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Abstract

In this paper, we consider the problem of linear processing design at the relay for amplified-and-

forward relaying in a multichannel system. Assuming a fixed-gain power amplification at the relay, we

study the linear processing structure to maximize the end-to-end achievable rate. For both the cases of

relaying with or without direct path, we show that the optimal unitary processing matrix is of permutation

structure, i.e., channel pairing is optimal. Furthermore, in each case, the explicit optimal channel pairing

strategy is obtained based on sorting certain function of received SNR over the incoming and outgoing

subchannels. This result is especially noticeable for the case with direct path, where the optimal linear

processing was not known before under any power allocation. Specifically, we show that the pairing is

according to the ordering of the relative SNR ratio on a subchannel over first hop to its direct path,

and that of SNR strengths on subchannels over the second hop. Simulation results are presented to

demonstrate the achievable gain of optimal channel pairing over non-optimal linear processing or no-

pairing cases. It is also shown that the performance of channel pairing under the simple fixed-gain power

allocation outperforms that under the traditional uniform power allocation.
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I. INTRODUCTION

Multichannel-based transmission is an essential component of the physical-layer technology for next-

generation wireless systems [1]. Correspondingly, future system designs are evolving toward the adoption

of a multi-channel relaying architecture to allow broadband access and coverage improvement [2]. As

opposed to a narrow-band single-channel relay, a multi-channel relay has access to multiple channels,

e.g., the subcarriers (or subchannels) in an Orthogonal Frequency Division Multiplexing (OFDM) relaying

system. Such multichannel system creates an additional frequency dimension for the relay to exploit,

where it can process the incoming signals adaptively based on the strength of each channels for forwarding

purpose. This capability is unique to relaying systems, and such exploitation can potentially improve the

overall relay performance.

To maintain low-complexity processing, linear operation of incoming signals at the relay is often

desired. In this paper, we aim to address how to optimally perform channel-aware linear processing of

the incoming signals at the relay to maximize the relaying performance in a multichannel system.

Channel pairing, which maps incoming and outgoing channels at the relay, along with power allocation,

can be viewed as a special case of linear processing. It was first proposed independently in [3] and [4]

for an amplified-and-forward (AF) dual-hop OFDM relay system. This has sparked interests in finding

optimal channel pairing schemes [5]–[10]. Existing work can be categorized as whether assuming the

power allocation is given, or jointly optimized with channel pairing, as well as whether nor not the direct

path exists. Without the direct path, for given power allocation, a paring scheme based on sorted SNR

is shown optimal for dual-hop AF relaying [5]. In [7], the sorted SNR pairing scheme is also shown

to be optimal for both AF and DF in general multi-hop relaying. In addition, in the multi-hop setting,

[7] shows that joint channel pairing and power optimization can be treated separately, where the optimal

pairing is obtained by sorting based on channel gain. Unlike the scenario without the direct path, when the

direct path is present, given power allocation, currently no explicit optimal pairing scheme is available,

and only suboptimal schemes exist [8]. Joint optimization of channel pairing and power allocation were

studied in [9] for single-user relaying, and the efficient numerical method for jointly optimal channel-user

assignment, channel pairing, and power allocation was proposed in [10] for multi-user relaying. In both

cases, algorithms are designed to find a jointly optimal solution, although no explicit channel pairing

strategy can be found. Except [9], [10], all of the above works focus on the relay path only, without

direct-path transmission, perhaps partially due to the difficulty in finding optimal (explicit) channel pairing

in the case with direct path. Apart from one-way relaying described above, channel pairing for two-way
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relaying in a multichannel system (in the absence of direct path) is also considered recently in [11].

Channel pairing aside, there is a need to study the structure of general linear processing of incoming

signals at the relay and its impact on the end-to-end performance in such multichannel systems. In

particular, with much attention on finding the optimal channel pairing scheme for relaying, the natural

questions arise on how good the performance of channel pairing is compared to other linear processing

schemes, and whether there exist conditions such that pairing is optimal.

There is a similar problem of optimal linear processing design in the context of MIMO AF relaying,

where an optimal processing matrix at the relay is sought for multi-antenna processing [12]–[14]. Multi-

channel relaying model can be viewed as a special case of MIMO relaying model. For the case without

direct path, the optimal linear processing design obtained in [12] can be adapted to provide the solution for

multichannel relaying. It reveals that channel pairing is optimal under the optimal power allocation. Linear

processing is studied in [15] for multi-relay in asynchronous frequency-selective fading channels, where

the structure proposed there converts the system into an OFDM-like multichannel system. Similar to the

result in [12], under the optimal power allocation, the optimal linear processing structure consisting of

power amplification and channel pairing is shown. For the case with direct path, again no known results

on the optimal linear processing design for MIMO AF relaying, and only some suboptimal solution

exists [14]. Even though these existing results provide certain answer to the linear processing design for

multichannel relaying, some important issues still remain to be investigated. Specifically, for the case

without direct link, would the optimality of channel pairing structure still hold when power allocation

is suboptimal, and how to do the pairing in that case? What should the optimal linear processing be

when the direct path is available? The first question arises for systems implementing suboptimal power

allocation due to the high overhead cost or implementation complexity associated with optimal power

allocation. The second question remains to be the central design problem for the case with direct path.

In this paper, we consider the problem of linear processing design at the relay for a multichannel

dual-hop AF relaying and aim to address the above mentioned problems. We study the linear processing

design to maximize the end-to-end achievable rate under a fixed gain power amplification at the relay.

The power amplification method is simple that incurs minimum complexity or overhead. We separate the

processing structure into two components: a fixed gain power amplification and linear combining using

a unitary linear processing matrix. We show that the optimal unitary processing matrix is of permutation

structure, i.e., channel pairing is optimal for both the cases with or without direct path. Furthermore,

we are able to obtain the explicit optimal channel pairing strategy based on sorting certain function

of received SNR over the incoming and outgoing subchannels. This result is especially important and
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interesting for the case with direct path available, which was not known before. Specifically, we show

that the pairing is according to the ordering of the relative SNR ratio on a subchannel over first hop to

its direct path, and that of SNR strengths on subchannels over the second hop.

The rest of this paper is organized as follows. In Section II, we present the system model and problem

formulation. Section III establish the optimality of channel pairing among unitary linear processing

schemes, and determine the optimal channel pairing strategy. We present simulation results to demonstrate

the performance gain achieved through optimal channel pairing in Section IV and finally conclude in

Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a dual-hop multi-channel AF relay system consisting of a source node, a destination

node, and a relay node. A direct link may exist between the source and destination. The system consists

of N subchannels for data transmission. We consider half-duplex transmissions, where a relay node is

either in transmission or reception but not simultaneously. The cooperative transmission takes place in

two phases. In the first phase the source sends data through N subchannels to the relay and destination

simultaneously (if the direct path is available). The relay then linearly processes the received signals over

N subchannels, and forwards the amplified version of the processed signals to the destination.

We denote the channel gain over subchannel k from source to relay, from relay to destination, and

from source to destination by h1k, h2k, and h0k, respectively. The symbol transmitted from the source

on subchannel k is denoted by sk, with unit power E|sk|2 = 1. The power coefficient to transmit sk is

denoted by dsk. The received signals at the relay and destination in the first phase are given by

yr = H1Dss+ nr, y
(1)
d = H0Dss+ n

(1)
d (1)

where s = [s1, · · · , sN ]T is the transmitted symbol vector with i.i.d. entries; the vectors yr = [yr1, · · · , yrN ]T

and y
(1)
d = [y

(1)
d1 , · · · , y

(1)
dN ]T are the received signal vectors at relay and destination, respectively, and

the matrices H1 = diag(h11, · · · , h1N ) and H0 = diag(h01, · · · , h0N ) are the corresponding channel

matrices; The diagonal matrix Ds = diag(ds) is the power coefficient matrix, with ds = [ds1, · · · , dsN ]T

being the power coefficient vector, reflecting the power allocation across N subchannels at the source.

Moreover, nr = [nr1, · · · , nrN ]T and n
(1)
d = [n

(1)
d1 , · · · , n

(1)
dN ]T are AWGN at the relay and the destination,

with nr ∼ CN (0, σ2
rI) and n

(1)
d ∼ CN (0, σ2

dI), respectively.
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In the second phase, the received signal yr at the relay is first linearly combined, and then the relay

retransmits the amplified version of the processed signal to the destination. Denoting W as the linear

processing matrix at the relay, we have the received signal vector at the destination by

y
(2)
d = H2Wyr + n

(2)
d

= H2W(H1Dss+ nr) + n
(2)
d . (2)

where y
(2)
d = [y

(2)
d1 , · · · , y

(2)
dN ]T , H2 = diag(h21, · · · , h2N )T , and n

(2)
d = [n

(2)
d1 , · · · , n

(2)
dN ]T with n

(2)
d ∼

CN (0, σ2
dI).

Let Pr be the average power budget at the relay, the processing matrix W must satisfy the relay power

constraint E∥Wyr∥2 ≤ Pr, which leads to

tr{W(H1D
2
sH

H + σ2
r I)W

H} ≤ Pr. (3)

Furthermore, let Ps be the power budget at the source. Then, the transmit power matrix Ds must satisfy

E∥Dss∥2 = ∥ds∥2 ≤ Ps.

In this study, we focus on the effect of the processing matrix W on the relay performance, and assume

a pre-determined power allocation at the source, i.e., Ds is given.

We are interested in the achievable sum-rate obtained through the above described AF relaying in

the multichannel system. With the sum-rate as the objective, our goal is to study the structure of the

processing matrix W, with or without the presence of the direct link.

B. Fixed Gain Relay Processing Structure

To obtain the optimal W to maximize the achievable rate, the difficulty lies in the case when the direct

link exists. Various attempts in the existing works, either for MIMO relaying or multi-channel systems,

show that there is no analytical solution for this case, and W can only be obtained through numerical

exhaustive search. As a result, most existing works studying W for various system setups neglect the

direct link.

In this work, we are interested in studying the problem with the presence of direct link, when certain

structure of W is imposed. Note that, the processing matrix W essentially determines two processes: 1)

how to linear combine the N incoming signals; and 2) what is the power amplification for the outgoing

signals. In order to separate the two effects, we break the process into two steps: the linear combining

and the power amplification. Specifically, the processing matrix is in the form of W = DrW
′, where
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W′ is the linear processing matrix, and Dr = diag(dr1, · · · drN ) is the power amplification matrix with

drk being the power amplification factor for the processed signal at the kth outgoing subchannel. In this

paper, we consider a fixed gain power amplification, i.e., Dr = drI, where dr represents the fixed gain,

in other words, the relay equally amplifies the processed signal over each subchannel. Since we separate

the power amplification dr from the processing matrix, W′ should not affect output signal power, i.e.,

∥W′s∥ = ∥s∥, thus in the following we assume the class of unitary processing matrices∗ for W′, i.e.,

W = drU (4)

where U is a unitary matrix with UHU = I. Thus, the received signal vector y(2)
d in (2) is now rewritten

as

y
(2)
d = H2drU(H1Dss+ nr) + n

(2)
d . (5)

With the processing matrix structure in (4), the power constraint in (3) leads to†

dr =

√
Pr∑N

k=1 d
2
sk|h1k|2 +Nσ2

r

. (6)

C. Achievable Rate

As mentioned earlier, we focus on the achievable end-to-end rate in such multi-channel system. Our

objective is to find the optimal U∗ to maximize the achievable rate. Regardless of whether the direct

path is available or not, we can rewrite the end-to-end system equation in the following general form

y = H̃(U)s+ ñ(U) (7)

where H̃(U) and ñ(U) are the equivalent channel matrix and the equivalent noise term, respectively.

They are functions of the processing matrix U. Given the system described earlier, the system achievable

rate (or the capacity under the AF relaying) is given by [16]

R(U) =
1

2
log det(I+R−1

n H̃(U)H̃H(U)) (8)

∗Note that we are interested in finding what form of linear processing leads to the optimality of channel pairing. This helps

bridge the relation of linear processing and channel pairing in multichannel environment. Within the class of unitary processing,

we will show that channel pairing is optimal. For other classes of linear processing, we are not able to make such conclusion.
†The fixed gain power amplification should not be confused to uniform or fixed power allocation. The power allocation Pk

on subchannel k is Pk = Pr
N

·
∑N

j=1 w′2
kjd

2
sj |h1j |2+σ2

r
1
N

∑N
k=1

d2
sk

|h1k|2+σ2
r

, which is different across subchannels and channel gain dependent.
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where Rn
∆
= E[ñ(U)ñH(U)] is the covariance matrix of the equivalent noise term, and the factor 1/2

reflects the half-duplex operation. Our goal is to find the optimal U∗ to maximize the achievable rate

U∗ = argmax
U:UUH=UHU=I

log det(I+R−1
n H̃(U)H̃H(U)). (9)

For the conventional multichannel relaying without linear processing, i.e., U = I, the relay simply

forwards the amplified signal to the destination over the same channel. However, such forwarding is in

general not optimal in terms of maximizing the achievable rate. For improvement, channel pairing was

proposed [3], [4], where a different subchannel may be used over the second hop for signal relaying. This

technique was actively studied recently in a few specific relay models [5], [7], [8], [10] for improving

the end-to-end data rate. Channel pairing can be essentially represented as a special class of U. Indeed,

when U is a permutation matrix Π, linear processing reduces to channel pairing. Therefore, the question

arises on how good is channel pairing among all possible linear combining, and under what condition it

is optimal.

III. OPTIMAL LINEAR PROCESSING STRUCTURE: CHANNEL PAIRING

To solve (9), we first give the following result needed for the subsequent development.

Lemma 1: Let P = diag(p1, · · · , pN ) and Q = diag(q1, · · · , qN ) be two diagonal matrices. Let

{|p(i)|} and {|q(i)|} be the ordered sequences of {|pi|} and {|qi|} in descending order, respectively‡. For

the following optimization

max
U:UUH=UHU=I

det(I+ (PUQ)H(PUQ)), (10)

the optimal U∗ is give by U∗ = Π∗, where Π∗ is the optimal permutation matrix that matches |p(i)|

and |q(i)| in the objective of (10), for i = 1, · · · , N , i.e.,

det(I+ (PΠ∗Q)H(PΠ∗Q)) =

N∏
i=1

(
1 +

(
|p(i)||q(i)|

)2)
. (11)

Proof: See Appendix A.

Using Lemma 1, we now look at the relaying scenario without and with direct path separately.

‡The ordered sequence {|p(i)|} satisfies |p(i)| ≥ |p(i+1)|, for i = 1, · · · , N − 1.
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A. Relay without Direct Path

In this case, the destination is out of the transmission zone of the source. From (5), the equivalent

channel matrix, noise vector, and its covariance matrix in (7) are given by

H̃(U) = drH2UH1Ds,

ñ(U) = drH2Unr + n
(2)
d ,

Rn = σ2
rd

2
rH2H

H
2 + σ2

dI (12)

Note that, Rn is not a function of U, and all matrices in RHS of equations in (12) are diagonal, except

U. Using the property of the determinant, det(I +AB) = det(I +BA), we can write the end-to-end

achievable rate in (8) as

R(U) =
1

2
log det(I+ H̃(U)HR−1

n H̃(U)). (13)

Substituting Rn in (12) into (13), we have

R(U) =
1

2
log det(I+ (R

− 1

2
n H̃(U))HR

− 1

2
n H̃(U))

=
1

2
log det(I+ (drR

− 1

2
n H2︸ ︷︷ ︸
P

UH1Ds︸ ︷︷ ︸
Q

)H drR
− 1

2
n H2︸ ︷︷ ︸
P

UH1Ds︸ ︷︷ ︸
Q

) (14)

where we group matrices to be the equivalent P and Q as shown in (14). The corresponding i-th diagonal

entries pi and qi of P and Q are respectively given by

pi =
h2idr√

σ2
d + σ2

r |h2idr|2
, qi = h1idsi.

Following Lemma 1, it is clear that the optimal U∗ is Π∗ that optimally pairs channels with |p(i)| and

|q(i)|, for i = 1, · · · , N . Note that

|pi|2 =
SNRrd,i

1 + σ2
r SNRrd,i

, |qi|2 = σ2
r SNRsr,i,

where

SNRsr,i
∆
=

|h1i|2d2si
σ2
r

, SNRrd,i
∆
=

|h2i|2d2r
σ2
d

(15)

are the received SNR from source to relay, and from relay to destination, over the ith subchannel,

respectively. Since |pi|2 is a monotonically increasing function of SNRrd,i and {|pi|} and {|pi|2} have

the same sorting order, the optimal pairing reduces to the pairing based on the sorted received SNRs.

Let {SNRsr,(i)} and {SNRrd,(i)} be the ordered sequences of {SNRsr,i} and {SNRrd,i}, we summarize

the result as follow.
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Proposition 1: For multi-channel fixed-gain AF relaying without direct path, optimizing U in (9) leads

to the optimal channel pairing that pairs incoming and outgoing subchannels with SNRsr,(i) and SNRrd,(i),

respectively, for i = 1, · · · , N .

The result shows that the optimal unitary processing is given by channel pairing with the optimal pairing

strategy based on sorted received SNRs. This shows that the optimality of channel pairing structure for

linear processing holds under the fixed gain power allocation, besides the optimal power allocation. In

addition, under given power allocation§, the pairing based on sorted received SNRs has been shown to

be optimal pairing under both noise-free relaying (σ2
r = 0) [4] and noisy relaying [5] in multi-channel

systems. Here we show that the same optimality holds for the fixed-gain power amplification as well.

Moreover, as we will see in the following, the approach we use allows us to find the optimal pairing

strategy when direct path is available. This is the case where no explicit optimal pairing was known

before.

B. Relay with Direct Path

We now consider the case when the direct path is available. The received signals at the destination

from both time slots can be written as y = [y
(1)
d y

(2)
d ]T . Combining (1) and (5), we have the equivalent

channel and noise terms in (7) as

H̃(U) =

 HoDs

H2drUH1Ds

 , (16)

ñ(U) =

 n
(1)
d

H2drUnr + n
(2)
d

 , (17)

Rn =

 σ2
dI 0

0 Rn,r

 (18)

§Note the difference between a given power allocation from a given power gain. For a given power allocation, the outgoing

signal power is fixed, while for a given power gain, the amplification of the incoming signal power is fixed, and the outgoing

signal power depends on both incoming signal power and the amplification gain.
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where Rn,r
∆
= σ2

rd
2
rH2H

H
2 +σ2

dI; It is the noise covariance matrix without direct path as in (12). In this

case, the achievable rate in (8) is derived as

R(U) =
1

2
log det

(
I+

1

σ2
d

HoDs(HoDs)
H +R−1

n,rdrH2UH1Ds(drH2UH1Ds)
H

)
=

1

2
log det

(
I+

1

σ2
d

HoDs(HoDs)
H + (drR

− 1

2
n,rH2UH1Ds)

H(drR
− 1

2
n,rH2UH1Ds)

)
=

1

2
log det

(
I+ΥH

0 Υ0 + (Υ2UΥ1)
HΥ2UΥ1

)
(19)

where Υ0
∆
= 1

σd
H0Ds, Υ1

∆
= H1Ds, and Υ2

∆
= drR

− 1

2
n,rH2. Note that the second term inside the

determinant of (19) corresponds to the direct path, and the third term corresponds to the relay path.

This shows that, when a permutation matrix (channel pairing) is applied at the relay, the rate in (19) is

achieved by maximum ratio combining (MRC) of the received signals from the direct path and the paired

relay path that are used to transmit the same symbol. In other words, y(1)d,i from the direct path and y
(2)
d,j

from the relay path are combined using MRC, when the jth outgoing subchannel at the relay is paired

with the ith incoming subchannel, for i = 1, · · · , N .

To find the optimum U∗ that maximizes R(U), we re-arrange (19) as follows

R(U) =
1

2
log det

[
(I+ΥH

0 Υ0)×(
I+ (I+ΥH

0 Υ0)
−1(Υ2UΥ1)

HΥ2UΥ1

)]
=

1

2

[
log det(I+ΥH

0 Υ0)+

log det
(
I+ (Υ2UΥ1)(I+ΥH

0 Υ0)
−1(Υ2UΥ1)

H
)]

, (20)

where the second term in (20) follows from the property det(I +AB) = det(I +BA). The first term

of (20) is the quantity corresponding to the direct path; it is independent of Π. We are only interested

to maximize the second term as a function of Π, which can be written as

R2(Π)
∆
= log det

(
I+ (Υ2ΠΥ1)(I+ΥH

0 Υ0)
−1(Υ2ΠΥ1)

H
)

= log det
(
I+Υ2ΠΥ1(I+ΥH

0 Υ0)
− 1

2 (Υ2ΠΥ1(I+ΥH
0 Υ0)

− 1

2 )H
)
. (21)

Again using det(I+AB) = det(I+BA), and noticing that Υ0, Υ1, and Υ2 are all diagonal matrices,

we can apply the result in Lemma 1 to obtain the optimal Π∗. Specifically, let P = Υ2 and Q =

Υ1(I+ΥH
0 Υ0)

− 1

2 . We then can express (21) as the form in (10). Based on this, we obtain the optimal

channel pairing scheme for relaying with direct path available. It is essentially pairing the corresponding
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entries in the ordered sequences {|p(i)|} and {|q(i)|}, with pi and qi in P and Q respectively given by

pi =
drh2i√

σ2
rd

2
r|h2i|2 + σ2

d

, qi =
dsih1i√

1 + d2
si

σ2
d
|h0i|2

. (22)

Examining (22), we have

|pi|2 =
SNRrd,i

1 + σ2
r SNRrd,i

, |qi|2 =
σ2
r SNRsr,i

1 + SNRsd,i
(23)

where SNRsd,i
∆
= |h0i|2d2

si

σ2
d

is the received SNR from source to destination over the ith channel, and SNRsr,i

and SNRrd,i are the received SNR from source to relay, and from relay to destination, respectively, as

given in (15). Let

Γi
∆
=

σ2
r SNRsr,i

1 + SNRsd,i
. (24)

Similar as in the no direct path case, since |pi|2 is a monotonically increasing functions of SNRrd,i, we

conclude that the optimal pairing is to pair the incoming and outgoing subchannels based on the ordered

quantities
{
Γ(i)

}
and {SNRrd,(i)}. The result is summarized as follow.

Proposition 2: For multi-channel fixed-gain AF relaying with direct path available, optimizing U in

(9) leads to the optimal channel pairing that pairs incoming and outgoing subchannels with Γ(i) and

SNRrd,(i), respectively, for i = 1, · · · , N .

Proposition 2 again reveals the optimality of channel pairing among all possible unitary processing,

even when the direct path is available. Furthermore, the optimal pairing is an explicit sorting strategy

based on the received SNR on each path: It is to match the incoming and outgoing subchannels at the

relay, according to the ordering of SNR strengths on the relay-destination subchannels, and that of the

relative ratio of SNR strengths on the source-relay to source-destination subchannels. The benefit of such

explicit sorting strategy for pairing is eminent: Various sorting algorithms can be employed with the

computational complexity of O(N logN) [17].

Based on Proposition 2, we comment on the following two cases:

• When SNRsd,i ≪ 0dB, for i = 1, · · · , N : This case corresponds to the scenario where the direct path

is weak, and Γi ≈ σ2
r SNRsr,i. This means the ordering of {Γ(i)} is the same as {SNRsr,(i)}. Thus,

the sorting metrics used in optimal pairing is naturally reduced to the one given in Proposition 1

for relaying without direct path. Note that, this is regardless of the link condition on the relay path.

In other words, this case happens when the absolute link condition on the direct path is less than

0dB, instead of its relative strength to the relay path.

• When SNRsd,i ≫ 0dB, for i = 1, · · · , N : This case corresponds to the scenario where the direct

path is at least moderately strong. In this case, Γi ≈ σ2
r SNRsr,i

SNRsd,i
. Thus, the subchannel with a wider
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difference on the quality of source-relay link and direct link will be paired with a stronger relay-

destination subchannel.

C. Overhead and Implementation Cost of Channel Pairing

Out results show that to conduct channel pairing, the relay only needs to know SNRsr,i and SNRrd,i for

the case without direct path, and additionally SNRsd,i when direct path is available. The value of SNRsr,i

over the first hop is readily available at the relay. The values of SNRrd,i and SNRsd,i at the destination

can be provided by the receiver through feedback. Note that regardless of channel pairing, SNR (or

channel state) feedback to the relay is typically needed in the relay networks to gain channel information

for various transmission designs. In practical implementation, usually only limited feedback is possible.

The exact effect of channel feedback on the rate is different for the relay-destination path and the direct

path, for which an exact quantification is challenging and outside the scope of this study. To implement

channel pairing, the required sorting has the computational complexity in the order of O(N logN).

Overall, implementing channel pairing incurs minimum additional overhead and implementation cost.

In addition, fixed-gain power amplification greatly simplifies relay power allocation, and reduces the

implementation complexity.

IV. SIMULATION RESULTS

We compare the performance of the optimal channel pairing scheme with other non-optimal linear

processing schemes through simulations. We use a 5MHz OFDM system with N = 128 subchannels as

an example of multichannel system. A source-destination pair is placed at a distance dsd apart, and the

distances between source and relay, and relay and destination are set at dsr and drd, respectively. The

pathloss exponent of 2 is assumed. We denote SNR
∆
=

Psd
−2
sd

Nσ2
d

as the average per subchannel received

SNR over the direct path. In addition, we assume Ps = Pr. The achievable rate is normalized by N

subchannels and averaged over randomly generated multi-tap frequency selective channels.

We first compare different linear processing schemes and study when channel pairing is the most

beneficial with respect to the relay location. With fixed dsd = 20m, we vary the relay position between

source and destination. We assume Ps is equally allocated across subchannels, i.e., dsi =
√

Ps

N . When

the direct path is available, the change of relay position will affect the relative SNR strengths, between

relay and direct paths. Fig.1 depicts the effect of such change on the achievable rate under different

linear processing schemes. The average rate vs. the relative distance dsr/drd for SNR = 4dB is plotted.

We consider the following four processing schemes: 1) optimal channel pairing (CP) scheme Π∗; 2) No
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CP used, i.e., U = I; 3) A random U used; 4) Using the pairing scheme Π∗ that is obtained assuming

no direct path (i.e., pairing {SNRsr,(i)} and {SNRrd,(i)}). The reason we consider the fourth scheme is

that, in some cases, it may be easier for the relay to compute the optimal pairing only based on the

SNRs obtained on the two relay paths, although the receiver may use signals from the direct path for

combining to improve performance. We see that, when the relay moves closer to the source, the gain

of using the optimal channel pairing over other schemes become more substantial. On the other hand,

when the relay is very close to destination, the performance of all schemes coincide. The reason is that

SNRrd is relatively high when the relay is close to the destination. In this case, |pi|2 → 1/σ2
r for all i

in (23). Thus, sorting becomes ineffective, and channel pairing provides little benefit.

Next, we compare the performance under different relay power allocation and pairing combinations.

For the case without direct path, we plot the average rate vs. dsr/drd in Fig. 2 under four cases: 1)

jointly optimal CP and power allocation (PA), which can be obtained using [12]; 2) Optimal CP under

fixed gain power amplification obtained in this paper; 3) No CP but with optimal PA; 4) No CP and

with fixed gain power amplification. We see that the optimal CP with fixed gain power amplification

provides higher gain than the optimal PA alone without CP does. Jointly optimal CP and PA provides the

overall best performance. For the case with direct path, we did similar comparison in Fig. 3. Since there

is no jointly optimal CP and PA solution available, we only include a suboptimal scheme. Three cases

are compared: 1) Optimal CP under fixed gain power amplification; 2) Suboptimal CP with equal power

allocation: this is obtained using the CP result obtained in 1) and applying equal power allocation instead

of fixed gain power amplification at the relay; 3) No CP and with fixed gain power amplification; 4) No

CP and equal PA. We can clearly see the gain provided by optimal CP across different relay positions. In

addition, we see that, although equal PA and fixed gain power amplification have the similar performance

when no channel pairing is performed. The performance of pairing with fixed gain power amplification

outperforms that with equal power allocation.

In Fig. 4, we compare different source power allocation schemes: equal power allocation vs. water-

filling approach. The water-filling power allocation is determined based on the subchannels on the first

hop only, i.e., {|h1i|2}. As we see, for both cases with and without direct path, when the relay is closer

to the source, the performance of the two power allocation schemes coincides. This is because the water-

filling approach converges to the equal power allocation when the channel quality (at the first hop) is

high. On the other hand, as the relay moves away from the source, the relative performance is different

for the cases with and without direct path: compared to the equal power allocation, the water-filling

approach improves the performance for the case without direct path, but degrades the performance for
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the case with direct path which indicates its suboptimality in this case.

Finally, we study how the level of channel gain variation across subchannels affects the performance

of various linear processing schemes. In Fig. 5, we plot the achievable rate vs. the number of taps of the

frequency-selective channel for the case with direct path. We set SNR = 4dB, and increases the number

of channel taps to increase the channel frequency selectivity. As we observe, the average rate increase

with the number of channel taps under the optimal CP, demonstrating that the optimal CP benefits from

an increased level of channel diversity, which is utilized effectively through channel pairing. On the

other hand, the relative gain of random U or no CP is insensitive to such change and remains relatively

constant.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

d
sr

/d
sd

A
vg

. R
at

e 
(b

its
/c

ha
n.

us
e)

 

 

Opt CP
No CP
Random U
using no direct path Opt CP

Fig. 1: With direct path: Rate vs. relative distance dsr

dsd
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V. CONCLUSION

In this paper, AF relaying with linear processing capability at the relay for a multichannel system

is considered. We have proposed a method to analyze how to select the linear processing matrix to

maximize the end-to-end achievable rate, where fixed gain power amplification over channels at the

relay is assumed. We have demonstrated the optimality of the optimal channel pairing among unitary

processing for achievable rate maximization, for both with and without direct path. Our approach have

allowed us to obtain the corresponding optimal explicit channel pairing strategy based on sorting certain
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function of SNR at the first and second hops, for both cases with and without direct path. Simulation

results also demonstrate the gain which can be achieved through optimal channel pairing as compared

to the non-optimal linear processing and non-pairing cases.

APPENDIX A

PROOF OF LEMMA 1

Using the property of the determinant det(AB) = det(A) det(B), we see that the objective function

in (10) can be rewritten as

det(I+ (PUQ)H(PUQ)) = det(QQH) det((QQH)−1 +UHPHPU) (25)

Since QQH is not a function of U, we only need to optimize U to maximize the second determinant,

i.e.,

U∗ = argmax
U

det((QQH)−1 +UHPHPU). (26)

By the property of determinant [18], we have det(A + B) ≤
∏N

n=1(λn(A) + λN+1−n(B)), where

λn(A) and λn(B) are the eigenvalues of A and B, respectively, sorted in ascending order. The equality

is reached when A and B are both diagonal with the diagonal entries being inverse-order matched. Using

this result, we have

det((QQH)−1 +UHPHPU) ≤
N∏

n=1

(
1

|q(n)|2
+ |p(N+1−n)|2) (27)

Since P and Q are diagonal, and for any permutation matrix Π, the matrix ΠHPHPΠ is still diagonal,

it immediately follows that U∗ = Π∗, Π∗ is the permutation matrix such that the entries of the ordered

sequences {|p(i)|} and {|q(i)|} are one-to-one matched. �
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