ps,max], respectively.

To avoid energy arbitrage, the buying price is assumed to be

strictly greater than the selling price, i.e., pb,t > ps,t. The

prices pb,t and ps,t are typically random due to unexpected

market behaviors. Denote

eb,t ≥ 0, es,t ≥ 0 (9)

as the amounts of the energy bought from and sold to the

external energy markets during time slot t, respectively. The

overall system balance requirement is

gt + eb,t +
∑N

i=1 bi,t = es,t + lm,t. (10)

B. Problem Statement

The aggregator operates the power grid and aims to min-

imize the long-term time-averaged system cost by jointly

managing supply, demand, and storage units. With an increas-

ing integration of renewable generation and energy storage

into power grids, the business models of electric utilities are

evolving. From the study in [27], one suggested model of

future electric utilities is termed as “energy services utility.”

Such utilities are expected to provide similar services as those

described in Section II-A. Precisely, besides serving loads,

these utilities would actively provide a platform for demand

response, manage generation assets, and coordinate energy

sales with external energy markets.

We define the control actions at time slot t by

ut, [bt,xt, lm,t, gt, eb,t, es,t]

where bt,[b1,t, · · · , bN,t] and xt,[x1,t, · · · , xN,t]. The sys-

tem cost at time slot t includes the costs of all RGs and the

CG, and the cost for exploiting the external energy markets,

given by2:

wt,C(gt) + pb,teb,t − ps,tes,t +

N
∑

i=1

Di(xi,t).

Based on the system model described in Section II-A, we

formulate the problem of power balancing as a stochastic

optimization problem below.

P1 : min
{ut}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt] s.t. (1) − (10)

where the expectations in the objective and (2) are taken over

the randomness of the system states qt,[at, lb,t, lf,t, pb,t, ps,t]
where at,[a1,t, · · · , aN,t], and the possible randomness of the

control actions.

To keep mathematical exposition simple, we assume that the

cost functions C(·) and Di(·) are continuously differentiable

and convex. This assumption is mild since many practical

costs can be well approximated by such functions. Denote

the derivatives of C(·) and Di(·) by C′(·) and D′
i(·), re-

spectively. Based on the assumption, we have the derivative

C′(gt) ∈ [C′
min, C

′
max], ∀gt ∈ [0, gmax], and D′

i(xi,t) ∈
[D′

i,min, D
′
i,max], ∀xi,t ∈ [xi,min, xi,max].

Remarks: Compared to a practical power system, the model

considered in Section II-A is simplified, in which power losses,

network constraints, and some other practical operational

constraints are ignored. Despite the simplifications, we will

show that the proposed formulation leads to an implementable

control algorithm with a provable performance bound on

suboptimality. For future work, we will consider incorporating

more practical power system constraints into the problem

formulation.

III. REAL-TIME ALGORITHM FOR POWER BALANCING

Solving P1 is challenging, due to the stochastic nature of

the system, as well as constraints (2), (5), and (8), resulting in

coupled control actions over time. In this section, we propose

a real-time algorithm for P1 and analyze its performance

theoretically.

A. Description of Real-Time Algorithm

To propose a real-time algorithm, we employ the Lyapunov

optimization approach [17]. Lyapunov optimization can be

used to transform some long-term time-averaged constraints

such as (2) into queue stability constraints, and to provide

efficient real-time algorithms for complex dynamic systems.

Unfortunately, the time-coupled constraints (5) and (8) are not

time-averaged constraints, but are hard constraints required at

each time slot. Therefore, the Lyapunov optimization frame-

work cannot be directly applied. To overcome this difficulty,

2For the RGs and the CG, the payment for supplying energy could be settled
by additional contracts offered by the aggregator, or be calculated based on
the actual provided energy. For these cases, the payment is transferred inside
the system hence not affecting the system-wide cost.
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we take a relaxation step and propose the following relaxed

problem:

P2 : min
{ut}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. (1) − (3), (6), (7), (9), (10),

lim
T→∞

1

T

T−1
∑

t=0

E[xi,t] = 0, ∀i. (11)

Compared with P1, in P2 the energy state constraints (4) and

(5) are replaced with a new time-averaged constraint (11), and

the ramping constraint (8) is removed. It can be shown that

P2 is indeed a relaxation of P1 (see Appendix A).

The above relaxation step is crucial and enables us to

work under the standard Lyapunov optimization framework.

However, we emphasize that, giving solution to P2 is not

our purpose. Instead, the significance of proposing P2 is to

facilitate the design of a real-time algorithm for P1 and the

performance analysis. Note that due to this relaxation, the

solution to P2 may be infeasible to P1. Motivated by this

concern, we next provide a real-time algorithm which can

guarantee that all constraints of P1 are satisfied.

To meet constraint (2), we introduce a virtual queue backlog

Jt evolving as follows:

Jt+1 = max{Jt − α, 0}+ lb,t + lf,t − lm,t

lf,t
. (12)

From (12), the virtual queue Jt accumulates the portion of

unsatisfied flexible loads. It can be shown that maintaining the

stability of Jt is equivalent to satisfying constraint (2) [17].

We initialize Jt as J0 = 0.

At time slot t, define a vector Θt,[s1,t, . . . , sN,t, Jt],
which consists of the energy states of all storage units and

the virtual queue backlog Jt. Using Θt, we define a Lya-

punov function L(Θt),
1
2J

2
t + 1

2

∑N

i=1(si,t − βi)
2, where

βi is a perturbation parameter designed for ensuring the

boundedness of the energy state, i.e., constraint (5). In ad-

dition, we define the one-slot conditional Lyapunov drift as

∆(Θt),E [L(Θt+1)− L(Θt)|Θt]. Instead of directly mini-

mizing the system cost objective, we consider the drift-plus-

cost function given by ∆(Θt) + V E[wt|Θt]. It is a weighted

sum of ∆(Θt) and the system cost at time slot t with V
serving as the weight.

In our algorithm design, we first consider an upper bound

on the drift-plus-cost function (see Appendix B for the upper

bound), and then formulate a real-time optimization problem to

minimize this upper bound at every time slot t. As a result, at

each time slot t, we have the following optimization problem:

P3 : min
ut

[

N
∑

i=1

V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)

+ V pb,teb,t − V ps,tes,t −
Jt
lf,t

lm,t

s.t. (1), (3), (6) − (10).

We will show in Section III-B that the design of the real-

time problem P3 can lead to some analytical performance

Algorithm 1: Real-time algorithm for power balancing.

Initialize J0 = 0. At each time slot t, the aggregator

executes the following steps sequentially.

1) Observe the system states qt, energy states si,t, ∀i, and

queue backlog Jt.
2) Solve P3 and obtain an optimal solution u∗

t .

3) Use u∗
t to update si,t, ∀i, and Jt based on (4) and (12),

respectively.

guarantee. Moreover, to ensure the feasibility of gt, we take

a natural step and move the ramping constraint (8) back into

P3.

Since Di(·) and C(·) are convex, P3 is a convex optimiza-

tion problem and can be efficiently solved by standard convex

optimization software packages. Denote an optimal solution of

P3 at time slot t by u∗
t,

[

b∗
t ,x

∗
t , l

∗
m,t, g

∗
t , e

∗
b,t, e

∗
s,t

]

. At each

time slot, after obtaining u∗
t , we update si,t, ∀i, and Jt based

on their evolution equations.

In the following proposition we prove that, despite the

relaxation to P2, by appropriately designing the perturbation

parameter βi we can ensure the boundedness of the energy

states and hence the feasibility of the control actions {u∗
t } to

P1.

Proposition 1: For the i-th storage unit, set the perturbation

parameter βi as

βi,V (pb,max +D′
i,max)− xi,min + si,min (13)

where V ∈ (0, Vmax] with

Vmax, min
1≤i≤N

{

si,max − si,min + xi,min − xi,max

pb,max − ps,min +D′
i,max −D′

i,min

}

. (14)

Then the control actions {u∗
t } derived by solving P3 at each

time t are feasible to P1.

Proof: See Appendix C.

Remarks: For Vmax in (14) to be positive, the range of the

energy state should be larger than the sum of the maximum

charging and discharging amounts. This is generally true if the

length of each time interval is not too long, for example, up

to several minutes.

We summarize the proposed real-time algorithm in Algo-

rithm 1. We can see that, Algorithm 1 is simple and does not

require any statistics of the system states. The latter feature

is especially desirable in practice, where accurate statistics

of the system states are difficult to obtain but instantaneous

observations are readily available.

B. Performance Analysis

We now analyze the solution provided by Algorithm 1

with respect to P1. Under Algorithm 1, to emphasize the

dependency of the cost objective value on the ramping coeffi-

cient r and the control parameter V , we denote the achieved

cost objective value by w∗(r, V ). Denote the minimum cost

objective value of P1 by wopt(r), which only depends on r.

The main results are summarized in the following theorem.

Theorem 1: Assume that the random system states qt of the

grid are i.i.d. over time. Then under Algorithm 1 we have
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1) w∗(r, V )− wopt(r) ≤ (1− r)gmax max{pb,max, C
′
max}

+B/V , where B is a constant defined by

B, 1
2 (1 + α2) + 1

2

∑N

i=1 max{x2
i,min, x

2
i,max}; and

2) wopt(r) ≥ w∗(1, V )−B/V .

Proof: See Appendix D.

Remarks:

• Theorem 1.1 characterizes an upper bound on the per-

formance gap away from wopt(r). The upper bound has

two terms reflecting the ramping constraint and storage

capacity limitation. It indicates that Algorithm 1 pro-

vides an asymptotically optimal solution as the ramping

constraint becomes loose (i.e., r → 1) and the control

parameter V increases (or the storage capacity si,max

increases based on the Vmax expression in (14)). This is

consistent with our intuition. Using this insight, in order

to minimize the gap to the minimum system cost, we

should set V = Vmax in Algorithm 1.

• Theorem 1.2 provides a lower bound on wopt(r) in terms

of the special case where the ramping constraint is loose,

i.e., r = 1. Since solving P1 to obtain the minimum

objective value wopt(r) is difficult, we will use this

lower bound as a benchmark for performance comparison

in simulation. The gap between the performance under

Algorithm 1 and this lower bound serves as an upper

bound on the performance gap between Algorithm 1 and

an optimal control algorithm.

• The i.i.d. assumption of the system states qt can be

relaxed to accommodate qt evolving based on a finite

state irreducible and aperiodic Markov chain. Similar

conclusions can be shown, which are omitted for brevity.

In the above analysis, the storage capacity si,max is assumed

to be fixed, so that the control parameter V should be upper

bounded by Vmax in (14) for ensuring the feasibility of the

solution. Alternatively, if the storage capacity can be designed,

the question is what its value should be in order to achieve

certain required performance. In the following proposition, we

provide an answer to this question by giving an upper bound

on the energy state si,t (hence an upper bound on the minimum

required energy capacity) for an arbitrary positive V that can

be greater than Vmax.

Proposition 2: For any V > 0, the energy state si,t of the

i-th storage unit at time slot t under Algorithm 1 satisfies

si,t ∈ [si,min, si,up] where

si,up,V (pb,max − ps,min +D′
i,max −D′

i,min)

+ xi,max − xi,min + si,min. (15)

Proof: See Appendix E.

The expression of si,up in (15) is informative and reveals

some insights into the dependency of the design of the storage

capacity on some system parameters. First, si,up increases

linearly with the control parameter V . Second, si,up is larger if

the energy prices are more volatile or the marginal degradation

cost increases fast. Third, the minimum si,up is given by

−xi,min + xi,max + si,min if we have pb,max = ps,min and

D′
i,max = D′

i,min.

Other properties regarding flexible loads and external trans-

actions are summarized in the following proposition.

Proposition 3: Under Algorithm 1 the following results

hold.

1) The queue backlog Jt is uniformly bounded from above

as Jt ≤ V pb,maxlf,max + 1.
2) The amounts of the external transactions e∗b,t and e∗s,t

satisfy e∗b,te
∗
s,t = 0.

Proof: See Appendix F.

Remarks:

• In Proposition 3.1, the upper bound of Jt is deterministic

and does not change over time. Moreover, the fact that

Jt is upper bounded implies that the accumulated portion

of unsatisfied flexible loads is upper bounded.

• Proposition 3.2 implies that the aggregator does not buy

energy from or sell energy to the external energy markets

simultaneously.

C. Discussion on Multiple CGs

In the current system model, apart from multiple renewable

generators, we incorporate one conventional generator (CG)

into the supply side. If there are multiple CGs with the same

characteristics, i.e., the same maximum output gmax, ramping

coefficient r, and cost function C(·), for mathematical analy-

sis, we can combine them into one generator. In this case, the

current mathematical framework and the performance analysis

apply directly with the combined generator. The output of

each individual CG can then be obtained by dividing the

output of the combined generator equally over all individual

ones. On the other hand, if these CGs have heterogeneous

characteristics and therefore cannot be combined into one,

the proposed algorithm can still be used. In particular, in the

original problem P1, we would have constraints (7) and (8)

for each individual generator; the total output of the generators

in (10) is
∑M

j=1 gj,t; and the total cost of the generators is
∑M

j=1 Cj(gi,t). The resultant relaxed problem P2 would be

similar to the current one, in which the ramping constraint

(8) is removed for each individual CG. For the real-time

algorithm, the formulation of the per-slot optimization prob-

lem follows the current mathematical framework. Moreover,

distributed implementation of the algorithm (shown later in

Section IV) can be developed using the same approach we

propose.

IV. DISTRIBUTED IMPLEMENTATION OF REAL-TIME

ALGORITHM

At each time slot, our proposed algorithm (Algorithm 1) can

be implemented by the aggregator centrally. However, the RGs

may not be willing to relinquish direct control of storage or

to offer private information to the aggregator. In addition, the

computational complexity of centralized control would grow

quickly as the number of RGs increases. In this section, we

provide a distributed algorithm for solving P3, by which each

RG and the aggregator can make their own control decisions.

A. Distributed Algorithm Design

To facilitate the algorithm development, we first transform

P3 into an equivalent problem. For notational simplicity we
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drop the time index t. We define a new optimization vector

y,[y1, · · · , yN+4], which relates to the optimization variables

of P3 by yi = xi for 1 ≤ i ≤ N, yN+1 = lm, yN+2 =
−g, yN+3 = −eb, and yN+4 = es. Then, the objective of P3

can be rewritten as the sum of certain functions of each yi,
which are denoted by Fi(yi) but whose details are omitted for

brevity. In addition, we replace bi in the constrains of P3 by

ai − yi for 1 ≤ i ≤ N based on constraint (6). Consequently,

P3 can be rewritten in a generic form P4 below.

P4: min
y

N+4
∑

i=1

Fi(yi) s.t. yi ∈ Yi, ∀i,
N+4
∑

i=1

yi =

N
∑

i=1

ai

where the constraint sets {Yi} are derived from constraints (1),

(3), and (6)-(9), given by Yi,[xi,min,min{ai, xi,max}], i ∈
{1, · · · , N},YN+1,[lb, lb+ lf ],YN+2,

[

−min{gmax, gt−1+

rgmax},−max{gt−1 − rgmax, 0}
]

,YN+3,(−∞, 0], and

YN+4,[0,+∞).
Next, we introduce an auxiliary vector z as a copy of y and

further transform P4 into the following equivalent problem.

P5: min
y,z

N+4
∑

i=1

[

Fi(yi) + 1(yi ∈ Yi)
]

+ 1
(

N+4
∑

i=1

zi =

N
∑

i=1

ai

)

s.t. y − z = 0 (16)

where 1(·) is an indicator function that equals 0 if the

enclosed event is true and infinity otherwise. Through the

above transformations, the optimization problem P5 now fits

the two-block form of the alternating direction method of mul-

tipliers (ADMM) [18], enabling us to develop the distributed

optimization algorithm.

Following a general ADMM approach [18], we asso-

ciate the equality constraint (16) in P5 with dual variables

d,[d1, · · · , dN+4]. Denote yki , z
k
i , and dki as the respective

variable values at the k-th iteration. Then, based on ADMM,

these values are updated as follows.

yk+1
i = argmin

yi

{

Fi(yi) +
ρ

2

(

yi − zki +
dki
ρ

)2|yi ∈ Yi

}

, ∀i,

(17)

zk+1 = argmin
z

{

N+4
∑

i=1

(

zi −
dki
ρ

− yk+1
i

)2|
N+4
∑

i=1

zi =

N
∑

i=1

ai

}

,

(18)

dk+1
i = dki + ρ(yk+1

i − zk+1
i ), ∀i (19)

where ρ > 0 is a penalty parameter, which needs to be

carefully adjusted for good convergence performance [18].

After further algebraic manipulation (see Appendix G), we

can eliminate the vectors z and d and simplify the updates

(17)-(19) as follows:

yk+1
i = argmin

yi

{

Fi(yi) +
ρ

2

(

yi − vki )
2|yi ∈ Yi

}

, ∀i, (20)

dk+1 = dk + ρ

(

yk+1 − 1

N + 4

N
∑

i=1

ai

)

. (21)

In (20), we have vki ,yki − yk − dk

ρ
+ 1

N+4

∑N
i=1 ai where

yk, 1
N+4

∑N+4
i=1 yki and dk is a scalar updated as in (21).

update yk+1

i

update yk+1

i
(N + 1 ≤ i ≤ N + 4) and dk+1

yk+1

i
v
k

i

· · · · · ·

RG 1

RG i

RG N

Aggregator

Fig. 2. Information flow of distributed implementation.

Remarks: Following the proof of Theorem 2 in [28], we can

show that the above updates lead to a worst-case convergence

rate O(1/k). Compared with the subgradient-based algorithm,

which presents a worst-case convergence rate O(1/
√
k), the

proposed distributed algorithm is much faster and thus is well

suited for real-time implementation.

B. Distributed Implementation

Now we discuss the implementation of the proposed dis-

tributed algorithm in terms of both computation and commu-

nication. In Fig. 2, we depict the information flow between

the aggregator and the RGs for the updates in (20) and (21)

at the (k + 1)-th iteration.

Note that the minimization problems in (20) can be solved

individually at each RG i for 1 ≤ i ≤ N , and at the aggregator

for N + 1 ≤ i ≤ N + 4, while the update in (21) can be

computed by the aggregator. At the initial iteration k = 0,

each RG i needs to send its renewable generation amount ai
to the aggregator. At each iteration, the aggregator sends a

signal vki to each RG i. Then RG i obtains the update yk+1
i

and sends it back to the aggregator. We see that, the RGs

do not have to release any other private information to the

aggregator, and the required information exchange is limited

to one variable in each direction per RG.

Note that the minimization problems in (20) are all strictly

convex and admit a unique (and sometimes closed-form)

solution. Furthermore, effectively, only one dual variable is re-

quired to be updated in (21). This is because the transformation

from P3 to P4 by introducing the new optimization vector y

permits all dual variables to share the same updating structure,

hence reducing the number of the effective dual updates as

well as simplifying the calculation.

V. SIMULATION RESULTS

In this section, we evaluate the proposed real-time algo-

rithm and compare it with alternatives using an idealized but

representative power grid setup.

A. Simulation Setup

Unless otherwise specified, the following parameters are set

as default. The length of each time slot is 10 min. The amounts

of the base loads lb,t and the flexible loads lf,t are uniformly

distributed between 5 and 25 kWh, and the portion of un-

satisfied flexible loads α is 0.5. The aggregator is connected

with N = 30 RGs. For each on-site storage unit, we set the

maximum discharging and charging amounts to be 1.1 kWh

by assuming that the discharging and charging rate is 6.6 kW
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(three-phase, level II) [29]. Since the model of the degradation

cost function of storage is usually proprietary and unavailable,

in simulation, we set Di(x) = 10x2 as an example. The

renewable generation ai,t is uniformly distributed between 0
and 1.1 kWh. For the CG, we set the generation cost function

to be C(x) = 8x, the maximum output gmax = 50 kWh, and

the ramping coefficient r = 0.1. The unit buying energy price

pb,t is uniformly distributed between 10 and 12 cents/kWh,

which is around the current mid-peak energy price in Ontario

[30]. The unit selling energy price ps,t is uniformly distributed

between 4 and 6 cents/kWh, which is slightly below the current

off-peak energy price in Ontario [30]. The control parameter

V is set to 1, si,min = 0, and si,max is given by (15).

B. Benchmark Algorithms

As discussed in Section I, compared with previous works

(e.g., [4]–[16]), this paper is built on a more general system

model in which all issues listed in Table I are incorporated

into the problem formulation. Therefore, mathematically, the

problem we study is new and different from all previous ones.

As a result, the proposed algorithm cannot be directly com-

pared with the algorithms presented in [4]–[16]. To overcome

this difficulty, we employ two alternative algorithms as well

as the lower bound on the minimum system cost derived in

Theorem 1.2 for comparison.

The first alternative is a greedy algorithm, which only

minimizes the current system cost. The optimization problem

of the greedy algorithm at time slot t is formulated as follows:

min
ut

wt

s.t. (3), (6) − (10),

lb,t + (1− α)lf,t ≤ lm,t ≤ lb,t + lf,t,

−si,t ≤ xi,t ≤ si,max − si,t.

The second alternative is suggested mainly to show the ef-

fect of the ramping constraint. In particular, at each time slot t,
we solve an optimization problem that is the same as P3 except

without the ramping constraint (8). Therefore, the resultant

CG output may be infeasible to P1. To maintain feasibility,

whenever the CG output violates the ramping constraint, the

aggregator only uses the external energy markets to augment

the CG output. We call it “naive algorithm” below.

C. Comparison under Parameters V and α

In Fig. 3, we depict the time-averaged system cost under

various values of the control parameter V . For the proposed

algorithm, the system cost drops quickly and then remains

stable as it drops close to the lower bound. This observation

demonstrates the efficiency of the algorithm and implies that

using small storage may be enough to achieve near-optimal

performance. In contrast, the performance of the greedy al-

gorithm barely changes with V . In particular, the system cost

under the greedy algorithm is about 1.7 times that under the

proposed algorithm when V ≥ 0.1.

In Fig. 4, we illustrate the effect of α, the portion of

unsatisfied flexible loads. As expected, the system cost goes

down as α rises, since less load is to be satisfied. For the
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Fig. 3. System cost vs. control parameter V .
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Fig. 4. System cost vs. portion of unsatisfied flexible loads α.
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Fig. 5. System cost vs. ramping coefficient r (small loads).

proposed algorithm, the marginal system cost decreases with

α, which indicates that the benefit of curtailing loads keeps on

falling. We also notice that the greedy algorithm is comparable

with the proposed algorithm for α = 1. But for general cases

of α, the proposed algorithm is observed to have a noticeable

advantage. In addition, the proposed algorithm is close to the

minimum system cost for all cases.

D. Effect of Ramping Constraint

In Fig. 5 we first consider a scenario with small loads. The

system cost is shown to be non-increasing with respect to

the ramping coefficient r. This is easy to understand since a

looser ramping constraint implies less usage of the expensive

external energy markets. Furthermore, for all algorithms, the

system cost cannot be decreased any further for r ≥ 0.3.

This indicates that the CG supply is already sufficient at

this point, and therefore a further relaxation of the ramping

constraint is unnecessary. We observe that, the proposed

algorithm outperforms both alternatives for all cases. However,

the proposed and naive algorithms coincide when r ≥ 0.3.

This happens because with sufficient supply and a relaxed

ramping constraint, the need for augmenting the CG output

in the naive algorithm is small. That is, the control actions

under the naive algorithm are consistent with those under the

proposed algorithm in most cases.
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Fig. 6. System cost vs. ramping coefficient r (large loads).
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Fig. 7. Performance gap vs. number of iterations for distributed algorithm.

In Fig. 6, we study a more stressed power grid by increasing

the loads. We assume that lb,t and lf,t are distributed between

20 and 40 kWh. For the proposed and naive algorithms,

the ramping constraint now has a more noticeable impact.

First, the system cost under these two algorithms keeps on

dropping for larger r, and second, the proposed algorithm

always outperforms the naive algorithm. In addition, for small

r, the naive algorithm is unsatisfactory as its performance is

close to that of the greedy algorithm. This observation shows

the importance of jointly exploiting the system resources,

especially under a stressful system environment.

E. Convergence of Distributed Implementation

In Fig. 7, we exhibit the convergence of the proposed

distributed algorithm for a particular system realization. The

value of the penalty parameter ρ needs to be adjusted for

good convergence performance and is set to 5 in our case. For

comparison, we also show the convergence of a subgradient

algorithm [31]. The vertical axis denotes the gap between

the value of the objective function and the minimum value

of the objective function of P5. We see that, the proposed

algorithm converges fast and exhibits a linear convergence

rate, while the subgradient algorithm is slow and exhibits a

sublinear convergence rate. Moreover, the fast convergence of

the proposed algorithm is observed in general, and we omit

the curves of the other system realizations for brevity.

VI. CONCLUSION AND FUTURE WORK

We have investigated the problem of power balancing in

a renewable-integrated power grid with storage and flexible

loads. With the objective of minimizing the system cost,

we have proposed a distributed real-time algorithm, which is

fast converging and is asymptotically optimal as the storage

capacity increases and the ramping constraint of the CG

becomes loose.

There are several possible directions for the future work.

For example, first, in the proposed real-time algorithm, only

the current observations of the system states are employed in

the algorithm design. In reality, forecasts of the system states

(e.g., wind generation, loads, and electricity prices) are usually

available within a certain time interval. Therefore, it would be

interesting to study how to incorporate these forecasts into the

algorithm design and how these forecasts could improve the

algorithm performance. Second, the specific implementation

of curtailing the flexible loads is not considered in this paper.

How to incentivize individual customers to participate in such

power balancing service and other demand response programs

is currently open and worth further investigation.

APPENDIX A

PROOF OF RELAXATION FROM P1 TO P2

Using the energy state update in (4) we can derive that the

left hand side of constraint (11) equals the following:

lim
T→∞

1

T

T−1
∑

t=0

E[xi,t] = lim
T→∞

E[si,T ]

T
− lim

T→∞

E[si,0]

T
. (22)

In (22), if si,t is always bounded, i.e., constraint (5) holds, then

the right hand side of (22) equals zero and thus constraint (11)

is satisfied. Therefore, P2 is a relaxed problem of P1.

APPENDIX B

UPPER BOUND ON DRIFT-PLUS-COST FUNCTION

In the following lemma, we show that the drift-plus-cost

function is upper bounded.

Lemma 1: For all possible decisions and all possible values

of Θt, in each time slot t, the drift-plus-cost function is upper

bounded as follows:

∆(Θt) + V E[wt|Θt] ≤ B + JtE

[

lb,t + lf,t − lm,t

lf,t
− α

∣

∣

∣
Θt

]

+

N
∑

i=1

(si,t − βi)E
[

xi,t|Θt

]

+ V E[wt|Θt] (23)

where B is a constant and is given by B, 1
2 (1 + α2) +

1
2

∑N

i=1 max{x2
i,min, x

2
i,max}.

Proof: Based on the definition of L(Θt), the difference

L(Θt+1)− L(Θt)

=
1

2

[

N
∑

i=1

(si,t+1 − βi)
2 − (si,t − βi)

2

]

+
1

2
(J2

t+1 − J2
t ).

(24)

From the iteration of Jt in (12), (J2
t+1 − J2

t ) in (24) can be

upper bounded as

J2
t+1 − J2

t ≤ 2Jt

(

lb,t + lf,t − lm,t

lf,t
− α

)

+ 1 + α2. (25)

From the iteration of si,t in (4), [(si,t+1 −βi)
2 − (si,t − βi)

2]
in (24) can be upper bounded as

(si,t+1 − βi)
2 − (si,t − βi)

2

≤ 2xi,t(si,t − βi) + max{x2
i,min, x

2
i,max}. (26)
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Applying inequalities (25) and (26) to (24), taking the con-

ditional expectation given Θt, and adding the term V E[wt|Θt]
yields the upper bound in (23).

APPENDIX C

PROOF OF PROPOSITION 1

To prove the feasibility under Algorithm 1, we are left to

show that the long-term constraint (2) and the energy state

constraint (5) are satisfied.

For constraint (2), under the Lyapunov optimization frame-

work, it suffices to show that the virtual queue Jt is mean

rate stable, i.e., limT→∞
E[Ji,T ]

T
= 0 (see Section 4.4 in [17]).

Using Proposition 3.1 that Jt is upper bounded we can easily

prove this identity.

To prove that constraint (5) is satisfied, we first show

the following lemma which gives a sufficient condition for

charging or discharging.

Lemma 2:

1) If si,t < −xi,min + si,min, then x∗
i,t = min{ai,t, xi,max}.

2) If si,t > βi − V (ps,min +D′
i,min), then x∗

i,t = xi,min.

Proof: To show Lemma 2.1), we first transform P3 to an

equivalent problem P3a) by eliminating the variables eb,t and

bi,t, ∀i, and the constant terms.

P3a) : min
[
∑N

i=1 V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)

+V pb,t
(

es,t + lm,t − gt +
∑N

i=1 xi,t

)

− V ps,tes,t − Jt

lf,t
lm,t

s.t. (1), (7), (8), es,t ≥ 0

xi,min ≤ xi,t ≤ min{ai,t, xi,max} (27)

xi,t ≥
∑N

i=1 ai,t −
∑N

j 6=i xj,t − lm,t + gt − es,t. (28)

We solve P3a) by the partitioning method. Specifically, we first

fix the variables
(

(xj,t)j 6=i, lm,t, gt, es,t
)

and minimize P3a)

over xi,t. Since the objective function of P3a) is separable

over all variables, an optimal solution of xi,t can be derived

by the following problem:

min
xi,t

V Di(xi,t) + (si,t − βi)xi,t + V pb,txi,t

s.t. (27), (28).

Under the assumption that si,t < βi−V (pb,max+D′
i,max) =

−xi,min + si,min, the objective function above is strictly

decreasing with respect to xi,t. Therefore, the optimal solution

of xi,t is min{ai,t, xi,max}.

The demonstration of Lemma 2.2 is similar to that of

Lemma 2.1. We first transform P3 to an equivalent problem

P3b) by eliminating the variables es,t and bi,t, ∀i, and the

constant terms. To solve the problem, we first fix the variables
(

(xj,t)j 6=i, lm,t, gt, eb,t
)

and minimize P3b) over xi,t. By

some arrangement, an optimal solution of xi,t can be derived

by the following problem:

min
xi,t

V Di(xi,t) + (si,t − βi)xi,t + V ps,txi,t

s.t. (27)

xi,t ≤
∑N

i=1 ai,t −
∑N

j 6=i xj,t − lm,t + gt + eb,t.

When si,t > βi − V (ps,min +D′
i,min), the objective function

above is strictly increasing with respect to xi,t. Therefore, the

optimal solution of xi,t is xi,min.

Using Lemma 2, we can show that constraint (5) holds by

mathematical induction.

Lemma 3: For the i-th storage unit, the energy state si,t is

bounded within the interval [si,min, si,max].

Proof: The basis: For t = 0, we have si,0 ∈
[si,min, si,max] for the initial setup.

The inductive step: Assume that si,t ∈ [si,min, si,max]. Then

we need to show that si,t+1 ∈ [si,min, si,max]. In the following,

we discuss three cases of si,t.

a) si,t ∈ [si,min,−xi,min + si,min). Using Lemma 2.1) and

the iteration of si,t in (4), we have si,t+1 = si,t +
min{ai,t, xi,max} ≥ si,t ≥ si,min. Also, we have si,t+1 ≤
si,t + xi,max < si,max where the last inequality is derived

based on the assumption of si,t and Vmax > 0.

b) si,t ∈ [−xi,min + si,min, βi − V (ps,min +D′
i,min)]. Based

on the iteration in (4), we have si,t+1 ∈ [si,t+xi,min, si,t+
xi,max]. By the definitions of βi and Vmax we can derive

that si,t+1 ∈ [si,min, si,max].
c) si,t ∈ (βi−V (ps,min+D′

i,min), si,max]. Using Lemma 2.2)

and the iterations in (4), we have si,t+1 = si,t + xi,min <
si,t ≤ si,max. Also, we have si,t+1 > si,min according to

the assumption of si,t and the definition of βi.

APPENDIX D

PROOF OF THEOREM 1

1) Note that P2 fits the standard Lyapunov optimization

format (see Section 4.3 in [17] for details of the standard

format). The idea of showing performance of Algorithm 1

is to connect Algorithm 1 with the algorithm for P2 that is

designed under the Lyapunov optimization framework. Before

showing performance of Algorithm 1, we give two lemmas,

which will be used later.

In the following lemma, we show the existence of a special

algorithm for P2. Denote w̃ as the optimal system cost of P2.

Lemma 4: For P2, there exists a stationary and randomized

solution us
t that only depends on the system states qt, and at

the same time satisfies the following conditions:

E[ws
t ] ≤ w̃, ∀t, (29)

E[xs
i,t] = 0, ∀i, t, (30)

E

[

lb,t + lf,t − lsm,t

lf,t

]

≤ α, ∀t (31)

where all expectations are taken over the randomness of the

system state and the possible randomness of the decisions.

Proof: The claims above can be derived from Theorem

4.5 in [17]. In particular, that theorem provides sufficient

conditions for the existence of a stationary and randomized

algorithm as described above. It can be checked that these

sufficient conditions are all met in our problem. Therefore,

the conclusion in Lemma 4 holds.
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By minimizing the upper bound of the drift-plus-cost func-

tion (i.e., the right hand side of (23)), the real-time sub-

problem for P2 at time slot t is given by

P3’ : min
ut

[

N
∑

i=1

V Di(xi,t) + (si,t − βi)xi,t

]

+ V C(gt)

+ V pb,teb,t − V ps,tes,t −
Jt
lf,t

lm,t

s.t. (1), (3), (6) − (7), (9), (10).

Note that P3’ is the same as P3 except without the ramping

constraint (8). Denote the optimal objective values of P3’ and

P3 as f̃t and f∗
t , respectively, and denote an optimal solution

of P3’ and P3 as ũt and u∗
t , respectively. In the following

lemma, we characterize f∗
t in terms of f̃t.

Lemma 5: At each time slot, f∗
t is bounded as f̃t ≤ f∗

t ≤
f̃t + ǫ, where

ǫ,V (1− r)gmax max{pb,max, C
′
max}.

Proof: First, since P3 has more restricted constraints than

P3’, there is f∗
t ≥ f̃t.

Next, we are to upper bound f∗
t − f̃t. Comparing the

solution g∗t of P3 with the solution g̃t of P3’ there are three

possibilities:

1) g∗t = g̃t,
2) g∗t < g̃t (less output due to constraint (8)), and

3) g∗t > g̃t (more output due to constraint (8)).

For Case 1), it is easy to show that f∗
t = f̃t. Thus, we focus

on the latter two cases.

Denote a feasible solution of P3 as ût and its corresponding

objective value as f̂t. Since characterizing the gap f∗
t − f̃t

directly is challenging, we instead consider the gap f̂t − f̃t.
For Case 2), when g∗t < g̃t, the effective constraint of gt in

P3 should be max{gt−1 − rgmax, 0} ≤ gt ≤ gt−1 + rgmax.

Set a feasible solution of P3 as ût = [b̃t, x̃t, l̃m,t, gt−1 +
rgmax, ẽb,t + g̃t − gt−1 − rgmax, ẽs,t]. That is, ût is the same

as ũt except the solutions of gt and eb,t. Intuitively, we can

interpret ût as that, due to the ramping constraint, the CG is

forced to generate less energy, and the aggregator chooses to

buy more from the external energy markets to balance power.

The gap f̂t − f̃t is given by

f̂t − f̃t

= V
[

C(gt−1 + rgmax)− C(g̃t) + pb,t(g̃t − gt−1 − rgmax)
]

≤ V pb,t(g̃t − gt−1 − rgmax) (32)

≤ V (1− r)gmaxpb,max (33)

where the inequality in (32) holds since g̃t > gt−1 + rgmax

and the function C(·) is non-decreasing. From (33), the gap

f∗
t − f̃t is upper bounded by

f∗
t − f̃t ≤ f̂t − f̃t ≤ V (1 − r)gmaxpb,max. (34)

The proof for Case 3) is similar as that for Case 2). In

particular, when g∗t > g̃t, the effective constraint of gt in P3

should be gt−1 − rgmax ≤ gt ≤ min{gmax, gt−1 + rgmax}.

Set a feasible solution of P3 as ût = [b̃t, x̃t, l̃m,t, gt−1 −
rgmax, ẽb,t, ẽs,t − g̃t + gt−1 − rgmax]. That is, ût is the same

as ũt except the solutions of gt and es,t. Intuitively, we can

interpret ût as that, due to the ramping constraint, the CG is

forced to generate more energy, and the aggregator chooses

to sell more to the external energy markets to balance power.

The gap f̂t − f̃t is given by

f̂t − f̃t

= V
[

C(gt−1 − rgmax)− C(g̃t) + ps,t(g̃t − gt−1 + rgmax)
]

≤ V
[

C(gt−1 − rgmax)− C(g̃t)
]

(35)

≤ V (gt−1 − rgmax − g̃t)C
′
max (36)

≤ V (1− r)gmaxC
′
max (37)

where the inequality in (35) holds since g̃t < gt−1 − rgmax,

and the inequality (36) is derived by the mean value theorem.

From (37), we have

f∗
t − f̃t ≤ f̂t − f̃t ≤ V (1− r)gmaxC

′
max. (38)

Combining (34) and (38) yields f∗
t ≤ f̃t + V (1 −

r)gmax max{pb,max, C
′
max}, which completes the proof.

Using Lemmas 1, 4, and 5, the drift-plus-cost function under

Algorithm 1 can be upper bounded below:

∆(Θt) + V E[w∗
t |Θt]

≤ B + ǫ+ JtE

[

lb,t + lf,t − l̃m,t

lf,t
− α

∣

∣

∣
Θt

]

+

N
∑

i=1

(si,t − βi)E
[

x̃i,t|Θt

]

+ V E[w̃t|Θt] (39)

≤ B + ǫ+ JtE

[

lb,t + lf,t − lsm,t

lf,t
− α

∣

∣

∣
Θt

]

+

N
∑

i=1

(si,t − βi)E
[

xs
i,t|Θt

]

+ V E[ws
t |Θt] (40)

≤ B + ǫ+ V w̃ (41)

≤ B + ǫ+ V wopt (42)

where (39) is derived by Lemmas 1 and 5, (40) holds since P3’

minimizes the right hand side of (39), (41) is derived based on

(29)(30)(31) in Lemma 4 and the fact that us
t is independent

of Θt, and (42) holds since P2 is a relaxed problem of P1.

Taking expectations over Θt on both sides of (42) and

summing over t ∈ {0, · · · , T − 1} yields

E[L(ΘT )]− E[L(Θ0)] + V

T−1
∑

t=0

E[w∗
t ] ≤ (B + ǫ+ V wopt)T.

(43)

Since L(ΘT ) is non-negative, after some arrangement, from

(43) there is

1

T

T−1
∑

t=0

E[w∗
t ] ≤

B + ǫ+ V wopt

V
+

E[L(Θ0)]

TV
. (44)

Taking lim sup on both sides of (44) and rearranging the terms

gives w∗ − wopt ≤ B/V + (1 − r)gmax max{pb,max, C
′
max}.

To emphasize the dependence of performance on r and V , we

express w∗ as w∗(r, V ). Similarly, we express wopt as wopt(r).
2) The lower bound on wopt(r) can be derived by setting

r = 1 in Theorem 1.1 and recognizing that wopt(1) ≤ wopt(r).
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APPENDIX E

PROOF OF PROPOSITION 2

Proposition 2 can be shown by mathematical induction. The

proof resembles that of Lemma 3 where the energy capacity

si,max is replaced by si,up. We omit the proof for brevity.

APPENDIX F

PROOF OF PROPOSITION 3

1) We prove the conclusion by mathematical induction.

The basis: For t = 0, we have Jt = 0, which is obviously

upper bounded.

The inductive step: Assume that Jt ≤ V pb,maxlf,max + 1.

Then we need to show that Jt+1 ≤ V pb,maxlf,max + 1.

Consider the following two cases of Jt.

a) Jt ≤ V pb,maxlf,max. Based on the update of Jt in (12),

we have Jt+1 ≤ max{Jt − α, 0} + 1 ≤ Jt + 1 ≤
V pb,maxlf,max + 1.

b) Jt ∈ (V pb,maxlf,max, V pb,maxlf,max+1]. For this case, we

will show that the unique solution of lm,t to P3 is lb,t+lf,t.
Hence, Jt+1 = max{Jt−α, 0} ≤ Jt ≤ V pb,maxlf,max+1.

To this end, we consider the equivalent problem P3a). First

fix the variables
(

xt, gt, es,t
)

and minimize P3a) over lm,t.

After some arrangement, an optimal solution of lm,t can

be derived by the following problem:

min
lm,t

(

V pb,t −
Jt
lf,t

)

lm,t

s.t. lb,t ≤ lm,t ≤ lb,t + lf,t,

lm,t ≥
N
∑

i=1

(ai,t − xi,t) + gt − es,t.

When Jt > V pb,maxlf,max, the objective function above is

strictly decreasing. Therefore, the optimal solution of lm,t

is lb,t + lf,t.

2) We prove the conclusion by contradiction. Suppose that

under our algorithm the optimal solutions of eb,t and es,t
satisfy e∗b,t > e∗s,t > 0. Then, we can show that there is another

feasible solution ût =
[

b∗
t ,x

∗
t , l

∗
m,t, g

∗
t , e

∗
b,t − e∗s,t, 0

]

achiev-

ing a strictly smaller objective value, hence contradicting the

fact that u∗
t is optimal. The proofs of the other two possible

cases, i.e., e∗b,t = e∗s,t > 0 and e∗s,t > e∗b,t > 0, are similar,

and are omitted for brevity.

APPENDIX G

SIMPLIFICATION OF (17)-(19)

Define yk, 1
N+4

∑N+4
i=1 yki and d

k
, 1

N+4

∑N+4
i=1 dki as the

averages of yki and dki over i at the k-th iteration, respectively.

By solving the minimization problem in (18), we can get a

closed-form solution of zk+1
i below:

zk+1
i =

dki
ρ

+ yk+1
i − d

k

ρ
− yk+1 +

∑N

i=1 ai
N + 4

. (45)

Substituting the right hand side of (45) for zk+1
i in the d-

update (19) yields dk+1
i = d

k
+ ρ(yk+1 −

∑
N
i=1

ai

N+4 ), which

indicates that the dual variables dk+1
i are identical for all i at

each iteration. Therefore, we can safely drop the subscript i in

dk+1
i and obtain the d-update in (21). Meanwhile, substituting

the right hand side of (45) for zki in the y-update (17) and

using the fact that dk−1
i are identical for all i yields (20). Since

the vector z is not employed in either y-update or d-update,

it can be eliminated.
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