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Abstract—The concept of vehicle-to-grid (V2G) has gained
recent interest as more and more electric vehicles (EVs) are
put to use. In this paper, we consider a dynamic aggregator-
EVs system, where an aggregator centrally coordinates a large
number of dynamic EVs to provide regulation service. We
propose a Welfare-Maximizing Regulation Allocation (WMRA)
algorithm for the aggregator to fairly allocate the regulation
amount among the EVs. Compared with previous works, WMRA
accommodates a wide spectrum of vital system characteristics,
including dynamics of EV, limited EV battery size, EV battery
degradation cost, and the cost of using external energy sources for
the aggregator. The algorithm operates in real time and does not
require any prior knowledge of the statistical information of the
system. Theoretically, we demonstrate that WMRA is away from
the optimum by O(1/V ), where V is a controlling parameter
depending on EVs’ battery size. In addition, our simulation
results indicate that WMRA can substantially outperform a
suboptimal greedy algorithm.

Index Terms—Aggregator-EVs system; electric vehicles; real-
time algorithm; V2G; welfare-maximizing regulation allocation.

I. INTRODUCTION

Electrification of personal transportation is expected to

become prevalent in the near future. For example, from one

report of the U.S. department of energy [1], the government

sets an ambitious goal to put one million EVs on the road

by 2015. Besides serving the purpose of transportation, EVs

can also be used as distributed electricity generation/storage

devices when plugged-in [2]. Hence, the concept of vehicle-

to-grid (V2G), referring to the integration of EVs to the power

grid, has received increasing attention [2], [3].

Frequency regulation service is to balance power generation

and load demand in a short time scale, so as to maintain the

frequency of a power grid at its nominal value. Traditionally,

regulation service is provided by fast responsive generators,

which vary their output to alleviate power deficits or surpluses,

and is the most expensive ancillary service [4]. Experiments

show that EV’s power electronics and battery can well respond

to the frequent regulation signals. Thus it is possible to exploit

a plugged-in EV as a promising alternative to provide regu-

lation service through charging/discharging, which potentially

could reduce the cost of regulation service significantly [5].
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However, since the regulation service is generally requested

on the order of megawatts while the power capacity of an EV

is typically 5-20 kW, it is often necessary for an aggregator

to coordinate a large number of EVs to provide regulation

service [6]. In addition, frequent charging/discharging has a

detrimental effect on EV’s battery life. Thus, it is important

to design proper algorithm for regulation allocation in the

aggregator-EVs system, especially in a real-time fashion.

There is a growing body of recent works on V2G regu-

lation service. Specific to the aggregator-EVs system, which

focuses on the interaction between the aggregator and the EVs,

centralized regulation allocation is studied in [7]–[11], where

the objective is to maximize the profit of the aggregator or

the EVs. In [7], a set of schemes based on different criteria

of fairness among the EVs are provided. In [8], the regulation

allocation problem is formulated as quadratic programming. In

[9], considering both regulation service and spinning reserves,

the underlying problem is formulated as linear programming.

In [10], the charging behavior of EVs is also considered,

and the underlying problem is then reduced to the control

of charging sequence and charging rate of each EV, which

is solved by dynamic programming. In [11], a real-time

regulation control algorithm is proposed by formulating the

problem as a Markov decision process, with the action space

consisting of charging, discharging, and regulation. Finally, a

distributed regulation allocation system is proposed in [12]

using game theory, and a smart pricing policy is developed to

incentivize EVs.

In addressing the regulation allocation problem, however,

these earlier works have omitted to consider some essential

characteristics of the aggregator-EVs system. For example,

deterministic model is used in [7] and [10], which ignore

the uncertainty of the system, e.g., the uncertainty of the

electricity prices. The dynamics of the regulation signals is

not incorporated in [12], nor the energy restriction of EV

battery is considered. The self-charging/discharging activities

in support of EV’s own need are omitted in [7] and [12].

The potential cost of using external energy sources for the

aggregator to accomplish regulation service is ignored in [7]–

[11], and the cost of EV battery degradation due to frequent

charing/discharging in regulation service is not considered in

[8], [10]–[12].

In this work, we consider all of the above factors in a

more complete aggregator-EVs system model, and develop a

real-time algorithm for the aggregator to fairly allocate the

regulation amount among the EVs. Specifically, considering an

aggregator-EVs system providing long-term regulation service

to a power grid, we aim to maximize the long-term social
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welfare of the aggregator-EVs system, with the constraints on

each EV’s regulation amount and degradation cost. To solve

such a stochastic optimization problem, we adopt Lyapunov

optimization technique, which is also used in [13]–[15] for

demand side management in smart grid. We demonstrate how

a solution to this maximization can be formulated under a

general Lyapunov optimization framework [16], and propose

a real-time allocation strategy specific to the aggregator-

EVs system. The proposed Welfare-Maximizing Regulation

Allocation (WMRA) algorithm does not rely on any statistical

information of the system, and is shown to be asymptotically

close to the optimum as EV’s battery capacity increases.

Finally, WMRA is compared to a greedy algorithm through

simulation and is shown to offer substantial performance gains.

In our preliminary version of this work [17], the EVs are

ideally assumed to be static, i.e., they are in the aggregator-

EVs system throughout the operational time. In this paper,

to more realistically capture the dynamics of the aggregator-

EVs system, we generalize the system model in [17] to

accommodate dynamic EVs, which is considered in none of

the previous works [7]–[12]. This generalization is challenging

for the centralized control of regulation allocation, since the

returning EV may have a different energy state compared with

the last leaving energy state, and this energy difference will

impose much more difficulties on the aggregator for handling

EV’s battery size constraint. To tackle this difficulty, we design

a novel virtual queue to track the energy state of each EV.

Through a careful design of the dynamics of the virtual queue,

we can ensure that the battery size constraint of the EV is

always satisfied.

The remainder of this paper is organized as follows. We

describe the system model and formulate the regulation alloca-

tion problem in Section II. In Section III, we propose WMRA,

and in Section IV we analyze its performance. Simulations are

exhibited in Section V, and we conclude in Section VI.

Notation: Denote [a]+ as max{a, 0}, [a, b]+ as max{a, b},

and [a, b]− as min{a, b}. The main symbols used in this paper

are summarized in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we propose a centralized dynamic

aggregator-EVs system and formulate the regulation allocation

problem mathematically.

A. Aggregator-EVs System and Regulation Service

Consider a long-term time-slotted system, in which the reg-

ulation service is provided over equal time intervals of length

∆t. At the beginning of each time slot t ∈ T ,{0, 1, · · · },

the aggregator receives a random regulation signal Gt from a

power grid. If Gt > 0, the aggregator is required to provide

regulation down service by absorbing Gt units of energy

from the power grid during time slot t; if Gt < 0, the

aggregator is required to provide regulation up service by

contributing |Gt| units of energy to the power grid during

time slot t. To represent the type of the regulation service

at time slot t, we define the indicator random variables

1d,t,

{

1, if Gt > 0

0, otherwise
and 1u,t,

{

1, if Gt < 0

0, otherwise
. Note

TABLE I
LIST OF MAIN SYMBOLS

Gt regulation signal at time slot t

1d,t indicator of regulation down at time slot t

1u,t indicator of regulation up at time slot t

∆t interval of regulation signals

N number of registered EVs

tir,k k-th returning time slot of the i-th EV

til,k k-th leaving time slot of the i-th EV

Ti,r set of returning time slots for the i-th EV

Ti,l set of leaving time slots for the i-th EV

Ti,p set of all participating time slots for the i-th EV

1i,t indicator of the i-th EV’s dynamics at time slot t

xid,t regulation down amount of the i-th EV at time slot t

xiu,t regulation up amount of the i-th EV at time slot t

xi,max upper bound on xid,t and xiu,t

xi,t regulation amount of the i-th EV at time slot t

hid,t effective upper bound on xid,t

hiu,t effective upper bound on xiu,t

si,t energy state of the i-th EV at the beginning of time slot t

si,cap battery capacity of the i-th EV

si,min lower bound on si,t

si,max upper bound on si,t

∆i,k difference between the i-th EV’s (k + 1)-th returning energy
state and the k-th leaving energy state

Ci(·) degradation cost function of the i-th EV

ci,max upper bound on Ci(·)

ci,up upper bound on long-term degradation cost of the i-th EV

es,t unit cost of clearing energy surplus

ed,t unit cost of clearing energy deficit

emin lower bound on es,t and ed,t

emax upper bound on es,t and ed,t

ωi normalized weight of the i-th EV

that the product 1d,t · 1u,t = 0, since regulation down and

up services cannot happen simultaneously.

To provide regulation service, the aggregator coordinates

N registered EVs and can communicate with each EV bi-

directionally when the EV is plugged-in. Each EV can leave

the system for personal reason or for self-charging/discharging

purpose and re-join the system later. Assume that each EV

provides regulation service only if it is in the system.

For the i-th EV, denote tir,k ∈ T as its k-th returning time

slot and til,k ∈ T as its k-th leaving time slot with tir,k < til,k,

∀k ∈ {1, 2, · · · }. For simplicity of analysis, assume that all

EVs are in the system at the initial time and thus tir,1 = 0, ∀i.
Define the set of the returning time slots of the i-th EV as

Ti,r,{tir,1, tir,2, · · · } and the set of its leaving time slots as

Ti,l,{til,1, til,2, · · · }, with tir,k < tir,k+1 and til,k < til,k+1.

Define

Ti,p, ∪∞
k=1 {tir,k, tir,k + 1, · · · , til,k − 1}

as the set containing all participating time slots of the i-
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th EV for regulation service. Hence, the i-th EV is in the

system for any t ∈ Ti,p. Define the indicator random variable

1i,t,

{

1, if t ∈ Ti,p

0, otherwise
to represent the dynamics of the i-th

EV at time slot t (i.e., whether the i-th EV is in the system at

time slot t). Define the vector 1t,[11,t, · · · ,1N,t] to represent

the dynamics of all EVs at time slot t.
At the beginning of each time slot, the aggregator allo-

cates regulation amount among all participating EVs. Denote

xid,t ≥ 0 as the amount of regulation down energy allocated

to the i-th EV through charging, and xiu,t ≥ 0 as the amount

of regulation up energy contributed by the i-th EV through

discharging. Due to the limitation of charging/discharging

circuit in battery, assume that xid,t and xiu,t are upper

bounded by xi,max > 0. Note that if the i-th EV is out of

the system at time slot t, i.e., 1i,t = 0, then it cannot provide

regulation service and we have xid,t = xiu,t = 0. Define the

vectors xd,t,[x1d,t, · · · , xNd,t] and xu,t,[x1u,t, · · · , xNu,t]
to represent the regulation amounts of all EVs at time slot

t.
For the i-th EV, assume that it is in the system at time slot t

(i.e., 1i,t = 1), and thus can provide regulation service. Denote

si,t ∈ [0, si,cap] as its energy state at the beginning of time slot

t, with si,cap being its battery capacity. Due to the regulation

service, the energy state of the i-th EV at the beginning of

time slot t+ 1 is given by

si,t+1 = si,t + 1d,txid,t − 1u,txiu,t = si,t + bi,t, (1)

where

bi,t,1d,txid,t − 1u,txiu,t (2)

is defined to be the effective charging/discharging amount

of the i-th EV at time slot t. Charging a battery near its

capacity or discharging it close to the zero energy state can

significantly reduce battery’s lifetime [18]. Therefore, lower

and upper bounds on the battery energy state are usually

imposed by its manufacturer or user. Denote the interval

[si,min, si,max] as the preferred energy range of the i-th EV

with 0 ≤ si,min < si,max ≤ si,cap. Then, the resultant

energy state si,t+1 in (1) should lie in [si,min, si,max], which

indicates that the regulation amounts xid,t and xiu,t must

satisfy 0 ≤ xid,t ≤ 1i,thid,t and 0 ≤ xiu,t ≤ 1i,thiu,t,

respectively, where hid,t and hiu,t are effective upper bounds

on the regulation amounts and are defined as

hid,t, [xi,max, si,max − si,t]
− ,

and

hiu,t, [xi,max, si,t − si,min]
− ,

respectively.

From time to time, the i-th EV may need to stop its

regulation service and leave the system. When the EV is out

of the system (i.e., 1i,t = 0), it cannot offer regulation service

and the aggregator has no information of the EV’s energy

state. Moreover, the dynamics of the energy state may not

follow (1) when 1i,t = 0. When returning, the EV may have

a different energy state compared with its last leaving energy

state. Assume that all returning energy states of the i-th EV

are confined in the preferred energy range by the EV’s self-

control, i.e., si,t ∈ [si,min, si,max], ∀t ∈ Ti,r. Define

∆i,k,si,tir,k+1
− si,til,k , ∀k ∈ {1, 2, · · · } (3)

as the difference between the i-th EV’s (k + 1)-th returning

energy state and its last leaving energy state. We assume that

A1) ∆i,k is bounded, i.e., |∆i,k| ≤ ∆i,max, where the constant

∆i,max ≥ 0.

A2) ∆i,k has mean zero, i.e., E[∆i,k] = 0, ∀k.

Note that A2 is a mild assumption, based on the random

behavior of each EV when it is out of the system.

For each EV, providing regulation service incurs battery

degradation due to frequent charging/discharging activities.

Denote Ci(x) as the degradation cost function of the regulation

amount of the i-th EV, with 0 ≤ Ci(x) ≤ ci,max and Ci(0) =
0. Since faster charging or discharging, i.e., larger value of

xid,t or xiu,t, has a more detrimental effect on the battery’s

lifetime, we assume Ci(x) to be convex, continuous, and non-

decreasing on the interval [0, xi,max]. We further assume that

each EV imposes an upper bound ci,up ∈ [0, ci,max] on the

time-averaged battery degradation, expressed by

lim
T→∞

1

T

T−1
∑

t=0

E [1d,tCi(xid,t) + 1u,tCi(xiu,t)] ≤ ci,up.

The total regulation amount provided by the EVs may be

insufficient to meet the requested regulation amount due to,

for example, a lack of participating EVs, or high battery

degradation cost. For brevity, define

xi,t,1d,txid,t + 1u,txiu,t, 0 ≤ xi,t ≤ xi,max

as the regulation amount allocated to the i-th EV at time slot

t, which equals either xid,t or xiu,t. Then, the insufficiency

of the regulation amount is indicated by
∑N

i=1 xi,t < |Gt|,

with the gap |Gt| −
∑N

i=1 xi,t representing an energy surplus

in the case of regulation down or an energy deficit in the case

of regulation up. Assume that energy surplus or energy deficit

must be cleared, or the regulation service fails. Therefore, from

time to time, the aggregator has to exploit more expensive

external energy sources, such as from the traditional regulation

market, so as to fill the energy gap. Denote the unit costs for

clearing energy surplus and energy deficit at time slot t as es,t
and ed,t, respectively, which are both random but are restricted

in the interval [emin, emax]. Then, the cost of the aggregator

for using the external energy sources at time slot t is given by

et,1d,tes,t

(

Gt −

N
∑

i=1

xid,t

)

+ 1u,ted,t

(

|Gt| −

N
∑

i=1

xiu,t

)

,

where we have implicitly assumed that the total regulation

amount provided by all EVs cannot exceed the requested

amount.

B. Fair Regulation Allocation through Welfare Maximization

The objective of the aggregator is to maximize the long-term

social welfare of the aggregator-EVs system. Specifically, the

aggregator aims to fairly allocate the regulation amount among

EVs and to reduce the cost for the expensive external energy
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sources, with the constraints on each EV’s regulation amount

and degradation cost. To this end, we formulate the regulation

allocation problem as the following stochastic optimization

problem1:

P1:

max
xd,t,xu,t

N
∑

i=1

ωiU
(

lim
T→∞

1

T

T−1
∑

t=0

E[xi,t]
)

− lim
T→∞

1

T

T−1
∑

t=0

E[et]

s.t. 0 ≤ xid,t ≤ 1i,thid,t, ∀i, t (4)

0 ≤ xiu,t ≤ 1i,thiu,t, ∀i, t (5)

N
∑

i=1

xid,t ≤ 1d,tGt, ∀t (6)

N
∑

i=1

xiu,t ≤ 1u,t|Gt|, ∀t (7)

lim
T→∞

1

T

T−1
∑

t=0

E [1d,tCi(xid,t) + 1u,tCi(xiu,t)] ≤ ci,up, ∀i, (8)

where ωi > 0 is the normalized weight associated with the

i-th EV, and U(·) is a utility function assumed to be concave,

continuous, and non-decreasing, with U(0) = 0. Furthermore,

to facilitate later analysis, we make a mild assumption that the

utility function U(·) satisfies

U(x) ≤ U(0) + µx, ∀x ∈

[

0, max
1≤i≤N

{xi,max}

]

, (9)

where the constant µ > 0. One sufficient condition for (9) to

hold is that U(·) has finite positive derivate at zero, such as

U(x) = log(1+x). The expectations in the above optimization

problem are taken over the randomness of the system and the

possible randomness of the regulation allocation.

In the objective function of P1, the first term includes each

EV’s welfare under the utility function U(·) and the weight

ωi, and the second term reflects the aggregator’s cost for

exploiting external energy sources. Note that the fairness of

the regulation allocation among EVs is ensured by the utility

function U(·), and various types of fairness can be achieved by

using different utility functions [19]. For each EV, in (4) and

(5), hard constraints on the regulation amounts are set at each

time slot, while in (8), a long-term time-averaged constraint

on the regulation amount is set due to the battery degradation.

The constraints (6) and (7) ensure that xid,t = 0 for regulation

up and xiu,t = 0 for regulation down.

III. WELFARE-MAXIMIZING REGULATION ALLOCATION

In this section, we first apply a sequence of two reformu-

lations to P1, then propose a real-time welfare-maximizing

regulation allocation (WMRA) algorithm to solve the resul-

tant optimization problem. The performance analysis of the

proposed WMRA will be shown in Section IV.

1For EVs that only visit the system finite times, since they only affect the
system’s transient behavior, but not the long-term behavior, we can ignore
them and only consider the rest EVs that leave and re-join the system infinite
times.

A. Problem Transformation

The objective of P1 contains a function of a long-term

time average, which complicates the problem. Fortunately, in

general, such a problem can be transformed to a problem of

maximizing the long-term time average of the function [16].

Specifically, we transform P1 as follows.

We first introduce an auxiliary vector zt,[z1,t, · · · , zN,t]
with the constraints

0 ≤ zi,t ≤ xi,max, ∀i, t, and (10)

lim
T→∞

1

T

T−1
∑

t=0

E[zi,t] = lim
T→∞

1

T

T−1
∑

t=0

E[xi,t], ∀i. (11)

From the above constraints, the auxiliary variable zi,t and

the regulation allocation amount xi,t lie in the same range

and have the same long-term time average behavior. We next

consider the following problem.

P2:

max
xd,t,xu,t,zt

lim
T→∞

1

T

T−1
∑

t=0

E

[(

N
∑

i=1

ωiU(zi,t)

)

− et

]

s.t. (4), (5), (6), (7), (8), (10), and (11).

Compared with P1, P2 is over xd,t, xu,t and zt with two

more constraints (10) and (11). Nevertheless, P2 contains no

function of time average; instead, it maximizes the long-term

time average of the expected social welfare.

Denote (xopt

d,t,x
opt
u,t) as an optimal solution to P1, and

(x∗
d,t,x

∗
u,t, z

∗
t ) as an optimal solution to P2. Define

z̄
opt
t ,[z̄opt

1,t, · · · , z̄
opt

N,t] with the i-th element

z̄
opt
i,t, lim

T→∞

1

T

T−1
∑

τ=0

E[x
opt
i,τ ], ∀i, t,

where x
opt
i,τ,1d,τx

opt

id,τ + 1u,τx
opt
iu,τ . Denote the objective func-

tions of P1 and P2 as f1(·) and f2(·), respectively. The

equivalence of P1 and P2 is stated below.

Lemma 1: P1 and P2 have the same optimal objec-

tive, i.e., f1(x
opt

d,t,x
opt
u,t) = f2(x

∗
d,t,x

∗
u,t, z

∗
t ). Furthermore,

(x
opt

d,t,x
opt
u,t, z̄

opt
t ) is an optimal solution to P2, and (x∗

d,t,x
∗
u,t)

is an optimal solution to P1.

Proof: The proof follows the general framework given in

[16]. Details specific to our system are given in Appendix A.

Lemma 1 indicates that the transformation from P1 to P2

results in no loss of optimality. Thus, in the following, we will

focus on solving P2 instead.

B. Problem Relaxation

P2 is still a challenging problem since in the constraints

(4) and (5), the regulation allocation amount of each EV

depends on its current energy state si,t, hence coupling with

all previous regulation allocation amounts. To avoid such

coupling, we relax the constraints of xid,t and xiu,t, and

introduce the optimization problem P3 below.

P3:

max
xd,t,xu,t,zt

lim
T→∞

1

T

T−1
∑

t=0

E

[(

N
∑

i=1

ωiU(zi,t)

)

− et

]
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s.t. 0 ≤ xid,t ≤ 1i,txi,max, ∀i, t, (12)

0 ≤ xiu,t ≤ 1i,txi,max, ∀i, t, (13)

lim
T→∞

1

T

T−1
∑

t=0

E[bi,t] = 0, ∀i, (14)

(6), (7), (8), (10), and (11),

where in (14) bi,t is the effective charging/discharging amount

defined in (2). In P3, we have replaced the constraints (4) and

(5) in P2 with (12)–(14), thus have removed the dependence of

the regulation amount on si,t. We next demonstrate that, any

(xd,t,xu,t) that satisfies (4) and (5) also satisfies (12)–(14).

Therefore, P3 is a relaxed problem of P2.

Consider the i-th EV. The constraints (4) and (5) in P2 are

equivalent to the following two sub-constraints:

if 1i,t = 1, then

0 ≤ xid,t ≤ xi,max (15)

0 ≤ xiu,t ≤ xi,max (16)

si,min ≤ si,t+1 ≤ si,max; (17)

if 1i,t = 0, then

xid,t = xiu,t = 0. (18)

Since (15), (16), and (18) are equivalent to (12) and (13),

we are left to justify that (17) (i.e., the boundedness of si,t)
implies (14). Recall that si,t is bounded for any returning time

slot t ∈ Ti,r by the EV’s self-control. Together, we need to

justify that if si,t ∈ [si,min, si,max], ∀t ∈ Ti,p ∪ Ti,l, then the

constraint (14) holds. This result is shown in the following

lemma.

Lemma 2: For the i-th EV, under the assumption A2, if

si,t ∈ [si,min, si,max], ∀t ∈ Ti,p ∪ Ti,l, then the constraint (14)

holds, i.e., limT→∞
1
T

∑T−1
t=0 E[bi,t] = 0.

Proof: See Appendix B.

From Lemma 2, we know that, the boundedness of si,t
indeed implies (14), which completes our demonstration that

P3 is a relaxed version of P2 with a larger feasible solution

set. Later, we will show in Section IV-A that our proposed

algorithm for P3 in fact ensures the boundedness of si,t, and

thus provides a feasible solution to P2 and to the original

problem P1.

The relaxed problem P3 allows us to apply Lyapunov

optimization to design a real-time algorithm for solving wel-

fare maximization. To our best knowledge, this relaxation

technique to accommodate the type of time-coupled action

constraints such as (4) and (5) is first introduced in [20] for

a power-cost minimization problem in data centers equipped

with an energy storage device. Unlike in [20], the structure of

our problem is more complicated, where the dynamics of the

distributed storage devices (EVs) are considered, as well as

a nonlinear objective which allows both positive and negative

values for the energy requirement Gt. Thus, the algorithm

design is more involved to ensure that the original constraints

in P2 are satisfied.

C. WMRA Algorithm

In this subsection, we propose a WMRA algorithm to solve

P3 by employing Lyapunov optimization technique.

We first define three virtual queues for each EV with the as-

sociated queue backlogs Ji,t, Hi,t, and Ki,t. The evolutionary

behaviors of Ji,t, Hi,t, and Ki,t are as follows:

Ji,t+1 = [Ji,t + 1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up]
+; (19)

Hi,t+1 = Hi,t + zi,t − xi,t; (20)

Ki,t =

{

si,t − ci, if t ∈ Ti,r (21a)

Ki,t−1 + bi,t−1, otherwise, (21b)

where in (21a) we have designed the constant ci = si,min +
2xi,max + V (ωiµ+ emax) with V ∈ (0, Vmax] and

Vmax = min
1≤i≤N

{si,max − si,min − 4xi,max

2(ωiµ+ emax)

}

. (22)

The role of V will be explained later. It will also be clear in

Section IV-A that the specific expressions of ci and Vmax are

designed to ensure the boundedness of si,t. Note that xi,max is

generally much smaller than the energy capacity. For example,

for the Tesla Model S base model [21], the energy capacity is

40 kWh, and xi,max = 0.166 kWh if the maximum charging

rate 10 kW is applied and the regulation duration is 1 minute.

Therefore, Vmax > 0 holds in general.

From (21a), Ki,t is re-initialized as a shifted version of

si,t every time the i-th EV returning to the aggregator-EVs

system; also, from (21b), Ki,t evolves the same as si,t for

t ∈ Ti,p (recall that the dynamics of si,t may not follow (1)

when 1i,t = 0). Therefore, Ki,t is essentially a shifted version

of si,t, ∀t ∈ Ti,p ∪ Ti,l, i.e.,

Ki,t = si,t − ci, ∀t ∈ Ti,p ∪ Ti,l. (23)

Additionally, since the effective charging/discharging amount

bi,t = 0 when 1i,t = 0, once the i-th EV leaves the system,

the value of Ki,t will be locked until the next returning time

slot of the EV, i.e.,

Ki,t = Ki,til,k , ∀t ∈ {til,k, · · · , tir,k+1 − 1},

and ∀k ∈ {1, 2, · · · }.

By introducing the virtual queues, the constraints (8) and

(11) hold if the queues Ji,t and Hi,t are mean rate stable,

respectively [16]. Below we give the definition of mean rate

stability of a queue.

Definition: A queue Qt is mean rate stable if

limt→∞
E[|Qt|]

t
= 0.

Unlike Ji,t and Hi,t, since Ki,t is re-initialized when t ∈
Ti,r, a new virtual queue is essentially created every time the i-
th EV re-joining the system. Therefore, the mean rate stability

of Ki,t is insufficient for the constraint (14) to hold, and a

stronger condition is required. Fortunately, since Ki,t is just

a shifted version of si,t from (23), based on Lemma 2, the

following result is straightforward.

Lemma 3: For the i-th EV, under the assumption A2, if

Ki,t ∈ [si,min − ci, si,max − ci], ∀t ∈ Ti,p ∪ Ti,l, then the

constraint (14) holds, i.e., limT→∞
1
T

∑T−1
t=0 E[bi,t] = 0.

Later in Section IV-A, we will show that by our proposed

algorithm the boundedness assumption of Ki,t in Lemma 3

can be guaranteed.

Define Jt,[J1,t, · · · , JN,t], Ht,[H1,t, · · · , HN,t],
Kt,[K1,t, · · · ,KN,t], and Θt,[Jt,Ht,Kt]. Initialize
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Ji,0 = Hi,0 = 0, and Ki,0 = si,0 − ci, ∀i. Define the

Lyapunov function L(Θt),
1
2

∑N

i=1(J
2
i,t + H2

i,t + K2
i,t),

and the associated one-slot Lyapunov drift as

∆(Θt),E [L(Θt+1)− L(Θt)|Θt] . The drift-minus-welfare

function is given by ∆(Θt)−V E

[

∑N

i=1 ωiU(zi,t)− et|Θt

]

,

where V ∈ (0, Vmax] is the weight associated with the welfare

objective. Hence, the larger V , the more weight is put on the

welfare objective.

Furthermore, we assume that for the i-th EV, the conditional

expectation of the energy state difference ∆i,k, given the queue

backlogs before the EV returns, is zero, i.e.,

A3) E[∆i,k|Θt] = 0, for t = tir,k+1 − 1, ∀k ∈ {1, 2, · · · }, ∀i.

Note that A3 is mild, considering the random behavior of each

EV due to other activities.

Now we provide an upper bound on the drift-minus-welfare

function in the following proposition.

Proposition 1: Under the assumptions A1 and A3, the drift-

minus-welfare function is upper-bounded as

∆(Θt)− V E

[

N
∑

i=1

ωiU(zi,t)− et|Θt

]

≤ B +

N
∑

i=1

Ki,tE[bi,t|Θt] +

N
∑

i=1

Hi,tE[zi,t − xi,t|Θt]

+

N
∑

i=1

Ji,tE [1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up|Θt]

− V E

[

N
∑

i=1

ωiU(zi,t)− et

∣

∣

∣Θt

]

, (24)

where

B,
1

2

N
∑

i=1

[

2x2
i,max +∆2

i,max + [c2i,up, (ci,max − ci,up)
2]+
]

.

(25)

Proof: See Appendix C.

Adopting the general framework of Lyapunov optimization

[16], we now propose the WMRA algorithm by minimizing

the upper bound on the drift-minus-welfare function in (24) at

each time slot. We will show in Section IV that the proposed

algorithm can lead to a guaranteed performance.

The minimization problem is equivalent to the fol-

lowing decoupled sub-problems with respect to zt, xd,t,

and xu,t, separately. Denote the solutions produced by

WMRA as z̃t,[z̃1,t, · · · , z̃N,t], x̃d,t,[x̃1d,t, · · · , x̃Nd,t], and

x̃u,t,[x̃1u,t, · · · , x̃Nu,t], respectively. Specifically, we obtain

z̃i,t, ∀i, by solving (a):

(a): min
zi,t

Hi,tzi,t − ωiV U(zi,t) s.t. 0 ≤ zi,t ≤ xi,max.

For Gt > 0, we obtain x̃d,t by solving (b1):

(b1): min
xd,t

V es,t
(

Gt −

N
∑

i=1

xid,t

)

−

N
∑

i=1

Hi,txid,t

+

N
∑

i=1

Ji,tCi(xid,t) +

N
∑

i=1

Ki,txid,t

Algorithm 1 Welfare-maximizing regulation allocation

(WMRA) algorithm.

1: The aggregator initializes the virtual queue vector Θ0, and

re-initialize Ki,t = si,t − ci for t ∈ Ti,r, ∀i.
2: At the beginning of each time slot t, the aggregator

performs the following steps sequentially.

(2a) Observe Gt, es,t, ed,t,1t, Jt, Ht, and Kt.

(2b) Solve (a) and record an optimal solution z̃t. If

Gt > 0, solve (b1) and record an optimal solution

x̃d,t. If Gt < 0, solve (b2) and record an optimal

solution x̃u,t. Allocate the regulation amounts among

EVs based on x̃d,t and x̃u,t. If
∑N

i=1 x̃id,t < Gt

or
∑N

i=1 x̃iu,t < |Gt|, clear the imbalance using

external energy sources.

(2c) Update the virtual queues Ji,t, Hi,t, and Ki,t, ∀i,
based on (19), (20), and (21b), respectively.

s.t. 0 ≤ xid,t ≤ 1i,txi,max,

N
∑

i=1

xid,t ≤ Gt.

For Gt < 0, we obtain x̃u,t by solving (b2):

(b2): min
xu,t

V ed,t
(

|Gt| −

N
∑

i=1

xiu,t

)

−

N
∑

i=1

Hi,txiu,t

+

N
∑

i=1

Ji,tCi(xiu,t)−

N
∑

i=1

Ki,txiu,t

s.t. 0 ≤ xiu,t ≤ 1i,txi,max,

N
∑

i=1

xiu,t ≤ |Gt|.

Note that (a), (b1), and (b2) are all convex problems, so

they can be efficiently solved using standard methods such

as the interior point method [22]. We summarize WMRA in

Algorithm 1. Note from Steps (2b) and (2c) that, the solutions

of (a) and (b1) (or (b2)) affect each other over multiple time

slots through the update of Hi,t, ∀i. To perform WMRA, no

statistical information of the system is needed, which makes

the algorithm easy to implement.

IV. PERFORMANCE ANALYSIS

In this section, we characterize the performance of WMRA

with respect to our original problem P1.

A. Properties of WMRA Algorithm

We now show that WMRA can ensure the boundedness of

each EV’s energy state. The following lemma characterizes

sufficient conditions under which the solution of x̃id,t and x̃iu,t

under WMRA is zero.

Lemma 4: Under the WMRA algorithm, for any t ∈ Ti,p,

1) for Gt > 0, if Ki,t > xi,max + V (ωiµ + emax), then

x̃id,t = 0, which means that Ki,t+1 cannot be increased

at the next time slot; and

2) for Gt < 0, if Ki,t < −xi,max − V (ωiµ + emax), then

x̃iu,t = 0, which means that Ki,t+1 cannot be decreased

at the next time slot.

Proof: See Appendix D.
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Since Lemma 4 on the other hand provides conditions under

which queue backlog Ki,t can no longer increase or decrease,

using Lemma 4, we can prove the boundedness of Ki,t below.

Lemma 5: Under the WMRA algorithm, queue backlog

Ki,t associated with the i-th EV is bounded within [si,min −
ci, si,max − ci], ∀t ∈ Ti,p ∪ Ti,l.

Proof: See Appendix E.

In the proof of Lemma 5, we remark on the specific designs

of ci and Vmax, which are to ensure the boundedness of Ki,t

within a shifted preferred energy range.

From Lemma 5, the boundedness condition of Ki,t in

Lemma 3 is now satisfied, therefore the conclusion there is

true under WMRA. Since Ki,t = si,t − ci, ∀t ∈ Ti,p ∪ Ti,l,
using Lemma 5, the following lemma is straightforward.

Lemma 6: Under the WMRA algorithm, the energy state of

the i-th EV is bounded within [si,min, si,max], ∀t ∈ Ti,p ∪Ti,l.
From Lemma 6, the constraints (4) and (5) in P2 are met

under WMRA.

B. Optimality of WMRA Algorithm

In this subsection, we investigate the optimality of WMRA

by considering EVs with both predictable and random dynam-

ics, which are described below.

1) EVs with predictable dynamics: Predictable dynamics

could happen when each EV joins and leaves the

aggregator-EVs system regularly (e.g. from 9am to 12pm

in the morning, then from 2pm to 6pm in the afternoon).

Therefore, the leaving and returning time slots of each

EV can be predicted by the aggregator. In other words,

the aggregator is aware of the realization of 1t, ∀t in

advance. In this case, the random system state at time

slot t is defined as At,(Gt, es,t, ed,t). A specific case

of EVs with predictable dynamics is static EVs, i.e.,

1i,t = 1, ∀i, t2.

2) EVs with random dynamics: If the EVs do not partic-

ipate in the aggregator-EVs system regularly, then the

aggregator cannot predict their dynamics beforehand, and

therefore has to observe 1t every time slot. In this case,

the random system state at time slot t is defined as

At,(Gt, es,t, ed,t,1t).

Note that the WMRA algorithm is the same under both of

the above cases. The only difference between them is that, in

the optimization problem P3, the expectations are taken over

different randomness of the system state. The performance

under WMRA as compared to the optimal solution of P1

is given in the following theorem, which applies to both

predictable and random dynamics.

Theorem 1: Under the assumptions A1, A2, and A3, given

the system state At is i.i.d. over time,

1) (x̃d,t, x̃u,t) is feasible for P1, i.e., it satisfies (4)–(8).

2) f1(x̃d,t, x̃u,t) ≥ f1(x
opt

d,t,x
opt
u,t) −

B
V
, where B is defined

in (25) and V ∈ (0, Vmax].

Proof: See Appendix F.

Remarks: From Theorem 1, the welfare performance of

WMRA is away from the optimum by O(1/V ). Hence, the

2In this work, we focus on the investigation of non-static EVs. For static
EVs, the interested reader is referred to [17] for details.

larger V , the better the performance of WMRA. However, in

practice, due to the boundedness condition of EV’s battery

capacity, V cannot be arbitrarily large and is upper bounded

by Vmax, which is defined in (22). Note that Vmax increases

with the smallest span of the EVs’ preferred battery capacity

ranges, i.e., min1≤i≤N{si,max − si,min}. Therefore, roughly

speaking, the performance gap between WMRA and the

optimum decreases as the smallest battery capacity increases.

Asymptotically, as the EVs’ battery capacities go to infinity,

WMRA would achieve exactly the optimum.

In Theorem 1, the i.i.d. condition of At can be relaxed to

Markovian, and a similar performance bound can be obtained.

In particular, this relaxed condition can accommodate the case

where Gt is Markovian and has a ramp rate constraint (|Gt−
Gt−1| ≤ ramp rate ×∆t), by properly designing the transition

probability matrix of Gt.

Theorem 2: Under the assumptions A1, A2, and A3, given

that the system state At evolves based on a finite state

irreducible and aperiodic Markov chain,

1) (x̃d,t, x̃u,t) is feasible for P1, i.e., it satisfies (4)–(8).

2) f1(x̃d,t, x̃u,t) ≥ f1(x
opt

d,t,x
opt
u,t) − O(1/V ), where V ∈

(0, Vmax].

Proof: The above results can be proved by expanding the

proof of Theorem 1 using a multi-slot drift technique [16]. We

omit the proof here for brevity.

V. SIMULATION RESULTS

Besides the analytical performance bound derived above,

we are further interested in evaluating WMRA in example

numerical settings. Towards this goal, we have developed an

aggregator-EVs model in Matlab and compared WMRA with

a greedy algorithm.

Suppose that the aggregator is connected with N = 100
EVs, evenly split into Type I (based on the 2012 Ford Focus

Electric) and Type II (based on the Tesla Model S base model).

The parameters of Type I and Type II EVs are summarized in

Table I [21], [23]. The maximum regulation amount xi,max can

be derived by multiplying the maximum charging/discharging

rate with the regulation interval ∆t. In current practice, ∆t is

of the order of seconds. For example, for PJM, ∆t = 2 seconds

[24], and for NYISO, ∆t = 6 seconds [25]. In simulations,

we set ∆t = 5 seconds as an example.

Consider that the system state At = (Gt, es,t, ed,t,1t)
follows a finite state irreducible and aperiodic Markov chain.

For the regulation signal Gt, we ignore the ramp rate constraint

in our simulations. At each time slot, we draw a sample of Gt

from a uniformly distributed set {−1.15,−1.15+∆1,−1.15+
2∆1, · · · , 1.15} (kWh) with the cardinality 200, where 1.15
kWh is the maximum allowed regulation amount at each time

slot if all N EVs are in the system. The unit costs of the

external sources, es,t and ed,t, are drawn uniformly from a

discrete set {0.1, 0.1+∆2, 0.1+2∆2, · · · , 0.12} (dollars/kWh)

with the cardinality 200. The lower bound 0.1 dollars/kWh

and the upper bound 0.12 dollars/kWh correspond to the mid-

peak and the on-peak electricity prices in Ontario, respectively

[26]. The dynamics of each EV is described by the indicator

random variable 1i,t, which represents whether the i-th EV

is in the system at time slot t. In particular, we assume that
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TABLE II
PARAMETERS OF TYPE I AND TYPE II EVS

Type I EV Type II EV

Energy capacity si,cap (kWh) 23 40

Maximum charging/discharging rate (kW) 6.6 10

1i,t = 1 1i,t = 0

0.05

1-p

p = 0.95

0.95

Fig. 1. Transition probabilities of 1i,t,∀i.

1i,t follows a two-state Markov chain as shown in Fig. 1. The

state transition probability p,P(0 → 1) is set to be 0.95 by

default.

For the i-th EV, the (k+1)-th returning energy state si,tir,k+1

is drawn uniformly from the interval [si,til,k−∆3, si,til,k+∆3],
where si,til,k is the k-th leaving energy state of the i-th EV and

∆3 = 5%si,cap
3. We set the minimum preferred energy state

si,min = 0.1si,cap, and the maximum preferred energy state

si,max = 0.9si,cap except otherwise mentioned. In the objective

function of P1, we set U(x) = log(1 + x) and ωi = 1, ∀i.
Since the degradation cost function Ci(·) is proprietary and

unavailable, in simulations, we set Ci(x) = x2 as an example.

The upper bound ci,up is set to be x2
i,max/4.

To allocate the requested regulation amount, we apply

WMRA in Algorithm 1 at each time slot. For comparison, we

consider a greedy algorithm which only optimizes the system

performance at the current time slot. The regulation allocation

at each time slot is determined by the following optimization

problem.

max
xd,t,xu,t

(

N
∑

i=1

ωiU(xi,t)

)

− et

s.t. (4), (5), (6), (7), and

1d,tCi(xid,t) + 1u,tCi(xiu,t) ≤ ci,up, ∀i.

The above problem is a convex optimization problem, and we

use the standard solver in MATLAB to obtain its solution.

In Figs. 2 and 3, we compare the performance of WMRA

with V = Vmax and the performance of the greedy algorithm.

From Fig. 2, with si,max = 0.9si,cap, WMRA is uniformly

superior to the greedy algorithm over all time slots, with

the advantage about 40%. In Fig. 3, we set the transition

probability p to be 0.95 and 0.05, and vary si,max from

0.3si,cap to 0.9si,cap. For p = 0.95, the observations are

as follows. First, WMRA uniformly outperforms the greedy

algorithm over different values of si,max. Second, as si,max

increases, the social welfare under WMRA slightly rises. This

is because increasing si,max effectively increases Vmax, which

improves the performance of WMRA. This observation is also

consistent with the remarks after Theorem 1. In contrast, the

greedy algorithm cannot benefit from the expanded energy

range. For p = 0.05, the trends of the curves resemble those

3We ensure that all returning energy states are within the preferred range
[si,min, si,max] by ignoring unqualified samples.
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Fig. 2. Time-averaged social welfare with V = Vmax.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

s
i,max

/s
i,cap

S
o

c
ia

l 
w

e
lf
a

re

 

 

WMRA algorithm: V = V
max

 and p = 0.95

WMRA algorithm: V = V
max

 and p = 0.05

Greedy algorithm: p = 0.95
Greedy algorithm: p = 0.05

Fig. 3. Time-averaged social welfare with various si,max and V = Vmax.

for p = 0.95, but the social welfare of both algorithms drops.

This is because when p is decreased, roughly speaking, there

are fewer EVs in the system for the regulation service. Hence,

to provide the requested regulation amount, the aggregator

more relies on the expensive external energy sources, which

leads to a decreased social welfare.

In Fig. 4, we show the performance of WMRA with the

value of V ranging from 0.2Vmax to 5Vmax, and compare it

with the performance of the greedy algorithm. For WMRA, as

expected, the social welfare grows with the value of V ; also,

the growing rate slows down when V gets larger. Moreover, we

observe that WMRA outperforms the greedy algorithm even

with V = 0.2Vmax.

In Lemma 6, the energy state of each EV is shown to

be restricted within [si,min, si,max] when V ∈ (0, Vmax]. In

Fig. 5, for V being Vmax, 2Vmax, and 5Vmax, we show the

evolution of a Type I EV’s energy state under WMRA. We

see that, when V = Vmax, the energy state is always within

the preferred range. In contrast, when V = 2Vmax or 5Vmax,

the associated energy state can exceed the preferred range from
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time to time. Furthermore, the larger V the more frequently

such violation happens. Therefore, the observations in Figs.

4 and 5 demonstrate the significance of Vmax in achieving

the maximum social welfare under WMRA considering the

constraint of EV’s preferred energy range.

VI. CONCLUSION

We studied a practical model of a dynamic aggregator-

EVs system providing regulation service to a power grid. We

formulated the regulation allocation optimization as a long-

term time-averaged social welfare maximization problem. Our

formulation accounts for random system dynamics, battery

constraints, the costs for battery degradation and external

energy sources, and especially, the dynamics of EVs. Adopting

a general Lyapunov optimization framework, we developed

a real-time WMRA algorithm for the aggregator to fairly

allocate the regulation amount among EVs. The algorithm does

not require any knowledge of the statistics of the system state.

We were able to bound the performance of WMRA to that

under the optimal solution, and showed that the performance

of WMRA is asymptotically optimal as EVs’ battery capacities

go to infinity. Simulation demonstrated that WMRA offers

substantial performance gains over a greedy algorithm that

maximizes per-slot social welfare objective.

APPENDIX A

PROOF OF LEMMA 1

It is easy to see that (x∗
d,t,x

∗
u,t) is feasible for P1. To show

that (xopt

d,t,x
opt
u,t, z̄

opt
t ) is feasible for P2, it suffices to show that

z̄
opt
t satisfies (10) and (11). Using the definition of z̄opt

i,t , (11)

naturally holds. Also, since x
opt
i,t lies in [0, xi,max], which is a

closed interval, (10) holds.

We claim that

f1(x
opt

d,t,x
opt
u,t) = f2(x

opt

d,t,x
opt
u,t, z̄

opt
t )

≤ f2(x
∗
d,t,x

∗
u,t, z

∗
t )

≤ f1(x
∗
d,t,x

∗
u,t)

≤ f1(x
opt

d,t,x
opt
u,t). (26)

Using the definition of z̄opt
i,t in f2(·), the first equality holds.

The first and the third inequalities hold since (x∗
d,t,x

∗
u,t, z

∗
t )

and (xopt

d,t,x
opt
u,t) are optimal for f2(·) and f1(·), respectively.

The second inequality is derived using Jensen’s inequality for

concave functions. Since (26) is satisfied with equality, all

inequalities in (26) turn into equalities, which indicates the

equivalence of P1 and P2.

APPENDIX B

PROOF OF LEMMA 2

Let T be large enough. For the i-th EV, decompose the total

effective charging/discharging amount within T time slots as

T−1
∑

t=0

bi,t =

til,k∗−1
∑

t=0

bi,t +

T−1
∑

t=til,k∗

bi,t, (27)

where k∗,max{k : til,k ≤ (T−1), k ∈ {1, 2, · · · }} is defined

to be the total number of the leaving times of the i-th EV up

to time slot T−1. On the right hand side of (27), the first term

corresponds to the total effective charging/discharging amount

before the last leaving time, and the second term corresponds

to the rest of the total effective charging/discharging amount.

Using the decomposition in (27), to show (14), it suffices

to show that the two limits limT→∞
1
T
E[
∑til,k∗−1

t=0 bi,t] and

limT→∞
1
T
E[
∑T−1

t=til,k∗

bi,t] are both equal to zero.

First consider the second limit. For the i-th EV, if there is

no return between til,k∗ and T−1, then
∑T−1

t=til,k∗

bi,t = 0 and

thus limT→∞
1
T
E[
∑T−1

t=til,k∗

bi,t] = 0. Or, if there is one return,

then
∑T−1

t=til,k∗

bi,t = si,T −si,tir,k∗+1
. Using the boundedness

condition of si,t, we have limT→∞
1
T
E[
∑T−1

t=til,k∗

bi,t] = 0.

Together, the second limit is zero.

Next we show that the first limit is also zero. Based on the

energy state evolution in (1), there is

til,k∗−1
∑

t=0

bi,t=

k∗

∑

k=1

si,til,k −

k∗

∑

k=1

si,tir,k
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= si,til,k∗
− si,tir,1 −

k∗−1
∑

k=1

∆i,k. (28)

Taking expectations of both sides of (28), dividing them by

T , then taking limits gives

lim
T→∞

1

T
E

[ til,k∗−1
∑

t=0

bi,t

]

= lim
T→∞

1

T
E

[

si,til,k∗
− si,tir,1

]

− lim
T→∞

1

T
E

[

k∗−1
∑

k=1

∆i,k

]

= 0,

where the last equality is derived by the boundedness of si,t
and the assumption A2. This completes the proof.

APPENDIX C

PROOF OF PROPOSITION 1

Based on the definition of L(Θt), the difference

L(Θt+1)− L(Θt)

=
1

2

N
∑

i=1

H2
i,t+1 + J2

i,t+1 +K2
i,t+1 −H2

i,t − J2
i,t −K2

i,t. (29)

In (29), H2
i,t+1−H2

i,t and J2
i,t+1−J2

i,t can be upper bounded

as follows.

H2
i,t+1 −H2

i,t ≤ 2Hi,t(zi,t − xi,t) + x2
i,max (30)

J2
i,t+1 − J2

i,t ≤ 2Ji,t[1d,tCi(xid,t) + 1u,tCi(xiu,t)− ci,up]

+ [c2i,up, (ci,max − ci,up)
2]+. (31)

Taking conditional expectations for both sides in (30) and

(31), we have

E[H2
i,t+1 −H2

i,t|Θt] ≤ 2Hi,tE[zi,t − xi,t|Θt] + x2
i,max (32)

E[J2
i,t+1 − J2

i,t|Θt] ≤ 2Ji,tE[1d,tCi(xid,t) + 1u,tCi(xiu,t)

− ci,up|Θt] + [c2i,up, (ci,max − ci,up)
2]+. (33)

Now consider K2
i,t+1 − K2

i,t. When 1i,t = 1, we have

Ki,t+1 = Ki,t + bi,t and thus

K2
i,t+1 −K2

i,t ≤ 2Ki,tbi,t + x2
i,max. (34)

When 1i,t = 0, we have bi,t = 0 and there are two cases. First,

for t ∈ {til,k, til,k+1, · · · , tir,k+1−2}, ∀k ∈ {1, 2, · · · }, there

is Ki,t+1 = Ki,t. So, we can express

K2
i,t+1 −K2

i,t = 2Ki,tbi,t. (35)

Second, for t = tir,k+1 − 1, ∀k ∈ {1, 2, · · · }, we have Ki,t =
si,til,k−ci and Ki,t+1 = Ki,t+∆i,k. Hence, by the assumption

A1,

K2
i,t+1 −K2

i,t ≤ 2Ki,t∆i,k +∆2
i,max. (36)

Using the assumption A3, from (34), (35), and (36), we have

E[K2
i,t+1 −K2

i,t|Θt] ≤ 2Ki,tE[bi,t|Θt] + x2
i,max +∆2

i,max.
(37)

Using the definition of ∆(Θt) and the upper bounds in (32),

(33), and (37), we can derive the upper bound on the drift-

minus-welfare function in Proposition 1.

APPENDIX D

PROOF OF LEMMA 4

We need the following lemma.

Lemma 7: Under the WMRA algorithm, queue backlog

Hi,t associated with the i-th EV is upper bounded as follows:

Hi,t ≤ V ωiµ+ xi,max.

Proof: This can be shown using a similar method as in

[16], and the technical condition (9) is needed.

1) Consider Gt > 0. Suppose that when Ki,t > xi,max +
V (ωiµ + emax), one optimal solution under WMRA is x̃d,t

with x̃id,t > 0. Then we show that we can find another solution

with x̃jd,t, ∀j 6= i and x̃id,t = 0 resulting in a strictly smaller

objective value, which is a contradiction.

Using the objective function of (b1), this is equivalent to

showing that

V es,t



Gt −

N
∑

j=1

x̃jd,t



−

N
∑

j=1

Hj,tx̃jd,t

+

N
∑

j=1

Jj,tCj(x̃jd,t) +

N
∑

j=1

Kj,tx̃jd,t

> V es,t



Gt −

N
∑

j=1

x̃jd,t + x̃id,t



−
∑

j 6=i

Hj,tx̃jd,t

+
∑

j 6=i

Jj,tCj(x̃jd,t) +
∑

j 6=i

Kj,tx̃jd,t,

which is equivalent to

−Hi,tx̃id,t + Ji,tCi(x̃id,t) +Ki,tx̃id,t > V es,tx̃id,t. (38)

Since JiCi(x̃id,t) ≥ 0, from (38), it suffices to show that

(Ki,t −Hi,t − V es,t)x̃id,t > 0. (39)

Since x̃id,t > 0, (39) is true by using the assumption that

Ki,t > xi,max + V (ωiµ+ emax) and Lemma 7 in which Hi,t

is upper bounded.

2) Consider Gt < 0. Suppose that when Ki,t < −xi,max −
V (ωiµ + emax), one optimal solution under WMRA is x̃u,t

with x̃iu,t > 0. Then there is a contradiction since we can

construct another solution with x̃ju,t, ∀j 6= i and x̃iu,t = 0
which results in a strictly smaller objective value. The proof

is similar as that in 1) and is omitted here.

APPENDIX E

PROOF OF LEMMA 5

Consider the set {tir,k, tir,k + 1, · · · , til,k} for any k ∈
{1, 2, · · · }. We show below that Ki,t is bounded for any t
in such set by induction.

First consider the upper bound. For the time slot tir,k, based

on (21) and si,tir,k ≤ si,max, there is Ki,tir,k ≤ si,max − ci.
Assume that the upper bound holds for time slot t and consider

the following two cases of Ki,t.

Case 1: xi,max + V (ωiµ+ emax) < Ki,t ≤ si,max − ci (We

can check that xi,max + V (ωiµ + emax) < si,max − ci since

V ≤ Vmax). For Gt > 0, from Lemma 4 1), there is x̃id,t = 0.
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Therefore, Ki,t+1 = Ki,t ≤ si,max − ci. For Gt < 0, we have

Ki,t+1 = Ki,t − xiu,t ≤ Ki,t ≤ si,max − ci.
Case 2: Ki,t ≤ xi,max + V (ωiµ + emax). From (21),

Ki,t+1 ≤ 2xi,max + V (ωiµ + emax) ≤ si,max − ci, where

the last inequality holds since V ≤ Vmax.

Now look at the lower bound. For the time slot tir,k, based

on (21) and si,tir,k ≥ si,min, there is Ki,tir,k ≥ si,min − ci.
Assume that the lower bound holds for time slot t and consider

the following two cases of Ki,t.

Case 1′: si,min − ci ≤ Ki,t < −xi,max − V (ωiµ + emax)
(We can check that si,min − ci < −xi,max − V (ωiµ + emax)
since xi,max > 0). For Gt < 0, from Lemma 4 2), there is

x̃iu,t = 0. Therefore, Ki,t+1 = Ki,t ≥ si,min−ci, For Gt > 0,

we have Ki,t+1 = Ki,t + xid,t ≥ Ki,t ≥ si,min − ci.
Case 2′: Ki,t ≥ −xi,max − V (ωiµ + emax). From (21),

Ki,t+1 ≥ −2xi,max−V (ωiµ+emax), which is exactly si,min−
ci.

Remarks: To track the energy state si,t, in principle, the shift

ci can be any number. However, to make the proof in Case 2′

work, ci is lower bounded, i.e., should satisfy ci = si,min +
2xi,max + V (ωiµ+ emax) + ǫ1 where ǫ1 ≥ 0. For the design

of Vmax, to make the proof in Case 1 work, it is sufficient to

let Vmax = min1≤i≤N

{

si,max−si,min−3xi,max−ǫ1−ǫ2
2(ωiµ+emax)

}

where

ǫ2 > 0. Based on the proof in Case 2, ǫ1 and ǫ2 are further

determined as 0 and xi,max, respectively, to make Vmax as

large as possible.

APPENDIX F

PROOF OF THEOREM 1

We first give the following fact, which is a direct conse-

quence of the results in [16].

Lemma 8: There exists a stationary randomized regulation

allocation solution (xs
d,t,x

s
u,t) that only depends on the system

state At, and there are

E[xs
i,t] = zsi , ∀i, for some zsi ∈ [0, xi,max], (40)

E[est ]−

N
∑

i=1

ωiU(zsi ) ≤ −f2(x̂d,t, x̂u,t, ẑt), (41)

E[1d,tCi(x
s
id,t) + 1u,tCi(x

s
iu,t)] ≤ ci,up, ∀i, and (42)

E[bsi,t] = 0, ∀i, (43)

where the expectations are taken over the randomness of the

system and the randomness of (xs
d,t,x

s
u,t), and (x̂d,t, x̂u,t, ẑt)

is an optimal solution for P3.

1) For brevity, define Wt,

(

∑N

i=1 ωiU(zi,t)
)

− et. Since

WMRA minimizes the upper bound in (24), plug (xs
d,t,x

s
u,t)

on the right hand side of (24) together with zi,t = zsi , ∀t, we

have

∆(Θt)− V E

[

W̃t|Θt

]

≤ B − V f2(x̂d,t, x̂u,t, ẑt), (44)

where (40), (41), (42), and (43) are used. Since W̃t ≤
∑N

i=1 ωiU(xi,max), from (44),

∆(Θt) ≤ D,B + V

(

N
∑

i=1

ωiU(xi,max)− f2(x̂d,t, x̂u,t, ẑt)

)

.

Using Theorem 4.1 in [16], E[|Hi,t|] and E[|Ji,t|] are up-

per bounded by
√

2tD + 2E[L(Θ0)], ∀t. Hence, the virtual

queues Hi,t and Ji,t are mean rate stable and the following

limit constraints hold.

lim
T→∞

1

T

T−1
∑

t=0

E[z̃i,t] = lim
T→∞

1

T

T−1
∑

t=0

E[x̃i,t], ∀i, (45)

lim
T→∞

1

T

T−1
∑

t=0

E [1d,tCi(x̃id,t) + 1u,tCi(x̃iu,t)] ≤ ci,up, ∀i.

Since si,t is bounded under WMRA by Lemma 6, using

Lemma 2, we have limT→∞
1
T

∑T−1
t=0 E[b̃i,t] = 0, ∀i. In

addition, note that (x̃d,t, x̃u,t) is derived under the constraints

of the optimization problems (a), (b1), and (b2). Therefore,

we have that (x̃d,t, x̃u,t) is feasible for P3, P2, and P1.

2) Taking expectations of both sides of (44) and summing

over t ∈ {0, 1, · · · , T − 1} for some T > 1, we have

1

T

T−1
∑

t=0

E[W̃t]≥
E [L(ΘT )− L(Θ0)]

V T
+ f2(x̂d,t, x̂u,t, ẑt)− B/V

≥f2(x̂d,t, x̂u,t, ẑt)−B/V − E[L(Θ0)]/V T, (46)

where (46) holds since L(ΘT ) is non-negative. Also,

1

T

T−1
∑

t=0

E[W̃t] =
1

T

T−1
∑

t=0

E

[(

N
∑

i=1

ωiU(z̃i,t)

)

− ẽt

]

≤

N
∑

i=1

ωiU

(

1

T

T−1
∑

t=0

E[z̃i,t]

)

−
1

T

T−1
∑

t=0

E[ẽt], (47)

where the inequality in (47) is derived using Jensen’s inequal-

ity for concave functions. Combining (46) and (47) and taking

limits on both sides, there is

N
∑

i=1

ωiU

(

lim
T→∞

1

T

T−1
∑

t=0

E[z̃i,t]

)

− lim
T→∞

1

T

T−1
∑

t=0

E[ẽt]

≥f2(x̂d,t, x̂u,t, ẑt)−B/V (48)

≥f2(x
∗
d,t,x

∗
u,t, z

∗
t )−B/V (49)

=f1(x
opt

d,t,x
opt
u,t)−B/V, (50)

where (x∗
d,t,x

∗
u,t, z

∗
t ) and (xopt

d,t,x
opt
u,t) are defined in Section

III-A, (48) holds since E[L(Θ0)] is bounded, (49) holds since

the feasible set of the optimization variables is enlarged from

P2 to P3, and (50) is true due to Lemma 1.

Rewrite the objective function of P1 under WMRA, i.e.,

f1(x̃d,t, x̃u,t), as

N
∑

i=1

ωiU

(

lim
T→∞

1

T

T−1
∑

t=0

E[z̃i,t]

)

− lim
T→∞

1

T

T−1
∑

t=0

E[ẽt]

+

N
∑

i=1

ωiU

(

lim
T→∞

1

T

T−1
∑

t=0

E[x̃i,t]

)

−

N
∑

i=1

ωiU

(

lim
T→∞

1

T

T−1
∑

t=0

E[z̃i,t]

)

.

Due to (45), the last two terms cancel each other. Hence, by

(50), we have f1(x̃d,t, x̃u,t) ≥ f1(x
opt

d,t,x
opt
u,t) − B/V , which

completes the proof.



12

REFERENCES

[1] U.S. Dept. Energy, “One million electric vehicles by 2015,” Tech. Rep.,
Feb. 2011.

[2] C. Guille and G. Gross, “A conceptual framework for the vehicle-to-
grid (V2G) implementation,” Energy Policy, vol. 37, pp. 4379–4390,
Nov. 2009.

[3] W. Kempton and J. Tomic, “Vehicle-to-grid power fundamentals: calcu-
lating capacity and net revenue,” J. Power Sources, vol. 144, pp. 268–
279, Jun. 2005.

[4] B. Kirby, “Frequency regulation basics and trends,” U.S. Dept. Energy,
Tech. Rep., 2005.

[5] W. Kempton, V. Udo, K. Huber, K. Komara, S. Letendre, S. Baker, D.
Brunner, and N. Pearre, “A test of vehicle-to-grid (V2G) for energy
storage and frequency regulation in the PJM system,” Tech. Rep.,
Nov. 2008. [Online]. Available: http://www.udel.edu/V2G/resources/
test-v2g-in-pjm-jan09.pdf

[6] R. Bessa and M. Matos, “Economic and technical management of an
aggregation agent for electric vehicles: a literature survey,” Eur. Trans.

Elect. Power, vol. 22, pp. 334–350, Apr. 2011.
[7] J. Garzas, A. Armada, and G. Granados, “Fair design of plug-in electric

vehicles aggregator for V2G regulation,” IEEE Trans. Veh. Technol.,
vol. 61, pp. 3406–3419, Oct. 2012.

[8] S. Han, S. Han, and K. Sezaki, “Optimal control of the plug-in electric
vehicles for V2G frequency regulation using quadratic programming,”
in Proc. IEEE ISGT, Jan. 2011.

[9] E. Sortomme and M. Sharkawi, “Optimal scheduling of vehicle-to-grid
energy and ancillary services,” IEEE Trans. Smart Grid, vol. 3, pp. 351–
359, Mar. 2012.

[10] S. Han, S. Han, and K. Sezaki, “Development of an optimal vehicle-
to-grid aggregator for frequency regulation,” IEEE Trans. Smart Grid,
vol. 1, pp. 65–72, Jun. 2010.

[11] W. Shi and V. Wong, “Real-time vehicle-to-grid control algorithm under
price uncertainty,” in Proc. IEEE SmartGridComm, Oct. 2011.

[12] C. Wu, H. Rad, and J. Huang, “Vehicle-to-aggregator interaction game,”
IEEE Trans. Smart Grid, vol. 3, pp. 434–441, Mar. 2012.

[13] M. Neely, A. Tehrani, and A. Dimakis, “Efficient algorithms for re-
newable energy allocation to delay tolerant consumers,” in Proc. IEEE

SmartGridComm, Oct. 2010.
[14] S. Chen, P. Sinha, and N. Shroff, “Scheduling heterogeneous delay

tolerant tasks in smart grid with renewable energy,” in Proc. IEEE CDC,
Dec. 2012.

[15] Y. Huang, S. Mao, and R. Nelms, “Adaptive electricity scheduling in
microgrids,” in Proc. IEEE INFOCOM, Apr. 2013.

[16] M. Neely, Stochastic Network Optimization with Application to Com-

munication and Queueing Systems. Morgan & Claypool, 2010.
[17] S. Sun, M. Dong, and B. Liang, “Real-time welfare-maximizing regu-

lation allocation in aggregator-EVs systems,” in Proc. IEEE INFOCOM

Workshop on CCSES, Apr. 2013.
[18] S. Han, S. Han, and K. Sezaki, “Economic assessment on V2G frequency

regulation regarding the battery degradation,” in Proc. IEEE ISGT, Jan.
2012.

[19] S. Shakkottai and R. Srikant, Network Optimization and Control. Now
Publishers Inc, 2007.

[20] R. Urgaonkar, B. Urgaonkar, M. Neely, and A. Sivasubramaniam,
“Optimal power cost management using stored energy in data centers,”
in Proc. ACM SIGMETRICS, 2011.

[21] Tesla Model S. [Online]. Available: http://www.teslamotors.com/
[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[23] Ford Focus Electric. [Online]. Available: http://www.ford.ca/cars/focus/
[24] “Fast response regulation signal.” [Online]. Avail-

able: http://www.pjm.com/markets-and-operations/ancillary-services/
mkt-based-regulation/fast-response-regulation-signal.aspx

[25] “Ancillary services manual.” [Online]. Available:
http://www.nyiso.com/public/webdocs/markets operations/documents/
Manuals and Guides/Manuals/Operations/ancserv.pdf

[26] “Electricity prices in ontario.” [Online]. Available: http://www.
ontarioenergyboard.ca/OEB/Consumers/Electricity/Electricity+Prices

Sun Sun (S’11) received the B.S. degree in Electri-
cal Engineering and Automation from Tongji Uni-
versity, Shanghai, China, in 2005. From 2006 to
2008, she was a software engineer in the Depart-
ment of GSM Base Transceiver Station of Huawei
Technologies Co. Ltd.. She received the M.Sc. de-
gree in Electrical and Computer Engineering from
University of Alberta, Edmonton, Canada, in 2011.
Now, she is pursuing her Ph.D. degree in the De-
partment of Electrical and Computer Engineering of
University of Toronto, Toronto, Canada. Her current

research interest lies in the areas of stochastic optimization and distributed
control, with the application of energy management in smart grid.

Min Dong (S’00-M’05-SM’09) received the B.Eng.
degree from Tsinghua University, Beijing, China, in
1998, and the Ph.D. degree in electrical and com-
puter engineering with minor in applied mathematics
from Cornell University, Ithaca, NY, in 2004. From
2004 to 2008, she was with Corporate Research
and Development, Qualcomm Inc., San Diego, CA.
In 2008, she joined the Department of Electrical,
Computer and Software Engineering at University
of Ontario Institute of Technology, Ontario, Canada,
where she is currently an Associate Professor. She

also holds a status-only Associate Professor appointment with the Depart-
ment of Electrical and Computer Engineering, University of Toronto since
2009. Her research interests are in the areas of statistical signal processing
for communication networks, cooperative communications and networking
techniques, and stochastic network optimization in dynamic networks and
systems.

Dr. Dong received the Early Researcher Award from Ontario Ministry of
Research and Innovation in 2012, the Best Paper Award at IEEE ICCC in
2012, and the 2004 IEEE Signal Processing Society Best Paper Award. She
was an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS
during 2009-2013, and currently serves as an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING. She has been an elected
member of IEEE Signal Processing Society Signal Processing for Communi-
cations and Networking (SP-COM) Technical Committee since 2013.

Ben Liang (S’94-M’01-SM’06) received honors-
simultaneous B.Sc. (valedictorian) and M.Sc. de-
grees in Electrical Engineering from Polytechnic
University in Brooklyn, New York, in 1997 and
the Ph.D. degree in Electrical Engineering with
Computer Science minor from Cornell University
in Ithaca, New York, in 2001. In the 2001 - 2002
academic year, he was a visiting lecturer and post-
doctoral research associate at Cornell University. He
joined the Department of Electrical and Computer
Engineering at the University of Toronto in 2002,

where he is now a Professor. His current research interests are in mobile
communications and networked systems. He has served as an editor for
the IEEE Transactions on Wireless Communications and an associate editor
for the Wiley Security and Communication Networks journal, in addition to
regularly serving on the organizational or technical committee of a number
of conferences. He is a senior member of IEEE and a member of ACM and
Tau Beta Pi.


