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Unicast Multi-antenna Relay Beamforming with Per-Antenna
Power Control: Optimization and Duality

Min Dong, Senior Member, IEEE, Ben Liang,Senior Member, IEEE, and Qiang Xiao

Abstract—We consider amplify-and-forward multi-antenna re-
laying between a single pair of source and destination under
relay per-antenna power constraints. We design the optimalrelay
processing matrix to minimize the maximum per-antenna power
budget for a received SNR target. With given transmit and
receive beamformers at the source and destination, respectively,
we first focus on the equivalent system with single-antenna
source and destination. Although non-convex, we show that the
optimization satisfies strong Lagrange duality and can be solved
in the Lagrangian dual domain. We reveal a prominent structure
of this problem, by establishing its duality with direct SIMO
beamforming system with an uncertain noise. This enables us
to derive a semi-closed form expression for the optimal relay
processing matrix that depends on a set of dual variables,
which can be determined through numerical optimization with
a significantly reduced problem space. We further show that
the dual problem has a semi-definite programming form, which
enables efficient numerical optimization methods to determine the
dual variables with polynomial complexity. Using this result, the
reverse problem of SNR maximization under a set of relay per-
antenna power constraints is then addressed. We then consider
the maximum relay beamforming achievable rate under different
combinations of antenna setups at source and destination. In
particular, we generalize the duality to MIMO relay beamforming
vs. direct MIMO beamforming, and establish the dual relation
of the two systems for different multi-antenna setups at source
and destination.

Index Terms—multi-antenna relaying, amplify-and-forward,
relay beamforming, per-antenna power, achievable rate, La-
grange duality,

I. I NTRODUCTION

We study the optimal design of multi-antenna relay pro-
cessing in amplify-and-forward (AF) multiple-input multiple-
output (MIMO) relaying systems. With multiple antennas
equipped at the relay, a processing matrix is used to linearly
process the received signals and forward them to the destina-
tion. We specifically consider the relay beamforming problem,
where the processing matrix is designed to maximize the
destination received signal-to-noise (SNR) ratio. The central
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design problem is finding the optimal relay processing matrix.
It often involves finding both the structure of the optimal
processing matrix and the jointly optimal power allocation.

For transmission between a single pair of source and des-
tination, an optimal design of the processing matrix has been
studied under different performance criteria, such as capacity,
diversity gain, SNR maximization, and relay power minimiza-
tion [2]–[6]. For many cases studied, the processing matrix
inherits a beamforming structure characterized by the channels
at the first and second hops. The relay processing design for
multiple sources and/or destinations has also been studied
in [7]–[9]. The explicit solution for the optimal processing
matrix is difficult to obtain in such setups. Either numerical
methods are proposed to obtain approximate solution for the
optimal processing matrix, or suboptimal structure is imposed
to simplify the problem. Regardless of single or multiple pairs
of source and destinations, all these existing results relyon the
sum-power constraint across antennas at the relay. In general,
the sum-power constraint leads to more analytically tractable
problems, allowing certain system structure to be exploredin
obtaining the solution.

In a practical system, however, the implementation of multi-
antenna relaying imposes different power constraints. Each
antenna is limited by its own RF front-end power amplifier, so
that a realistic multi-antenna relay processing design is con-
strained by a per-antenna power budget1. For multiple relays
each equipped with a single antenna to collaboratively forma
virtual multi-antenna system for cooperative communications,
individual antenna power budget is particularly more realistic.
With such per-antenna power constraints, the relay processing
design optimization becomes more challenging. For the caseof
a single pair of source and destination, none of the approaches
developed in [2]–[6] is applicable to solve the problem. To our
best knowledge, no previous related results have been reported.

Aside from the optimal relay processing design, it is also
important to understand the relation between MIMO relay
beamforming systems and direct MIMO beamforming sys-
tems. Whether and in what sense, a MIMO relay system can
be equivalently viewed as some direct MIMO transmission
system. In other words, whether there exists a duality of the
two types of systems. Most existing results focus on the design
of the optimal relay processing matrix but do not provide
insights of such relation.

Our objective in this work is to obtain the solution for the

1Although per-antenna power amplifier is typical in most systems, there has
been some recent progress in microwave and antenna design toprovide central
power supply to multiple antennas from an amplifier network,which could
be used for certain communication systems, such as satellite communications
[10].
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optimal relay processing design in MIMO relay beamforming
with per-antenna power control, and investigate the duality
relation of such relay systems with direct MIMO systems
for both processing design and maximum achievable rate.
Our approach is inspired by the framework in [11] for direct
downlink multi-antenna transmission, where the optimal trans-
mit beamforming design is obtained under per-antenna power
constraints. However, different from downlink beamforming,
multi-antenna relaying structure leads to a unique structure for
the received SNR, which depends on the channels over two
hops and the inherent noise amplification, in addition to the
per-antenna power control at the relay. This complicates the
optimization problem with new challenges.

A. Contributions

We consider the relay processing optimization with per-
antenna power control for unicast dual-hop AF MIMO relaying
system with a single data stream. To design the optimal
relay processing matrix, we first cast the problem as a power
minimization problem to minimize the maximum power con-
sumption among the relay antennas.

Through reformulation, we transform the originally non-
convex problem into an equivalent problem which is shown to
have zero duality gap. Interestingly, through the Lagrangedual
method, we establish a duality between multi-antenna relay
beamforming system and direct single-input multiple-output
(SIMO) beamforming system with a dual SIMO channel
formed by concatenating the two-hop relay channels, and
uncertain noise covariance. This enables us to derive a semi-
closed form expression for the optimal relay processing matrix.
The semi-closed form expression is parameterized by the La-
grangian dual variables to be determined numerically. WithN
relay antennas, this solution not only presents the structure of
the optimal processing matrix, but also allows us to convertthe
original optimization problem withN2 variables and(N +1)
constraints, to one with(N+1) variables and three constraints.
To determine the dual variables, we further show that the
dual problem has a semi-definite programming (SDP) form,
which can be efficiently solved using interior-point methods
with polynomial complexity [12]. This greatly reduces the
computation complexity in determining the final solution. The
solution applies to the case of single-antenna source and
destination, or multi-antenna source and destination withgiven
transmit and beamforming vectors. Discussion of joint design
of the relay processing matrix, and the source/desitnation
beamforming vectors is also provided.

Following the power minimization problem, we further
consider the reverse problem of SNR maximization with given
per-antenna power constraints. We show that the two problems
are inverse problems with monotonic relation of SNR and
power constraints, thus the solution to the SNR problem can
be obtained through iteratively solving the power minimiza-
tion problem along with bisection search. The optimal relay
processing solution obtained enables us not only to compare
the performance difference under per-antenna power and sum-
power constraints, but also to evaluate the performance gap
between the centralized and distributed relay beamforming

systems, under per-antenna/per-node power constraints, to
more accurately quantify the loss due to distributed processing.

We next investigate the maximum achievable rate of the
MIMO relay beamforming system with relay per-antenna
power constraints. For source and destination equipped with a
single antenna, the duality established earlier indicatesthat the
maximum achievable rates of the multi-antenna relay system
and direct SIMO beamforming system are identical. For source
with single antenna and destination with multiple antennas, or
vice versa, we show that the dual of the relay system is a
MIMO system with a dual MIMO channel structured from
the two-hop relay channels and uncertain noise covariance;
the maximum achievable rate of such relay system is identical
to the maximum beamforming achievable rate of the dual
MIMO system. When source and destination are both equipped
with multiple antennas, we show that the dual relation of the
MIMO relay system to a direct MIMO system still holds for
beamforming, but the maximum beamforming achievable rate
in the relay system is upper bounded by that of the direct
MIMO system, and the two may not be guaranteed to be
identical.

B. Related Work

The relay processing design in multi-antenna AF relaying
systems has drawn considerable attention in recent years (see
[13] and references therein). Among the existing results, the
sum-power constraint at the relay (or a total power constraint
at the source and the relay) is typically assumed. Under this
assumption, for the purpose of relay beamforming to maximize
the received SNR, with a single pair of source and destination,
the optimal design of the processing matrix was given in [4],
where a rank-one beamforming matrix structure was found.
The result was further extended to the case when only the
second-order statistics of the relay channels are known at
the relay [5]. For multiple pairs of sources and destinations,
the closed-form solution for multi-antenna relay processing
matrix under the sum-power constraint is difficult to obtain,
and either numerical algorithms [9] or suboptimal approaches
[7], [8] were proposed. The MMSE-based criteria was also
used in designing the processing matrix [6], [14], [15]. For
the purpose of maximizing the MIMO AF relay capacity,
the optimal processing matrix was sought for a multi-antenna
relay under the relay sum-power constraint [2], [3], [16]–[18].
Besides dual-hop relaying, the design of processing matrix
for multi-hop AF MIMO relaying was considered for total
power minimization [19]. In addition to one-way relaying
systems, the design of relay processing matrix for two-way
multi-antenna AF relaying systems was investigated [20], [21].

Despite all these results, the investigation of multi-antenna
relay processing design under per-antenna power constraints is
scarce, and the problem has remained open. For direct point-
to-point systems, the optimal transmit beamforming design
under per-antenna power constraints was obtained in [11], and
the uplink-downlink duality for the beamforming SINR region
as well as the capacity region was obtained.

For AF MIMO relaying systems with the sum-power con-
straint at each relay, the uplink-downlink duality for the
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achievable rate region was established for dual-hop transmis-
sion [22] and was extended to the multi-hop scenario [23].
Note that the duality obtained there focused on a different
system equivalence from the duality established in this work.
There, the comparison is between uplink and downlink trans-
mission through relaying. In our work, the comparison is
between two types of transmission systems, i.e. the relaying
system and the direct transmission system.

C. Organization and Notations

The rest of the paper is organized as follows. In Section II,
we present the system model and problem formulation. In
Section III, we provide the optimal design solution and estab-
lish the duality between the relay beamforming system with
per-antenna power control and the direct SIMO beamforming
system with an uncertain noise covariance. We also discuss
the reverse problem of SNR maximization under per-antenna
constraints and its relation to the power minimization problem.
In Section IV, we consider the maximum achievable rate of the
relay beamforming system with per-antenna power constraints,
and establish the duality relation of the relay system with
certain direct MIMO systems under different source and/or
destination antenna setups. We present numerical results in
Section V and conclude this work in Section VI.

Notations: ‖·‖ denotes the Euclidean norm of a vector, and
⊗ stands for the Kronecker product. Hermitian and transpose
are denoted as(·)H and (·)T , respectively. Conjugate is
denoted as(·)∗. Matrix pseudo-inverse is denoted as(·)†.
We use [a]i to denote theith element of vectora; and
[A]ii to denote theith diagonal entry of matrixA. The
notation A < (2) B means that the matrix(A − B) is
positive (negative) semi-definite, whilea < 0 means that the
vectora is element-wise non-negative. The notationvec(A)
vectorizes the matrixA = [a1, · · · , aN ] to [aT1 , · · · , aTN ]T .
The notationCN (m,σ2) denotes proper complex Gaussian
distribution with meanm and varianceσ2.

II. PROBLEM FORMULATION

A. System Model

We consider a unicast dual-hop MIMO AF relaying system
where a pair of source and destination nodes, equipped with
Ms and Md antennas respectively, communicate through a
relay equipped withN antennas, as illustrated in Fig. 1.The
direct link is ignored. We consider the system transmittinga
single-data stream through source-destination beamforming.2

The data forwarding takes place in two phases. In the first
phase, the source transmits the signal to the relay. The received
signal vector at the relay is given byyr = H1b

√
Pos + nr,

where s is the transmitted signal from the source with unit
powerE|s|2 = 1, Po is the total transmit power at the source,
b is aMs × 1 unit-norm transmit beamforming vector,H1 is
theN ×Ms complex channel matrix between the source and
the relay, andnr is theN×1 complex additive white Gaussian

2In the case of multiple transmit antennas at the source (Ms > 1), the
single-stream MIMO beamforming structure can be used for a system seeking
maximum diversity gain and power gain to minimize data errorprobability.

s

Po
b r

yd

nr nd

WH1 H2

Fig. 1: An AF MIMO relaying system.

noise (AWGN) vector with covarianceσ2
rI, whereI is anN×

N identity matrix3. In the second phase, the received signals at
the relay are processed with anN×N relay processing matrix
W and then are forwarded to the destination. The received
signal at the destination, after receive beamforming, is given
by

yd = rHH2WH1b
√
Pos+ rHH2Wnr + rHnd (1)

whereH2 is theMd × N complex channel matrix between
the relay and the destination,r is aMd× 1 unit-norm receive
beamforming vector‖r‖2 = 1, andnd is theMd × 1 AWGN
vector at the destination receiver with with i.i.d. elements, each
with varianceσ2

d.
For givenb andr, the system can be equivalent to one with

single-antenna source and destination given by

yd = hT
2 Wh1

√
Pos+ hT

2 Wnr + nd (2)

with the equivalent channel vector at the 1st and 2nd hops as

h1
∆
= H1b, h2

∆
= (HH

2 r)∗, nd
∆
= rHnd (3)

and nd is AWGN with varianceσ2
d. We assume perfect

knowledge ofh1 andh2 at the relay.
In Section III, we will focus on optimally designing the

relay processing matrixW, with given source and destination
beamforming vectorsb andr. Thus, with no loss of generality,
we directly consider the equivalent system in (2) and (3). The
joint design ofW, b, andr is discussed in Section III-G. The
MIMO relay beamforming maximum achievable rates, among
all possible (b, r) pairs, under different source/destination
antenna configurations are detailed in Section IV.

B. Relay Processing with Per-Antenna Power Control

By (2), the received signal-to-noise ratio (SNR) at the
destination is obtained as

SNR =
Po|hT

2 Wh1|2
σ2
r‖hT

2 W‖2 + σ2
d

. (4)

Various end-to-end performance measures, such as data rateor
bit-error-rate (BER), are direct functions of the receivedSNR
given above. System optimization under these performance
metrics can then be directly converted to the optimization
problem under the SNR metric. Thus, in the following, we
focus on the SNR metric.

With the practical assumption that each transmit antenna at
the relay is individually power controlled with its own power
budget, our objective is to design an optimalW at the relay
to minimize the per-antenna power usage for data forwarding,

3Throughout the paper, unless explicitly specified,I indicates an identity
matrix with sizeN ×N .
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subject to a given received SNR target. The per-antenna power
constraint on the output of each transmit antenna at the relay
is given by

E{|[Wyr]i|2} =
[
P0Wh1h

H
1 WH + σ2

rWWH
]
ii
≤ Pi (5)

for i = 1, · · · , N , wherePi is the power budget at theith
antenna. Note that we only consider the non-degenerate case
where the forwarding link from each antenna of the relay
to the destination is active, or equivalently,|h2i| > 0, ∀i,
whereh2i is the ith element inh2.4 To formulate such per-
antenna power minimization problem, we consider minimizing
the maximum transmit power of each antenna at the relay
for a given SNR targetγo at the destination. This min-max
optimization problem can be formulated as

min
W

max
1≤i≤N

Pi (6)

subject to SNR ≥ γo, (7)
[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ Pi, (8)

for i = 1, · · · , N.

It is straightforward to show that the above min-max power
minimization problem is equivalent to the problem of mini-
mizing a common per-antenna power budgetPr, given by

min
W

Pr (9)

subject to (7) and
[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ Pr, (10)

for i = 1, · · · , N.

The above problem also corresponds to a common practical
scenario where identical hardware and front-end is used for
each antenna.5

Besides the above power minimization problem, the reverse
problem of SNR maximization under a set of relay per-antenna
power constraints{P1, · · · , PN} is discussed in Section III-F.

III. O PTIMAL RELAY BEAMFORMING DESIGN

In this section, we provide the solution to the optimization
problem (6). We first transform the received SNR expression
in (4) through vectorizing the processing matrixW. The
reformulation enables the subsequent development of our
results. LetWH = [w1, · · ·wN ]. We have the following
lemma.

Lemma 1: The received SNR expression in (4) for multi-
antenna relay beamforming can be re-expressed in the follow-
ing form

SNR =
Po|hHw|2

∥∥∥R
1

2

gw

∥∥∥
2

+ σ2
d

(11)

4The power constraint (5) is only meaningful for an active link. Otherwise,
it is trivial to see that the antenna is inactive (i.e., zero power) for data
forwarding, and effectively the model is reduced to the one with only active
links for relaying.

5Although we assumes no direct link, the formulation appliesto the scenario
when the direct link is available and is used in the first phaseonly. In this
case, the combined received SNR at the destination is the summation of SNRs
from the relay and the direct link, where the latter is not a function of W.
The problem would be the same as the one presented in (6).

where w
∆
= vec(WH), h

∆
= vec(h1h

T
2 ) = h2 ⊗ h1, and

Rg
∆
= (h2h

H
2 )⊗ σ2

rI

Proof: See Appendix A.
In the following, we first provide the feasibility condition

for the optimization problem (6). Then, we show how the
problem can be transformed into a formulation, for which the
Lagrange dual method can be applied to obtain the solution.
The dual method leads to the establishment of the duality of
multi-antenna relay beamforming to SIMO beamforming in
direct point-to-point communication, leading to a semi-closed
form solution forW. Finally, we provide an SDP formulation
as the numerical method to determineW.

A. Feasibility Condition

The feasibility of the optimization problem (6) depends on
the existence ofW to satisfy the SNR constraint (7). It is
determined by the values of the given transmit powerPo, the
SNR targetγo, and the relay channel conditionsh1,h2. A
feasibility condition for (6) is given as follow.

Proposition 1: A necessary condition for the multi-antenna
relay beamforming problem (6) to be feasible is that the source
transmit powerPo and destination SNR targetγo satisfy

Po‖h1‖2
γoσ2

r

> 1. (12)

Proof: See Appendix B.
Note that (12) is a necessary condition for the optimization

(6) to exist. In Section III-D, a necessary and sufficient
condition is given to guarantee the existence of the solution.
However, that condition can only be verified through the
optimization procedure we develop. Instead, the condition(12)
can be verified before solving the problem.6

B. Strong Lagrange Duality

The optimization problem (6), and its equivalence (9), is
non-convex due to the non-convex SNR constraint in (7) with
respect toW. Nonetheless, we show that the optimization can
be solved in the Lagrange dual domain. Due to the equivalence
of the optimization problems (6) and (9), in the following, we
focus on the problem (9) instead.

Proposition 2: The optimization problem (9) has zero du-
ality gap.

Proof: We provide a sketch of the proof and leave details
in Appendix C. We first show that the optimization problem (9)
can be converted to a second-order cone programming (SOCP)
problem. Results in literature show that strong duality holds
for the SOCP problem to its Lagrange dual problem. Thus, to
complete the proof, we are left to show the Lagrange dual of
(9) is equivalent to the Lagrangian dual of the SOCP problem.

As shown in the proof of Proposition 2, the optimization
problem (9) can be converted to an SOCP problem, and

6The condition (12) states that the received SNR on the first hop should
be larger than the target SNR. Although quite intuitive, it is derived from
the problem (6) with per-antenna power constraints. The proof in certain way
indicates that the necessary condition is “tight”. In our simulation studies, a
majority of the infeasible cases can be eliminated by examining this necessary
condition.
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solved numerically using any standard SOCP package such
as SeDuMi [24]. However, such numerical method will not
provide any insight on the structure of the solution forw. In
addition, the optimization involves(N + 1) constraints and
N2 variables to be optimized. Instead, using Proposition 2,
we next present the solution to the optimization problem
(9) through its Lagrange dual. Through this approach, we
eventually obtain the structure of the optimalw (or W) and
a more computationally efficient method to determine the
optimal value ofw.

C. Duality with Point-to-Point SIMO Beamforming

Using the vectorized beamforming matrix,i.e., w =
[wH

1 , · · · ,wH
N ]H , and (53) in the proof of Proposition 2, the

Lagrangian for (9) is given by

L(Pr,w,Λ, ν) = Pr + ν

{
σ2
d + ‖R

1

2

g w‖2 − Po

γo

∣∣hHw
∣∣2
}

+

N∑

i=1

λi

{
wH

i

(
Poh1h

H
1 + σ2

rI
)
wi − Pr

}

= Pr + ν

{
σ2
d + ‖R

1

2

g w‖2 − Po

γo

∣∣hHw
∣∣2
}

+wH
[
Λ⊗ (Poh1h

H
1 + σ2

rI)
]
w − Prtr(Λ) (13)

where Λ
∆
= diag(λ1, · · · , λN ) is the diagonal matrix of

Lagrange multipliers corresponding to the per-antenna power
constraints, andν is the Lagrange multiplier corresponding to
the received SNR target. The dual problem of (9) is given by

max
Λ,ν

min
Pr ,w

L(Pr,w,Λ, ν) (14)

subject to Λ < 0, ν ≥ 0. (15)

To obtain a solution to the problem above, we first show that it
can be transformed into the dual power minimization problem
of SIMO beamforming in direct point-to-point communica-
tions.

For the SIMO beamforming problem under consideration,
the transmitter has a single antenna with transmit powerP̃ .
The receiver hasN2 antennas with a receiver noise covariance
matrix Σ̃. Assume that the channel is given byh, and w̃ is
the receiver beamforming vector. The objective is to find the
optimalw̃ to minimizeP̃ while ensuring the received SNR to
be above a given targetγo:

min
w̃

P̃ (16)

subject to
P̃
∣∣w̃Hh

∣∣2

w̃HΣ̃w̃
≥ γo.

The duality between the multi-antenna relay beamforming and
the direct point-to-point SIMO beamforming with uncertain
noise and the same SNR requirement is established in the
following.

Theorem 1: The Lagrange dual problem (14) associated with
the optimization problem (9) is equivalent to the following

problem:

max
Λ

min
ν,w̃

νσ2
d (17)

subject to
νPo

∣∣w̃Hh
∣∣2

w̃HΣw̃
≥ γo (18)

tr (Λ) ≤ 1, Λ is diagonal (19)

Λ ≻ 0, ν ≥ 0 (20)

where

Σ
∆
= Λ⊗

(
Poh1h

H
1 + σ2

rI
)
+ ν

(
h2h

H
2 ⊗ σ2

rI
)
. (21)

Furthermore, the problem (17) can be interpreted as a point-to-
point SIMO beamforming problem (16) with a dual transmit
powerP̃ = νσ2

d, the dual channelh = h2⊗h1, and the noise

covariance matrixΣ̃ =
σ2

d

Po

Σ, for all diagonalΛ < 0 and
tr (Λ) ≤ 1, such that the SNR constraint (18) is satisfied.

Proof: The Lagrangian given in (13) can be rewritten as

L(Pr,w,Λ, ν)

= νσ2
d + Pr[1− tr(Λ)]

+wH

[
Λ⊗ (Poh1h

H
1 + σ2

rI)− ν
Po

γo
hhH + νRg

]
w

= νσ2
d + Pr[1− tr(Λ)] +wH

[
Σ− ν

Po

γo
hhH

]
w (22)

whereΣ is defined in (21). Substituting (22) into (14), we
notice that the original dual problem (14) is equivalent to the
following one with two new added constraints (19) and (24)

max
Λ,ν

min
Pr ,w

L(Pr,w,Λ, ν) (23)

subject to (15) and (19),

Σ <
νPo

γo
hhH . (24)

This is because if either (19) or (24) is not satisfied, the inner
minimization in (14) will result inL(Pr,w,Λ, ν) = −∞,
which will not be the optimal solution of the dual problem
(14). This implies that the optimal solution of (14) remains
in the feasible set of the optimization problem (23). Thus, the
problems (14) and (23) are equivalent. Following the above,
it is straightforward to see that after the inner minimization of
(23), the dual problem can now be expressed as

max
Λ,ν

νσ2
d (25)

subject to (15) (19) and (24).

To show (17) and (25) are equivalent, we first show the
following equivalence.

Lemma 2: The dual problem (25) is equivalent to

max
Λ

max
ν

νσ2
d (26)

subject to (19) and (20),
νPo

γo
hHΣ†h ≤ 1. (27)

Proof: See Appendix D.
To show (17) and (26) are equivalent, we adopt the general

approach in [11]. We note that the inner minimization part
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in (17) can be interpreted as a direct point-to-point SIMO
beamforming problem given in (16), where the transmit power
is set asP̃ = νσ2

d, the channel is ash = h2 ⊗ h1, and

the noise covariance matrix is as̃Σ =
σ2

d

P0

Σ. The solution of
SIMO beamforming problem (16) is known, where the optimal
receiver beamforming vector̃wo is given by

w̃o = Σ̃
†
h =

Po

σ2
d

Σ†h. (28)

Note that the optimal̃wo is only unique up to a scale factor.
That is,βw̃o is also optimal for any arbitrary non-zero value
of β. Substituting (28) into the SNR constraint (18), the
optimization problem (17) is now expressed as

max
Λ

min
ν

νσ2
d (29)

subject to (19) and (20),
νPo

γo
hHΣ†h ≥ 1. (30)

Comparing the problem (29) with (26), the SNR constraint
is reversed and the maximization overν is also reversed
to minimization. With any fixedΛ, we examine the inner
minimization problem (29) and maximization problem (26).
By substitutingΣ with its definition in (21), we rewrite the
SNR expression in (27) and (30) as

νPo

γo
hHΣ†h

=
νPo

γo
hH

[
Λ⊗

(
Poh1h

H
1 + σ2

rI
)
+ ν

(
h2h

H
2 ⊗ σ2

rI
)]†

h

=
Po

γo
hH

[
1

ν
Λ⊗

(
Poh1h

H
1 + σ2

rI
)
+
(
h2h

H
2 ⊗ σ2

rI
)]†

h

(31)

which is a monotonically increasing function ofν. This
implies that the received SNR constraints in both problems
(26) and (29) are met with equality at optimality, and the two
problems lead to the same optimalνo which is the solution of

Po

γo
hH

[
1

ν
Λ⊗

(
Poh1h

H
1 + σ2

rI
)
+
(
h2h

H
2 ⊗ σ2

rI
)]†

h = 1.

(32)

This indicates that the two problems (29) and (26) are equiva-
lent. By this, we have shown that the Lagrange dual problem
(14) is equivalent to the problem (17). From Proposition 2, the
optimal solution of the dual SIMO beamforming problem (17)
is the same as that of the original relay beamforming problem
(6).

Let Pmax
∆
= max{Pi} in the problem (6). As mentioned in

Section II-B, since the two problems (6) and (9) are equivalent,
at optimality, the minimum powers in these two problems are
equivalent,i.e., P o

max = P o
r . Following Proposition 2 and

Theorem 1, we can obtain the value of the minimum per-
antenna power at the relay through (17). The duality between
multi-antenna relay beamforming and SIMO beamforming is
shown in Fig. 2.

Corollary 1: The minimum per-antenna powerP o
r in the

relay beamforming problem (9) is obtained through its dual

s

s

Po minPr
s.t.

[

P0Wh1h
H

1
W

H + σ2
rWW

H
]

ii
≤ Pr

ydyr

nr ∼ CN (0, σ2
rI) nd ∼ CN (0, σ2

d)

Wh1 h2

min P̃

y

n ∼ CN (0, Σ̃)

w̃H
h

h = h2 ⊗ h1

Fig. 2: Duality of relay beamforming and SIMO
beamforming.

point-to-point SIMO beamforming problem (17) as

P o
r = νoσ2

d =
σ2
dγo

PohHΣo−1
h

(33)

whereΣo is the value ofΣ under the optimal(Λo, νo).7

Proof: See Appendix E.

D. The Semi-Closed Form Solution for the Optimal Wo

We have shown in Theorem 1 that the optimal relay
processing matrixWo under per-antenna power control in
the problem (6) can be determined through its dual SIMO
beamforming problem (17). The solution of the latter is given
by (28), up to an arbitrary scale factorβ. Thus, we obtain the
optimal vectorized beamforming vectorwo for the problem
(6) by

wo = βΣo−1
h (34)

under the optimal(Λo, νo). To determineβ, note that the SNR
constraint (7) is met with equality at optimality. Using theSNR
expression in (11), it follows that

Pow
oHhhHwo

woHRgwo + σ2
d

= γo.

Substituting (34) into the above equation, we obtain

|β| = σd

(
Po

γo

(
hHΣo−1

h
)2

− hHΣo−1
RgΣ

o−1
h

)− 1

2

.

(35)

Since an arbitrary phase rotation inw due toβ does not affect
the SNR value, without loss of generality, we simply setβ =
|β|. Thus, we obtain the value ofβ as in (35).

By reversing the operationwo = vec(WoH), we now have
obtained the optimal relay processing matrixWo of the relay
power minimization problem (6). The solution has a closed-
form expression once the optimal(Λo, νo) are given. The
determination of(Λo, νo) however needs to be performed
numerically as detailed in the next section.

Notice that the solution forβ exists if and only if the denom-
inator of the expression in (35) is valid. This in fact provides
the necessary and sufficient condition for the existence of a

7From the proof of Lemma 2,Σ stratifying (20) is strictly positive definite.
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feasible solution for the relay beamforming problem (6) which
is shown in the following corollary.

Corollary 2: The necessary and sufficient condition for the
multi-antenna relay beamforming problem (6) to be feasible
is that there existsν > 0 andΛ ≻ 0 with tr(Λ) ≤ 0, such
that

Po

γo
·

(
hHΣ−1h

)2

hHΣ−1RgΣ
−1h

> 1. (36)

Comparing (36) to (12), the condition requires to search for
(Λ, ν) and thus is difficult to be used to test the feasibility
unless we solve the Lagrange dual problem given in (25). On
the contrary, the condition (12) can be verified directly.

E. Determining Λo and νo through the Dual SDP

We have so far determined the structure of the optimal
relay processing matrixWo throughwo as given in (34). To
determine the value ofWo, we need to obtain the optimal
(Λo, νo). This can be done by directly solving the Lagrange
dual problem (25). We show in the following proposition
that the problem can be formulated and solved through semi-
definite programming (SDP).

Proposition 3: The dual problem (25) is a dual SDP
problem.

Proof: Define s
∆
= [0, · · · , 0,−σ2

d]
T , a

∆
= [1, · · · , 1, 0]T ,

where s, a ∈ R(N+1)×1, and x
∆
= [x1, · · · , xN , xN+1]

T =
[λ1, · · · , λN , ν]T . The constraint (24) can be expressed as

−Λ⊗Rr − ν

(
Rg −

P0

γ0
hhH

)
4 0 (37)

whereRr
∆
= Poh1h

H
1 + σ2

rI. Observing thatΛ is a diagonal
matrix, we obtain

−Λ⊗Rr =

N∑

i=1

λiFi,

whereFi ∈ CN2×N2

, for i = 1, · · · , N , is a block diagonal
matrix, whoseith diagonal block is given by−Rr, and all
other (N − 1) diagonal blocks areN × N zero matrices.

Also defineFN+1
∆
= P0

γ0

hhH − Rg. Then, the constraint

(37) can be further expressed as
∑N+1

i=1 xiFi 4 0. Note that
F1, · · · ,FN+1 are all Hermitian matrices. Therefore, the dual
problem (25) can be transformed into the following SDP

min
x

sTx (38)

subject to
N+1∑

i=1

xiFi 4 0

aTx− 1 ≤ 0, x < 0.

We have now converted the optimization problem (6) with
N2 variables and(N + 1) constraints to an SDP problem
with (N + 1) variables. It can be solved efficiently using
interior-point methods [12], for example, the logarithmicbar-
rier method [25]. Standard SDP software such as SeDuMi
[24] is based on interior-point methods and can be directly

used to solve the problem. The complexity per iteration is
O(N6). As a comparison, for solving the primal problem (6)
through SOCP in (55) directly using efficient interior-point
methods, the complexity isO(N7) per iteration8. Furthermore,
for both SDP and SOCP, the number of iterations is known
to be insensitive to problem size and typically lies between5
and 50 [12], [26]. Thus, besides obtaining the insights on the
solution structure, we see reduced complexity in finding the
solution.

F. SNR Maximization

Instead of power minimization, we now consider the reverse
problem of received SNR maximization with per-antenna
power constraints{P1, · · · , PN}, given by

max
W

SNR (39)

subject to
[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ Pi, (40)

for i = 1, · · · , N
where the expression ofSNR is given in (4). The optimization
problem (39) is always feasible. It can be solved through
power minimization, based on the relation of the two problems.

Consider the following pair of reverse problems for SNR
maximization and relay per-antenna power minimization

max
W

SNR (41)

subject to
[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ ηPi, (42)

for i = 1, · · · , N.

and

min
W

η (43)

subject to (42), SNR ≥ γo, and 0 ≤ η ≤ 1.

We now explicitly express the optimal objectives of (41) and
(43) as functions of their corresponding constraint targets
SNRo(η) and ηo(γo), respectively. The following shows the
relation of the two problems.

Proposition 4: The SNR maximization problem (41) and
the power minimization problem (43) under relay per-
antenna power constraints are two inverse problems, i.e.
ηo(SNRo(η)) = η (or SNRo(ηo(γo)) = γo). Furthermore, the
optimal objectiveSNRo(η) (or ηo(γo)) is a continuous strictly
monotonic increasing function ofη.

Proof: See Appendix F.
By Proposition 4, the solution to the SNR maximization

problem (41) can be obtained by iteratively solving the power
minimization problem (9) with bisection search on the received
SNR targetγo. The stopping criterion for bisection search is
whenη → 1. The procedure is summarized below.

1) Initialize γmin and γmax. Setγmin and γmax such that
the power minimization problem (43) is feasible and
infeasible, respectively. Setǫ.

2) Setγo = (γmax + γmin)/2.

8Complexity analysis is based on standard SDP and SOCP problems.
Depending on specific problems, special structure may be explored for
improved efficiency.
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3) If the problem (43) is infeasible underγo
Setγmax = γo, η = 0 ( or any valueη < 1− ǫ).

Else
Setγmin = γo, η = ηo(γo).

4) If η < 1− ǫ, repeat (2)-(4); otherwise, returnγo.

G. Joint Design of W, b, and r

The solution ofW for relay beamforming developed so far
assumes a given set of source and estimation beamforming
vectors(b, r). For the joint optimization of(W,b, r), finding
a direct approach to solve it is challenging as the problem
is nonconvex. Nonetheless, since the solution of the optimal
b, r with given W can be easily obtained, we can use the
alternating optimization approach [27] for the joint design
using the solution we obtained earlier:

1) For given (b, r), obtain the optimalW as in Sec-
tion III-C-III-E;

2) Find optimalb andr, based onW obtained in Step 1.
3) Repeat Step 1-2 until convergence.

Note that the above iteration is guaranteed to converge, al-
though it may lead to a local maximum if there are multiple
local maxima. Thus, such approach requires good initialization
methods.

Note that even though joint optimization is desirable, it does
not have to be performed at the relay to achieve an optimal sys-
tem performance. For instance, the joint optimization can be
done at the source and destination to obtain the optimal(b, r).
The relay only needs to consider the optimization problem (6),
using the equivalent channels at the first and second hops,i.e.,
h1 andh2, respectively. In this case,W obtained at the relay
would still be jointly optimal. The benefit of doing this, instead
of letting the relay perform joint optimization, is two-fold: 1)
Reduced computational complexity at the relay; 2) Reduced
(feedback) overhead: the relay only needs to obtain the CSI
of the equivalent channelsh1 andh2, instead ofH1 andH2.

IV. RELAY BEAMFORMING ACHIEVABLE RATE

We now consider the maximum achievable rate under AF
multi-antenna relaying with per-antenna power constraints, and
its dual relation to that of a point-to-point system. The source-
destination achievable rateR is directly related to the received
SNR at the destination byR = 1

2 log(1 + SNR). Thus, the
maximum achievable rate is obtained by finding the maximum
received SNR at the destination under the per-antenna power
constraints. We use the results obtained in Section III to
establish the dual relation.

Consider the same system setup as described in Sec-
tion II-A. To ease the explanation, we denote the AF MIMO
relaying system asSrelay

MsxNxMd
, given by

Srelay
MsxNxMd





Source: Ms antennas, and per-antenna

power constraintPo;

Relay: N antennas, and per-antenna

power constraintPr;

Destination: Md antennas;

Relay channels: H1,H2.

Note that the source antennas also have per-antenna power
constraint, to be consistent with the per-antenna power con-
straint at the relay.

A. Single-Antenna Source and Destination

For source and destination each equipped with a single
antenna, the channel vectors at the 1st and 2nd hops areh1 and
h2, respectively, as in (2). The respective AF MIMO relaying
system is given asSrelay

1xNx1. We denote the dual SIMO system
asSSIMO

1xN2 , given by

SSIMO
1xN2






Source: single antenna, power constraintPr;

Destination: N2 antennas, and

uncertain noise covarianceσ
2

d

Po

Σ

Channel: h2 ⊗ h1

whereΣ is as in (21) withΛ andν satisfying (19) and (20).
Combining Theorem 1 and Proposition 4, it is straightfor-

ward to see that the source-destination maximum achievable
rate under multi-antenna relay beamforming with per-antenna
constraints is the same as the maximum beamforming achiev-
able rate of a corresponding dual SIMO channel.

Theorem 2: The maximum achievable rate of an AF multi-
antenna relaying systemSrelay

1xNx1 is identical to the maximum
achievable rate of a dual SIMO systemSSIMO

1xN2 .
Note that the maximum achievable rate of a SIMO system

is well known in the literature [28].

B. Single-Antenna Source with Multi-Antenna Destination

In this case, the destination hasMd receive antennas and
uses a beamformerr for receive beamforming. The channels
at the 1st and 2nd hops areh1 andH2, respectively. The AF
MIMO relaying system is given asSrelay

1xNxMd
. We denote the

dual MIMO system asSMIMO
MdxN2 , given by

SMIMO
MdxN2





Source: Md antennas, total power constraintPr

Destination: N2 antennas, and

uncertain noise covarianceσ
2

d

Po

Σ

Channel: HT
2 ⊗ h1

whereΣ is as in (21) withΛ andν satisfying (19) and (20),
andh2 in (21) is replaced by(rHH2)

T for a given unitary
transmit beamforming vectorr. Note that the maximum beam-
forming achievable rate of a MIMO system is well known in
literature [28].

Theorem 3: The maximum achievable rate of an AF multi-
antenna relaying systemSrelay

1xNxMd
with receive beamforming

is identical to the maximum beamforming achievable rate
of a dual MIMO systemSMIMO

MdxN2 with transmit and receive
beamforming.

Proof: For a given beamforming vectorr at the desti-
nation, the equivalent channel over the second hop ish2 =
(HH

2 r)∗, and the system is converted to an equivalent single-
antenna destination system with channelsh1, h2. Thus, by
Theorem 2, the achievable rate ofSrelay

1xNxMd
, for any givenr, is
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the same as a dual SIMO system with channel(rHH2)
T ⊗h1.

Since

(rHH2)
T ⊗ h1 = vec(h1(r

HH2)) = (HT
2 ⊗ h1)r

∗ (44)

where the second equation is by the fact thatvec(AXB) =
(BT ⊗ A)vec(X). Thus, from (44), it is clear that the dual
SIMO system with channel(rHH2)

T ⊗ h1 is equivalent to a
MIMO system with transmit beamforming, where the MIMO
channel is given byHT

2 ⊗ h1 and the transmit beamforming
vector isr∗. Therefore, the achievable rate ofSrelay

1xNxMd
, for

any givenr, is the same as the beamforming achievable rate
of a dual MIMO systemSMIMO

MdxN2 , with transmit beamforming
vectorr∗ (and the optimal receive beamforming).

The maximum beamforming achievable rate is obtained by
maximizing the rate over all possible beamforming vectorr.
SinceSrelay

1xNxMd
and SMIMO

MdxN2 have the same achievable rate
for any givenr, it is clear that they have identical maximum
beamforming achievable rate.

C. Multi-Antenna Source with Single-Antenna Destination

Similar to Section IV-B, the channels at the 1st and 2nd
hops areH1 and h2, respectively. The AF MIMO relaying
system is given asSrelay

MsxNx1. Denote the dual MIMO system
asSMIMO

MsxN2 , given by

SMIMO
MsxN2






Source: Ms antennas,

per-antenna power constraintPr

Ms

Destination: N2 antennas, and

uncertain noise covarianceσ
2

d

Po
Σ

Channel: h2 ⊗H1

whereΣ is as in (21) withΛ andν satisfying (19) and (20),
andh1 in (21) is replaced byH1b for a given unitary transmit
beamforming vectorb.

Theorem 4: The maximum achievable rate of an AF multi-
antenna relaying systemSrelay

MsxNx1 with transmit beamforming
is identical to the maximum beamforming achievable rate
of a dual MIMO systemSMIMO

MsxN2 with transmit and receive
beamforming.

Proof: Similar to the proof of Theorem 3, the equivalent
channel over the 1st hop ish1 = H1b. For a givenb, the
achievable rate ofSrelay

MsxNx1 is the same as a dual SIMO system
with channelh2 ⊗ (H1b), and

h2 ⊗ (H1b) = (h2 ⊗H1)b. (45)

The RHS of the above equation can be viewed as a MIMO
channelh2⊗H1 with transmit beamforming vectorb. There-
fore, the achievable rate ofSrelay

MsxNx1 is equivalent to a dual
MIMO systemSMIMO

MsxN2 , for any givenb. It follows that the
maximum beamforming achievable rate, maximized over all
possibleb, is the same forSrelay

MsxNx1 andSMIMO
MsxN2 .

D. Multi-Antenna Source and Destination

Now assume the source and the destination haveMs andMd

antennas for transmit and receive beamforming, respectively.
The MIMO relay channels at the two hops areH1 andH2,

respectively. Letb and r be the transmit and receive beam-
forming vectors at the source and destination ofSrelay

MsxNxMd
,

respectively. For givenb andr, Srelay
MsxNxMd

can be converted
to an equivalent systemSrelay

1xNx1 with single-antenna source
and destination, with equivalent channels at the first hop and
second hop being̃h1 = H1b and h̃2 = (rHH2)

T . Thus,
by Theorem 2, the maximum beamforming achievable rate of
Srelay
MsxNxMd

is the same as a dual SIMO system with channel
(rHH2)

T ⊗ (H1b). The dual SIMO channel can be rewritten
as

(rHH2)
T ⊗ (H1b) = vec((H1b)(r

HH2))

= (HT
2 ⊗H1)vec(br

H)

= (HT
2 ⊗H1)(r

∗ ⊗ b). (46)

The expression in (46) indicates that we can view the dual
system as a dual MIMO channel with transmit beamforming,
where the dual MIMO channel isHT

2 ⊗H1 and the transmit
beamforming vector isr∗ ⊗ b. The dual MIMO system,
denoted asSMIMO

MsMdxN2 , is described by

SMIMO
MsMdxN2






Source: MsMd antennas,

total power constraintPr

Destination: N2 antennas, and

uncertain noise covarianceσ
2

d

Po

Σ

Channel: HT
2 ⊗H1

where the covariance matrixΣ is as in (21) withΛ and ν
satisfying (19) and (20), andh1 andh2 in (21) are replaced
by H1b and(HH

2 r)∗ for given beamforming vectorsb andr,
respectively. Thus, the achievable rate ofSrelay

MsxNxMd
, for any

given b and r, is the same as the maximum beamforming
achievable rate of a dual MIMO systemSMIMO

MsMdxN2 with
transmit beamforming vector beingr∗ ⊗ b.

Notice that the equivalence of the dual MIMO system
SMIMO
MsMdxN2 and the MIMO relay systemSrelay

MsxNxMd
, as es-

tablished above, limits the transmit beamforming vector to
the form r∗ ⊗ b. Clearly, by choosing all possible(b, r),
the resulting beamforming vector set is strictly a subset
of all possible MIMO beamforming vectorsbMIMO ’s, i.e.,
{r∗ ⊗ b} ⊂ {bMIMO}. Thus, instead of establishing a direct
equivalence between the maximum beamforming achievable
rate ofSrelay

MsxNxMd
and that ofSMIMO

MsMdxN2 , we are only able
to show the following bound.

Proposition 5: The maximum beamforming achievable rate
of an AF MIMO relaying systemSrelay

Ms×N×Md
with transmit

and receive beamforming at source and destination is upper
bounded by the maximum beamforming achievable rate of
a dual MIMO systemSMIMO

MsMd×N2 with transmit and receive
beamforming.

V. NUMERICAL RESULTS

A. Power Usage under Per-Antenna or Sum-Power Budget

We compare the performance under per-antenna power
minimization ofPr in (9) with that under the sum-powerPsum

minimization at the relay, wherePsum = NPr. The source and
destination are equipped with single antenna. Although the
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problem of sum-power minimization (or its reverse problem
of SNR maximization) has a clear closed-form solution, most
practical applications are constrained by the per-antennapower
budgets. Our purpose is to analyze the difference of the power
usage statistics under the two cases.

The solution of relay processing design for destination SNR
maximization under a relay sum-power constraint is obtained
in [4]. The optimal relay processing matrix, denoted asWo

sum,
has a closed-form solution. UnderWo

sum, the maximum des-
tination SNR is obtained. Using this result, the corresponding
minimum sum-powerPsum for a given destination SNR target

γo is readily obtained asPsum =
γoσ

2

d(σ
2

r
+Po‖h1‖

2)
(Po‖h1‖2−σ2

r
γo)‖h2‖2 .

In our simulations, the noise powers at the relay and at
the destination are set to be equalσ2

r = σ2
d, and we set

the source transmitted power and noise variance such that
Po/σ

2
r = 10dB. The entries ofh1 andh2 are assumed i.i.d.

complex Gaussian with zero-mean and variance 1.
Fig. 3 shows the average per-antenna power usage vs.

required SNR targetγ0 for the number of relay antennas
N = 2, 4, 6 under both power objectives. The average per-
antenna power usage is averaged over all antennas over104

channel realizations. As shown in the plot, the sum-power
objective results in less average power usage than the per-
antenna power objective does due to the flexibility of power
distribution among antennas. The gap increases as the number
of antennasN increases. Nonetheless, the small gaps indicate
that the power usages in the mean sense are close under the
two type of constraints.

To study the statistical behavior of antenna power usage
under both types of power minimization, we presents in Fig. 4
the probability density function (PDF) of power usage on the
first antenna at the relay, forN = 2, 4, 6. As we see the
variance of power usage on a fixed antenna under the per-
antenna power control case is much smaller than that under the
sum-power control case. Heavier left tails for the sum-power
case indicates on average more power usage on each fixed
antenna when per-antenna power control is imposed. Overall,
the per-antenna objective results in less peak-to-averagepower
consumption per antenna than the sum-power objectees does.
The difference increases with the number of antennas at the
relay.

In Fig. 5, we compare the PDF of the maximum power
usage among all antennas at the relay under both types of
power minimization objectives. We see a clear shift of power
profile of the maximum power consumption among antennas
under the two cases, where the case with per-antenna power
control results in a lower peak power consumption. This
indicates per-antenna power control results in better balance of
the power usage among antennas than the sum-power control
does.

B. Centralized vs. Distributed Relay Beamforming

With the solution of the optimal relay processing matrix
under relay per-antenna power budget obtained, we can now
compare the performance of a centralized relay beamforming
system with that of a distributed relay beamforming system to
quantify the loss due to the distributed nature of processing.

Such comparison is unavailable in previous studies that only
consider a sum power constraint.

For the source and destination equipped with single-antenna,
consider the centralized system with a singleN -antenna re-
lay9, and the distributed system withN single-antenna relays.
Per-antenna power budget is considered in both systems. For
the centralized case, the advantage lies in the joint processing
of received signals at the relay, while in the distributed case,
each relay can only process its own received signals. We
are interested to quantify the loss of such distributed nature
of relay beamforming as compared to the centralized joint
processing. The solution for the optimal distributed relay
beamforming under individual relay power budget for SNR
maximization was obtained analytically in [29] (an alternative
numerical approach is given in [30]). Using this result, we
compare the performance of the two systems.

Let SNRcentr and SNRdistr denote the maximum
SNR achieved under the centralized and distributed
relay beamforming systems, respectively. Fig.6(a) shows
E [SNRdistr/SNRcentr] vs. Po/σ

2
r , the average received SNR

at each relay antenna forN = 2, 4, 8; Fig. 6(b) shows the
correspondingE[SNRdistr] and E[SNRcentr] vs. Po/σ

2
r . We

vary the received SNR at relay by changing noise varianceσ2
r

while fixing the transmit power at the sourcePo = 10dBW.
It can be seen that the loss due to distributed processing first
increases from the noiseless (high SNR) to noisy case, then
decreases as the noise becomes high (low SNR). Intuitively,
joint processing helps reduce effective noise when noise
level is moderate, but it becomes ineffective when the
noise becomes dominant. The biggest loss is approximately
1dB-2dB for N = 2 to 8. It is particular to note that the
biggest loss happens in the range of SNR which is typical in
the practical systems.
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Fig. 3: Average per-antenna power usage vs.
required SNRγ0.

VI. CONCLUSION

In this paper, we have investigated the design of multi-
antenna relay processing matrix for unicast AF MIMO relay

9We can also consider it as a system withN single-antenna relays with
joint processing capability.
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beamforming with per-antenna power control. By transforming
the original non-convex problem and solving it in the Lagrange
dual domain, we have established the duality between relay
beamforming system with (equivalent) single-antenna source
and destination and direct SIMO beamforming system with
uncertain noise covariance. This enables us to obtain a semi-
closed form solution of the optimal relay processing matrix
parameterized by the Lagrange dual variables. The solution
not only reveals the structure of the optimal processing matrix,
but also allows us to reduce the computational complexity
of the original problem, through drastic reduction in the
number of optimization variables and constraints, as well as
an efficient SDP formulation of the dual problem to determine
the dual variables. Following this, both SNR maximization
problem with given per-antenna power budgets and joint
optimization of relay processing matrix and source/destination
beamforming vectors for MIMO relay beamforming are dis-
cussed. We have then examined the beamforming achievable
rate in general MIMO relaying systems with multi-antenna
source/destination. The duality relation of the maximum beam-
forming achievable rate of the MIMO relaying system and that
of the direct MIMO system is established for scenarios with
different antenna setups at the source and the destination.
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Fig. 6: Performance gap between centralized vs.
distributed relay Beamforming: (a) Average
received SNR gap vs. 1st hop received SNR;
(b) Average SNR vs. 1st hop received SNR.

APPENDIX A
PROOF OFLEMMA 1

Proof: Following the property(A ⊗ BT )vec(XT ) =
vec(AXB) for matricesA, B, andX, we have

hT
2 Wh1 = (h2 ⊗ h1)

T vec(WT ) =
(
hHw

)∗
(47)

wherew = vec(WH). Similarly,

hT
2 W = hT

2 WI = (h2 ⊗ I)T vec(WT ) =
(
(h2 ⊗ I)Hw

)∗
.

Therefore, we have

σ2
r‖hT

2 W‖2 = wH(h2h
H
2 ⊗ Iσ2

r )w = wHRgw (48)

where we have used the property(A⊗B)(C⊗D) = AC⊗
BD to arrive at the second equation. Substituting (47) and
(48) in (4), we have (11).

APPENDIX B
PROOF OFPROPOSITION1

Proof: Note thatRg is a positive semi-definite matrix.
A feasible solution forw will not be in the null space of
Rg, denoted as null{Rg}. If w ∈ null{Rg}, i.e., R

1

2

gw = 0,
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from (4) it is clear thatSNR = 0. Thus, we only consider
w /∈ null{Rg}.

Forw /∈ null{Rg}, consider the following upper bound for
the received SNR as in (11) of Lemma 1

SNRup =
Po|hHw|2
∥∥∥R

1

2

gw

∥∥∥
2 . (49)

The optimization problem (6) is feasible only if there exists
w (or W), satisfying per-antenna power constraint (8), such
that SNRup > γo. The per-antenna power constraint (10) can
always be satisfied by scalingw ascw (can be seen from (53)),
without changing the value ofSNRup in (49). This means the
problem (6) is feasible only if there existsw, such that

max
w/∈null{Rg}

Pow
HhhHw

wHRgw
> γo. (50)

The LHS of (50) is a generalized eigenvalue problem withRg

in singular form [31]. The objective function is maximized
when w is the principle generalized eigenvectorR†

gh, and
the maximum value of LHS is given byPoh

HR†
gh. Thus, we

need
Po

γo
hHR†

gh > 1. (51)

Observing the structure of the LHS, we have

hHR†
gh = (hH

2 ⊗ hH
1 )

((
h2h

H
2

)† ⊗ 1

σ2
r

I

)
(h2 ⊗ h1)

=
(
hH
2

(
h2h

H
2

)†
h2

)
⊗
(

1

σ2
r

hH
1 h1

)

=
hH
1 h1

σ2
r

(52)

where the first equation follows the fact that(A ⊗ B)† =
A† ⊗B−1, for A being singular andB being invertible, and
the second equation is from the fact(A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD). Combining (51) and (52), we have (12).

APPENDIX C
PROOF OFPROPOSITION2

Proof: We first show that the constraint function in (10)
is convex. To see this, sinceWH = [w1, · · ·wN ], (10) can be
rewritten as
[
P0Wh1h

H
1 WH+σ2

rWWH
]
ii
= wH

i (P0h1h
H
1 + σ2

rI)wi

(53)

for i = 1, · · · , N . This shows that the constraint function is
convex w.r.t.wi.

Note thatw = vec(WH) = [wH
1 , · · · ,wH

N ]H . From the
SNR expression in (11), the constraint (7) is a non-convex
function w.r.t.w. However, it can be converted into an SOCP
constraint [25]. To see this, the inequality in (7) can be
rewritten as

Po|hHw|2 ≥ γo(‖R
1

2

g w‖2 + σ2
d) = γo

∥∥∥∥∥

[
R

1

2

g w

σd

]∥∥∥∥∥

2

.

Thus, we have

√
Po|wHh| ≥ √

γo

∥∥∥∥∥

[
R

1

2

g w

σd

]∥∥∥∥∥ . (54)

Sincew is only unique up to a phase rotation, we can remove
| · | from the left hand side (LHS) of (54), and assumewHh to
be real. In this case, (54) is a SOCP constraint, and we have
converted the optimization problem (9) to an SOCP problem

min
w

Pr (55)

subject to (54)

wH
i (P0h1h

H
1 + σ2

rI)wi ≤ Pr, for i = 1, · · · , N.

Note that strong duality holds for the conic form of an SOCP
problem10. However, the constraint (54) is not in conic form,
and the problem (55) is non-convex. In [32, Proposition 3], the
optimality conditions on non-convex optimization problems
with constraints in the form of (54) are given. The result
there further implies that strong duality also holds for the
SOCP problem (55) to its Lagrangian dual problem. To prove
Proposition 2, we only need to show that the Lagrange dual
of the problem (55) is the same as the Lagrange dual of the
problem (9). We use a similar argument as in [11, Proposition
1] to show this.

The Lagrangian of (55) is

L′(Pr,w, λ′
i, ν

′) = Pr + ν′

{∥∥∥∥∥

[
R

1

2

g w

σd

]∥∥∥∥∥−
√

Po

γo

∣∣wHh
∣∣
}

+
N∑

i=1

λ′
i{wH

i

(
Poh1h

H
1 + σ2

rI
)
wi − Pr}. (56)

The Lagrangian of the original problem (9) is given in (13).
Comparing the two Lagrangians, the difference lies in the
second term. Let

c
∆
=

∥∥∥∥∥

[
R

1

2

g w

σd

]∥∥∥∥∥+

√
Po

γo

∣∣wHh
∣∣ ≥ σd.

We convert the second term in (56) as

ν′

{∥∥∥∥∥

[
R

1

2

g w

σd

]∥∥∥∥∥−
√

Po

γo

∣∣wHh
∣∣
}

=
ν′

c

{
σ2
d + ‖R

1

2

g w‖2 − Po

γo

∣∣wHh
∣∣2
}
, (57)

and (56) becomes

L′(Pr,w, λ′
i, ν

′) = Pr +
ν′

c

{
σ2
d + ‖R

1

2

g w‖2 − Po

γo

∣∣wHh
∣∣2
}

+

N∑

i=1

λ′
i{wH

i

(
Poh1h

H
1 + σ2

rI
)
wi − Pr}.

Since c is lower bounded byσd > 0, for any ν′ ∈ [0,∞),
by changing the variableν = ν′/c, there existsν ∈ [0,∞),
such that we arrive at the expression exactly the same as the
Lagrangian for (9) (also shown in (13)). Thus, the optimization
problem (9) has zero duality gap to its dual problem.

10The conic form of an SOCP problem (i.e., with conic inequalities) is
convex [25], and strong duality holds between the conic-form primal problem
and its conic dual problem
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APPENDIX D
PROOF OFLEMMA 2

Proof: Using (21) and the definition ofh, the matrix
inequality constraint (24) can be rewritten as

Λ⊗
(
Poh1h

H
1 + σ2

rI
)
+ νh2h

H
2 ⊗

(
σ2
rI−

Po

γo
h1h

H
1

)
< 0.

By the feasibility condition (12) in Proposition 1,(
σ2
rI− Po

γo
h1h

H
1

)
is an indefinite matrix. Since all forwarding

links are active,i.e., |h2i| > 0, ∀i, for the above condition
to hold, we haveλi > 0, ∀i, or Λ ≻ 0. Thus, any feasible
solution of (25) need to satisfy (20), and we can replace (15)
by (20).

From the expression ofΣ in (21), the constraint (20) means
Σ is positive definite. [11, Lemma 1] states that, for positive
definite matrixA, A < bbH ⇔ bHA−1b ≤ 111. Thus, the
SNR constraint (24) under (20) is equivalent to

νP0

γ0
hHΣ−1h ≤ 1. (58)

The constraint (27) under (20) is also equivalent to (58).
Consequently, the two optimization problems (25) and (26)
are equivalent.

APPENDIX E
PROOF OFCOROLLARY 1

Proof: At optimality, the minimum per-antenna powerP o
r

in (9) is the same as the value of the objective function in (17).
As we have shown in the proof of Theorem 1, the problem
(17) is equivalent to the problem (26), and the solution of the
latter is given by the solution of (32) or equivalently

νPo

γo
hHΣ−1h = 1 (59)

under the optimalΛo. It follows that we have (33).

APPENDIX F
PROOF OFPROPOSITION4

Proof: We first consider the SNR maximization with a
common per-antenna power constraintPr

max
W

SNR (60)

subject to
[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ Pr ,

for i = 1, · · · , N. (61)

It is a reverse problem of the power minimization problem (9).
We explicitly express the optimal objectives of (9) and (60)as
functions of their corresponding constraint targetsSNRo(Pr)
andP o

r (γo), respectively.
To show SNRo(Pr) is strictly monotonically increasing

with Pr, we prove it by contradiction. AssumẽPr > Pr

and SNRo(P̃r) ≤ SNRo(Pr), for some P̃r and Pr. Let
Wo be the optimal processing matrix achievingSNRo(Pr).
We can multiplyWo by a scalar0 < c < 1 so that the

11Note that the original [11, Lemma 1] only assumesA to be positive
semidefinite. However, in fact, the equivalence only holds for positive definite
A in general.

resulting SNR equalsSNRo(P̃r); at the same time, the per-
antenna power usage in (10) undercWo is c2Pr < P̃r,
becausePr < P̃r. This contradicts the assumption thatP̃r is
optimal forγ = SNRo(P̃r). It is also straightforward to show
SNRo(Pr) is continuous w.r.t.Pr. Furthermore, we show that
anyγ ≤ SNRo(Pr) is achievable. By scalingWo with c > 0,
we obtainW = cWo. Let c be

c =
σ2
d

Po

γ |hT
2 W

oh1|2 − σ2
r‖hT

2 W
o‖2 > 0

where the denominator is positive sinceγ < SNRo(Pr). It
can be verified that the corresponding received SNR isγ.

Since the optimal objectiveSNRo(Pr) is continuous and
strictly monotonically increasing withPr, and any γ <
SNRo(Pr) is achievable, it is clear that for any givenγo, the
minimum per-antenna powerPr is attained whenSNRo(Pr) =
γ0, i.e.P o

r (SNR
o(Pr)) = Pr . Thus, the problems (9) and (60)

are inverse problems.
For the SNR maximization problem (41), the per-antenna

power constraint (42) can be rewritten as

1

Pi

[
PoWh1h

H
1 WH + σ2

rWWH
]
ii
≤ η (62)

which has the same form as the constraint (61). Furthermore,
the optimization problem (43) is essentially in the same form
of the optimization problem (9), with an additional condition
of η ∈ [0, 1]. Thus, we can directly apply the above result
for the common per-antenna constraint case to the pair of
optimization problems (41) and (43).
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