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Abstract—Throughput optimal scheduling policies in general
require the solution of a complex and often NP-hard optimization
problem. Related literature has shown that in the context of
time-varying channels, randomized scheduling policies can be
employed to reduce the complexity of the optimization problem
but at the expense of a memory requirement that is exponential
in the number of data flows. In this paper, we consider a Linear-
Memory Randomized Scheduling Policy (LM-RSP) that is based
on a pick-and-compare principle in a time-varying network with
N one-hop data flows. For general ergodic channel processes,
we study the performance of LM-RSP in terms of its stability
region and average delay. Specifically, we show that LM-RSP
can stabilize a fraction of the capacity region. Our analysis
characterizes this fraction as well as the average delay as a
function of channel variations and the efficiency of LM-RSP in
choosing an appropriate schedule vector. Applying these results
to a class of Markovian channels, we provide explicit results on
the stability region and delay performance of LM-RSP.

I. I NTRODUCTION

One key characteristic of the wireless communication
medium is its random variations due to user mobility and
unpredictable changes in the radio environment. This makesthe
enduring challenge of efficient resource scheduling extremely
difficult in wireless networks, especially as the network size
increases. In their seminal work [1], Tassiulas and Ephremides
propose athroughput optimalscheduling policy, commonly
referred to as the Generalized Maximum Weight Matching
(GMWM) policy, that stabilizes the network forany input rate
that is within thenetwork layer capacity region. In this context,
the network layer capacity region is defined as the closure of
the set of all input rates that can bestably supported by the
network using any possible scheduling policy [1][2][3].

The GMWM policy in each time-slot maximizes the sum
of backlog-rate products given the channel states and queue-
lengths, where this maximization can be considered as a
GMWM problem, which can be NP-hard depending on the
underlying interference model [4]. The complexity of the
GMWM policy naturally has motivated many researchers to
develop sub-optimal algorithms that approximate its solution.
In particular, Tassiulas in a pioneering work [5] shows that
simple randomized policies based on thepick-and-compare
principle are sufficient to achieve throughput optimality.These
policies in each time-slot use arandomizedalgorithmA to se-
lect acandidateschedule vector that with non-zero probability
δ can be the optimal solution to the GMWM problem. Once
a schedule vector is picked, it is compared with the previous
schedule in terms of the sum of backlog-rate products, and
the one with the larger sum is selected for scheduling. This
approach, however, assumes time-invariant channels.
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More recently, in the context of time-varying channels, the
authors of [6][7] have shown throughput optimality can be
achieved if at the generic time-slott, the randomized policy
compares the picked schedule vector with the one used at
the most recent occurrence of the same channel state at time-
slot t. This proposal, therefore, requires a table with a size
proportional to the number of channel states, and hence, its
memory requirement is exponential in the number of data flows
(links) N . In practice, however, mobile systems are computa-
tionally limited and have limited memory resource. Therefore,
any attempt to practically implement such randomized policies
should aim at reducing both the complexity of computation and
the required memory storage.

In this paper, we are interested in addressing the following
questions under the assumption that randomized policies are
employed for scheduling:

• How much sub-optimality in the network throughput is
introduced by a reduced memory requirement, especially
when the available memory storage can increase only
linearly with the number of data flows?

• What is the delay scaling? Does the delay increase
exponentially as the channel states become increasingly
correlated and the number of data flows increase?

Inspired by the above challenging questions, in this paper,
we focus on a linear-memory randomized scheduling policy
LM-RSP, which essentially follows the same pick-and-compare
principle as the one used in the randomized policies in [5][6][7]
but is generalized in the following respects. First, the update
rule for the comparison of schedules in LM-RSP is generalized
to be probabilistic. Second, LM-RSP uses a more general
model for the randomized algorithmA, according to which,
with a probability not less than a positiveδ, the algorithm
A returns a schedule vector that is withinζ-neighborhood
of the optimal solution. Considering different values for the
pair (ζ, δ) allows us to study algorithms with a wide range of
complexity levels. Note that a value ofδ less than one allows
us to model algorithms with nondeterministic results, possibly
those implemented in a distributed manner. In this paper, we
limit our model to a network withN one-hop data flows, e.g,
downlink or uplink of a cellular or a mesh network.

Our main contribution in this paper is to analytically char-
acterize the performance of LM-RSP in terms of its associated
stability region and average delay in the context of time-varying
channels.First, for general ergodic channel processes, we show
that the stability region is ascaled version(fraction) of the net-
work layer capacity region. Our analysis quantifies the scaling
factor and demonstrates how it changes withchannel variations
and thecomputational efficiencyof the randomized algorithm
A. In addition, our analysis provides a general average delay-
bound for the input rates strictly inside the studied stability
region.
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Second, to obtain more specific results, we consider an
important class of Markovian channels where the state of
each link is a two-state Markov chain. We assume that a link
holds its state during one timeslot, but the state may change
from one timeslot to another with (transition) probabilityr
and independent of the states of other links in the network.
For this simple yet worst-case modeling class of channels,r
represents theindividual link variation rate over one timeslot,
and we show that for appropriate choice of parameters while
the average delay isO( 1

r2 ), asr → 0, LM-RSP can stabilize
a minimum fraction δ

δ+r
(1 − ζ) of the capacity region, e.g.,

when the interference is specified by the node exclusive model
[8][4][9][10] or, more generally, by theκ-hop interference
model [4], where no two links withinκ hops can success-
fully transmit at the same time. It is worth mentioning that
this minimum fraction does not depend on thetotal channel
variation rate, which approximately equalsNr for small r’s,
but, instead, depends on the individual link variation rater.
In addition, note that while the capacity region shrinks as the
interference becomes more restrictive, e.g., whenκ increases
in the κ-hop interference model, these results indicate that
the minimum fraction remains fixed. Another important yet
intuitive implication of these results is that if it is possible
to increaseδ, at the expense of increasing the complexity of
algorithmA, it is sufficient to make sure thatδ has the same
order asr in order to make sure that LM-RSP stabilizes a
fraction close to(1 − ζ) of the capacity region.

Our results further verify that the average delay can be
polynomially bounded as the number of data flows increases,
e.g., when channels are Markovian, as described earlier. As
far as we are aware, our results are the first to rigorously
show that the delay does not need to increase exponentially
with the number of data flows or channel correlation when
randomized policies are used in the context of time-varying
channels. Finally, note that in the limit of highly correlated
channels, our results include the one in [5], which states that
linear-complexity algorithms are sufficient to attain throughput
optimality.

The rest of this paper is organized as follows. In Section II,
we review the related work. In Section III, we provide details
about the system model, and, in Section IV, we explain the
operation of LM-RSP. In Sections V and VI, we state the main
results of the paper on LM-RSP’s stability region and delay
performance, respectively. In Section VII, we discuss important
observations. Finally, in Section VIII, we conclude the paper.

II. RELATED WORK

Stable resource control for wireless networks first appeared
in [1], where both the GMWM policy and the throughput
capacity region are characterized. The work in [1], however,
uses many simplifying assumptions for the channel and arrival
processes. This result has been further extended by many
researchers [11][2][12][6][3]. Recently, Neely and Modiano es-
tablished the network layer capacity region for general ergodic
channels and arrival processes [3]. In fact, the same stabilizing
rule in [1] has been used as the scheduling component for rate
control [13], energy optimal design [14], congestion control
[15][16], and the study of utility-delay tradeoffs [17]. All of
these papers generally assume that the scheduler has access
to the solution of the complex GMWM problem. Another
example of the throughput optimal control is the exponential
rule proposed in [18].

One difficulty in implementing the GMWM policy is having
access to updated queue information. In [6], it is shown that
under general conditions, delayed or infrequent queue-length
information does not affect the stability region. A similarresult
is shown to hold [19], when the queue-length-based scheduling
at the base station is combined with congestion control at the
end user, which can lead to weighted proportional fairness [15].
In this paper, therefore, we assume that the queue information
is available and, instead, focus on the memory requirement and
the complexity of the scheduling policies.

The main difficulty in implementing the GMWM policy is
its complexity since this policy can be NP-hard depending
on the assumed interference model [4]. This has motivated
many researchers to develop sub-optimal constant-factor ap-
proximations to the GMWM policy. For instance, in [8],
the impact of imperfect schedules is studied, where, as an
example, a Maximal Matching (MM) scheduling algorithm is
used to stabilize at least half of the capacity region. Due toits
simplicity of implementation, MM scheduling has been widely
investigated in the literature [20][4][21][10][22]. Despite the
fact that these works address the issue of complexity, they are
generally proposed for networks with time-invariant channels,
or otherwise, do not exploit the channel correlation to improve
the scheduling performance.

The use of randomized policies, based on the pick-and-
compare principle, to reduce the complexity of throughput
optimal scheduling first appeared in [5]. In a more recent work
[9], the authors propose distributed schemes to implement a
randomized policy similar to the one in [5] that can stabilize
the entire capacity region. Both policies in [5] and [9], however,
are proposed for time-invariant channels. In the context of
time-varying channels, other recent proposals that are based on
the policy in [5] include [6][7]. Although these proposals are
throughput optimal, their memory requirement is exponential in
the number of data flows, and thus, they may not be amenable
to practical implementation in large networks.

In a different context, dynamic rate allocation has been pro-
posed in [23]. This algorithm normalizes the feasible ratesby
appropriate weights and chooses the user with the largest nor-
malized rate. Opportunistic scheduling is used in [24][25][26],
where the long term fairness is achieved by assigning offsets
to the users’ utility functions [24], or by dynamically updating
throughput weights [25][26]. MaxMin fair scheduling is studied
in [27]. User level performance of channel-aware scheduling
algorithms has been investigated in [28]. Asymptotic properties
of the proportional fair sharing algorithms are studied in [29].
Our work in this paper does not consider the issue of fairness.
Instead, we focus on throughput optimality and investigatethe
impact of channel variations on the performance of linear-
memory low-complexity randomized scheduling policies.

III. SYSTEM MODEL

We consider a wireless network withN one-hop source-
destination pairs, where each pair represents a data flow1.
Associated with each data flow, we consider a separate queue,
maintained at the source of the flow, which holds packets to
be transmitted over a wireless link. Examples of this type of
network include downlink or uplink of a cellular or a mesh
network.

1Extension to multi-hop flows is possible using the methods in[1][3].
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A. Queueing

We assume the system is time-slotted, and channels hold
their state during a time-slot but may change from one time-
slot to another. Lets(t) be the matrix of all channel states
from any given nodei to any other nodej in the network at
time t. For instance, in the downlink of a cellular network,
s(t) will reduce to the vector of user-base-station channel
states, i.e.,s(t) = (s1(t), . . . , sN (t)), wheresi(t) is the state
of the ith link at time t. Throughout the paper, we use bold
face to denote vectors or matrices. LetS represent the set
of all possible channel state matrices with finite cardinality
|S|. Let Di(t) denote the discrete rate over theith link at
time t, and D(t) be the corresponding vector of rates, i.e.,
D(t) = (D1(t), . . . , DN (t)). In addition, letIi(t) represent
the amount of resource used by theith link at time t, andI(t)
be the corresponding vector, i.e.,I(t) = (I1(t), · · · , IN (t)).
The vectorI(t) contains both scheduling and resource usage
information, and hereafter, we refer to it simply as theschedule
vector. Details for the selection ofI(t) are provided in Sec-
tion IV. Let I denote the set containing all possible schedule
vectors, with finite cardinality|I|.

Note that the exact specification of the schedule vectorI(t)
is system dependent. For instance, in CDMA systems, it may
represent the vector of power levels associated with wireless
links, or when the interference is characterized by theκ-hop
interference model [4], the vectorI(t) can be an activation
vector representing a sub-graph in the network.

Since transmission rates are completely characterized given
the channel states, the schedule vector, and the interference
model, we have

D(t) = D(s(t), I(t)). (1)
We assume that transmission rates are bounded, i.e., for all
s ∈ S andI ∈ I,

Dl(s, I) < Dmax, 1 ≤ l ≤ N, (2)
for some largeDmax > 0.

Let Al(t) be the number of packets arriving in time-slot
t associated with thelth link (or data flow), andA(t) be the
vector of arrivals, i.e.,A(t) = (A1(t), · · · , AN (t)). We assume
arrivals are i.i.d.2 with mean vector

E[A(t)] = a = (a1, . . . , aN ),

and with finite second moments:
E[A2

l (t)] < Ã 2
max, 1 ≤ l ≤ N, (3)

for a suitably largeÃmax. Assuming ‖ · ‖ represents the
Euclidean norm of a vector, we defineE[‖A‖2] as

E[‖A‖2] = E[‖A(t)‖2] =

N∑

l=1

E[A2
l (t)]. (4)

Since the arrival process is i.i.d., we see thatE[‖A‖2] is well-
defined and is independent oft. By Markov’s inequality, we
have the following fact.

Fact 1. For any given positiveǫ, there exists a sufficiently large
Aǫ such that forA ≥ Aǫ, we havep(‖A(t)‖ > A) < ǫ.

Finally, let X(t) = (X1(t), . . . , XN(t)) be the discrete
vector of queue-lengths, whereXl(t) is the queue-length
associated with thelth link. Using the preceding definitions,
we see thatX(t) evolves according to the following equation

X(t + 1) = X(t) + A(t) − D(t) + U(t), (5)

2This assumption is made to simplify the analysis, and the extension to
non-i.i.d. arrivals is straightforward.

where U(t) represents the wasted service vector with non-
negative elements; the service is wasted when in a queue the
number of packets waiting for transmission is less than the
number that can be transmitted, i.e., whenXl(t) < Dl(t) for
somel, 1 ≤ l ≤ N .

B. Channel State Process

We assume the channel state process is stationary and
ergodic. In particular, similar to [3], we assume for any given
positiveǫ, there exists aK1,ǫ such that forK ≥ K1,ǫ regardless
of the system stateat time t denoted by

Y(t) = (X(t), I(t), s(t)),

we have
∑

s∈S

∣
∣
∣π(s) − E

[ 1

K

K−1∑

k=0

1s(t+k)=s|Y(t)
]∣
∣
∣ < ǫ, (6)

where π(s) is the steady-stateprobability of the channel at
states, and1e is the indicator function for the evente. This
inequality simply states that the expected value of the average
number of visits to a given channel state converges to its steady-
state probability, and the sum of the absolute value of the
differences, over all possible states, vanishes for sufficiently
long time-intervals. The above further implies that there exists
a K

(γ)
2,ǫ such that forK ≥ K

(γ)
2,ǫ , we have

∑

s∈S

∣
∣
∣π(s) − E

[ 1
∑K−1

k=0 γK−k

K−1∑

k=0

γK−k1s(t+k)=s|Y(t)
]
∣
∣
∣ < ǫ,

where {γi}∞i=1 is an increasing sequence of positive real
numbers with the property thatlimi→∞ γi = γ∞ < ∞. Note
that K

(γ)
2,ǫ in general depends on the sequence{γi}∞i=0. Of

particular interest is the case whereγi =
∑i

j=1(1−δ)j , which
defines the sequence{γi}∞i=1 for the rest of the paper. Examples
of processes that satisfy the above inequalities include but are
not limited to Markov chains.

IV. SCHEDULING POLICY

In this section, we elaborate on the statistical structure of the
algorithms that provide sub-optimal solutions to the GMWM
problem, and describe the operation of LM-RSP that uses
these algorithms. We start by providing a brief overview of
the network layer capacity region and the precise definitionof
the GMWM problem.

In [1][2] and recently under general assumptions in [3], it
has been shown that the capacity region is given by

Γ =
∑

s∈S
π(s) Convex-Hull{D(s, I)|I ∈ I}. (7)

Moreover, it has been shown that the GMWM policy is
throughput optimal in that it stabilizes the network for all
input rates that are strictly insideΓ [1][2][3]. This policy at
each time-slot setsX = X(t) and s = s(t), and uses the
schedule vectorI∗(t) that isargmax3 to the following GMWM
optimization problem:

max

N∑

l=1

XlDl(s, I), subject toI ∈ I. (8)

Hence, the GMWM policy uses a schedule vector that maxi-
mizes the sum of backlog-rate products. However, note that the
optimization problem given in (8) can be NP-hard [8][4]. We

3If there are more than one schedule vector maximizing the summation in
(8), we define theargmax to be any of such schedule vectors.
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therefore consider a policy based on randomized algorithms
that can provide approximate solutions to the optimization
problem in (8). In the following, we first elaborate on the
structure of the considered sub-optimal algorithms.

A. Sub-optimal Algorithms Approximating GMWM Problem

In this paper, we assume that there exists a randomized
algorithmA, either centralized or distributed, that at each time-
slot t provides the network with acandidatescheduleIr(t)
from the setI. We use superscriptr to emphasize thatIr(t) is a
candidate schedule vector selected by the randomized algorithm
A. In general, the distribution of the selected scheduleI

r(t)
depends onX(t) and s(t). We defineµX(t),s(t)(·) to be the
distribution for Ir(t). Note that the policy developed in this
paper does not need the knowledge ofµX(t),s(t)(·), and only
requires the algorithmA to satisfy Properties 1 and 2, as will
be discussed shortly.

Given X and s, let the optimal scheduleand theoptimal
rate associated with the GMWM problem beI∗(X, s) and
D

∗(X, s), where

I
∗(X, s) = argmax

I∈I
XD(s, I), (9)

and

D
∗(X, s) = D(s, I∗(X, s)). (10)

Note that in the above,XD(s, I) denotes the scalar product
of the vectorsX and D(s, I), and for simplicity, we have
dropped the dot operator. In the rest of the paper, we use the
same method to denote scalar products of vectors. In addition,
note that by (1),D(s, I) is the rate vector corresponding to
the channel states and the schedule vectorI. We assume the
algorithmA has the following property.

Property 1. There exist a constantζ, 0 ≤ ζ < 1, and a
constantδ, δ > 0, such that, for any givenX and s ∈ S, with
probability at leastδ, the algorithmA finds a candidate vector
I
r that satisfies the following:

XD(s, Ir) ≥ (1 − ζ)XD
∗(X, s). (11)

This property simply states that the selected scheduleI
r

with probability at leastδ is within ζ-neighborhood of the
optimal solution in terms of the backlog-rate product. We
can consider this property as a generalized version of the
ones in [5][6][8][7][9], modeling the sub-optimality of the
algorithm A through the introduction of the pair(ζ, δ). The
following further details the structure of the algorithmA by
stating a property for the distribution set{µX,s(·); s ∈ S,X ∈
({0} ∪Z

+)N}.

Property 2. Consider two queue-length vectorsX1 and X2,
and suppose‖X2−X1‖ < C for a given constantC > 0. For
any given positiveǫ, there exists a sufficiently largeBC

1,ǫ such
that if ‖X1‖ ≥ BC

1,ǫ, then
∑

I∈I
|µX2,s(I

r = I) − µX1,s(I
r = I)| < ǫ,

for all s ∈ S. Moreover, for any two givenX1 and X2, if
X2 = βX1, for someβ > 0, then, for alls ∈ S and I ∈ I,

µX2,s(I
r = I) = µX1,s(I

r = I).

This property states that the distributions forI
r are almost

the same when two queue-length vectors arecloseand large.
This property also states that the distribution is exactly the
same if two queue-length vectors differ only by a multiplicative

scalar factor. These statements may naturally hold since the
objective function in (8) is a continuous function ofX, and
assuming‖X2 − X1‖ < C, for any s and I, by (2), we must
have

|X2D(s, I) − X1D(s, I)| <
√

NCDmax.

Hence, finite changes in the queue-length vector have a finite
impact on the backlog-rate product. This and the fact that
XD

∗(X, s) linearly4 increases with‖X‖ suggest that the
impact when normalized toX1D

∗(X1, s) can be arbitrarily
small if ‖X1‖ is sufficiently large. We therefore expect the
algorithm A, for each pair(s, I), to see similar normalized
values5 of the backlog-rate products corresponding toX1 and
X2. Hence, for givenX1, X2, ands, the algorithm is expected
to assign similar probabilities forIr = I when‖X2−X1‖ < C,
and‖X1‖ is sufficiently large. In the case whereX2 = βX1,
the backlog-rate product corresponding toX2, for all s ∈ S and
I ∈ I, is a β-scaled version of the one forX1. Therefore, we
expect the distribution forIr corresponding toX2 to be exactly
the same as the one corresponding toX1. Having detailed the
structure of the algorithmA, we next focus on the operation
of LM-RSP.

B. LM-RSP’s Operation and Scheduling

We start by defining several useful functions. LetD
r(t) and

D
′

(t − 1) be defined as
D

r(t) = D(s(t), Ir(t)),

and
D

′(t − 1) = D(s(t), I(t − 1)), (12)
respectively. According to the above definitions, we see that if
the network uses the candidate scheduleI

r(t) at time-slott, the
resulting rate vector will beDr(t) whereas if the network keeps
using the schedule vector of the previous time-slot,I(t − 1),
D

′(t − 1) will be the rate vector (at time-slott). In addition,
let ϕ(t) be defined as

ϕ(t) =
X(t)(Dr(t) − D

′(t − 1))

max(X(t)Dr(t),X(t)D′(t − 1)) + α‖X(t)‖ , (13)

whereα is apositivebut otherwisearbitrary constant. Later in
this section, we elaborate on the motivation to consider a non-
zero value forα. Based on the above definition,ϕ(t) measures
thenormalized6 improvement in terms of backlog-rate product
when the candidate scheduleI

r(t) is preferred overI(t−1) at
time-slot t. We defineϕ(t) = 0 if X(t) = 0.

We are now ready to describe the operation of LM-RSP. We
assume that the policy, either centralized or distributed,takes
as the input the vectorsI(t− 1), X(t), ands(t); and using the
algorithmA, updates the schedule vectorI(t) according to the
following:

• Using the algorithmA, the policy selectsI(0) according
to the initial X(0) ands(0).

• For t > 0, it determinesI(t) through the following steps.
– First, the policy uses the algorithmA to selectIr(t)

according toX(t) ands(t).
– Next, it updatesI(t) according to the following rule:

I(t) =

{
I
r(t) with probability f(ϕ(t))

I(t − 1) otherwise ,

4Later, we show thatXD
∗(X, s) ≥ ν√

N
‖X‖, whereν is a positive system

dependent constant as defined in (19).
5Here, for a givenX, the product is normalized toXD∗(X, s).
6Here, by normalization, we mean division by a well-defined function.
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whereϕ(t) is defined in (13), andf : (−1, 1) → [0, 1]
is a non-decreasing continuous function.

We assume thef(ϕ)−0.5 is an odd function ofϕ, andf(ϕ)
has the property that

f(ϕ) =

{
1, ϕ ≥ ρ
0, ϕ ≤ −ρ

,

where 0 < ρ < 1. In the rest of the paper, we assume the
functionf(ϕ) is linear in the range[−ρ, ρ] andf(ϕ) = 0.5+ ϕ

2ρ

for |ϕ| < ρ; we leave finding the optimalf(ϕ) as an interesting
open problem for future research. Considering the definition of
ϕ(t) and the properties forf(·), it is easy to see that w.p. 1

X(t)(D(t) − (1 − ρ)D′(t − 1)) > −ρα‖X(t)‖. (14)

Note that a similar inequality holds by replacingD
′(t−1) with

D
r(t).
The above description suggests that the memory requirement

of the policy is linear in the number of data flowsN . This is
because the only past information required to updateI(t) in
each time-slot is the vectorI(t−1) whose size is proportional to
N . As mentioned earlier, other similar proposals in the context
of time-varying channels [6][7], store one vector foreach
possible channel state. However, the number of states increases
exponentially with N , which implies that these proposals
require an exponentially increasing memory storage.

One subtle point in the design of the policy is the introduc-
tion of ϕ(t) andf(ϕ(t)) in the update process ofI(t). These
functions allow LM-RSP to take soft decisions when com-
paring two different schedules, generalizing similar previous
approaches in [5][6][7][9]. Specifically, these functionsenable
LM-RSP to probabilistically choose either of the schedules,
I(t − 1) or I

r(t), according to the value ofϕ(t); a larger
positiveϕ(t) implies that selectingIr(t) as the schedule vector
results in a larger backlog-rate product, which according to the
monotonicity of f(ϕ), increases the probability of selecting
I
r(t). Similarly, a smaller negativeϕ(t) increases the chance

of selectingI(t − 1) as the schedule vector for time-slott.
However, a mere generalization is not the main motivation

for the introduction and use ofϕ(t) and f(ϕ(t)). The main
motivation is to make the distribution ofI(t) continuouswith
respect toX(t) for large‖X(t)‖, and thus, is analysis-inspired.
More specifically, we have the following fact, which results
from the continuity off(·), the assumption thatα > 0, and
the fact that the distribution ofI(t) is completely determined
by the values forI(t − 1), X(t), I

r(t), ands(t).

Fact 2. Suppose two vectorsX1 and X2 are given such that
‖X2 − X1‖ < C. For any given positiveǫ, there exists a
sufficiently largeBC

2,ǫ such that if‖X1‖ ≥ BC
2,ǫ, then for all

I
r(t) ∈ I, I(t − 1) ∈ I, s(t) ∈ S, and I ∈ {Ir(t), I(t − 1)}

the following holds:

|p(I(t) = I|X(t) = X2, s(t), I
r(t), I(t − 1))

− p(I(t) = I|X(t) = X1, s(t), I
r(t), I(t − 1))| < ǫ. (15)

One important point that should not be buried under the
main motivation is that introducingϕ(t) andf(ϕ) allows us to
consider and embed in our model the efficiency of the update
rule when it is implemented distributedly. The update rule in
its original form [5][6][7] simply takes a decision based on
only thesignof ϕ(t) and uses the schedule vector, eitherI(t−
1) or I

r(t), with the larger backlog-rate product. When the
update rule is implemented in a distributed manner, however,
the estimates ofX(t), X(t)Dr(t), andX(t)D′(t − 1) can be

erroneous. These inaccurate estimates may make the computed
ϕ(t) and, in particular, its sign to be different from their actual
values. Hence, the sign ofϕ(t) alone may not be sufficient
for comparison purposes. This suggests to use thevalue, and
not only the sign, ofϕ(t) to evaluate and select the vectors
I(t− 1) andI

r(t). In this case, while the choice for a positive
α is arbitrary, the value ofρ may be adjusted to account for
the extent within which the estimates are inaccurate. Note that
when LM-RSP is implemented in a centralized manner, the
choice for bothα and ρ is arbitrary as long asα > 0 and
0 < ρ < 1.

C. Complexity of LM-RSP

As mentioned earlier, at each time-slott, the GMWM policy
solves the optimization problem in (8) to findI∗(X(t), s(t))
as the schedule vector. This problem is in general non-convex
due to physical layer interferences, and can be NP-hard [4].In
contrast, LM-RSP assumes access to the algorithmA whose
complexity depends on the value of the pair(ζ, δ). For instance,
when δ = 1 and ζ = 0, the algorithmA always returns the
optimal solution, and whenδ = |I|−1 andζ = 0, the algorithm
simply selects schedule vectors with equal probabilities.It is
easy to see that the latter case, with purely random selection,
can make the complexity of LM-RSP linear inN . This special
case is attractive mainly from a theoretical point of view since it
achieves throughput-optimality in the limit of highly correlated
channels, despite an exponentially increasing delay due tothe
exponentially decreasingδ with the number of data flows (see
Corollaries 2 and 6). More interesting examples are discussed
in [31], where a distributed algorithm is developed with a time-
complexity ofx·c·ǫ−1 log ǫ−1 log N , wherec is a constant, and
x ≥ 1 andǫ > 0 are tuning parameters such thatζ = 1 − 1

4+ǫ

andδ = 1 − N1−x.

V. LM-RSP STABILITY REGION

In this section, we study the stability region of the network
under LM-RSP by first providing several key definitions.

A. Key Definitions

For notational convenience, in the rest of the paper, where
appropriate, we use subscripts also to show dependencies on
time; hence, e.g., we haveXt , X(t). Let Υ(Xt) be defined
as

Υ(Xt) = E[XtD
∗(Xt, s)], (16)

where the expectation is over the steady-state distribution of the
channel process, andD∗(Xt, s) is defined in (10). Based on
this definition,Υ(Xt) denotes the expected value of themax-
imumbacklog-rate product and, thus, is the expected backlog-
rate product if the GMWM policy is used, and the queue-length
vector is fixed atX = Xt. The quantityΥ(Xt), therefore,
can serve as abenchmarkto measure the performance of sub-
optimal policies.

In our analysis, we often encounter distributions and ex-
pected values of random variables where after a particular time
t, queue dynamics are ignored. To make this notationally clear,
suppose a r.v.Z is given, which can be a function of the
channel process and the selected schedules. We defineĒXt

[Z]
and p̄Xt

(Z = z) as the expectation of the r.v.Z and the
probability thatZ = z, respectively, given the hypothesis that at
any timet′, wheret′ > t, the policy updatesI(t′) by assuming
X(t

′

) = X(t). In other words, these notations emphasize that
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after timet, the policy makes decisions based on theold queue-
length information at timet. These notations further assume
that the updated channel state informations(t′), t′ > t, is
available. Note that without the above hypothesis, both updated
queue and channel state information are available for LM-RSP
to update the schedule vector.

Having introduced̄EXt
[·], we defineΨK

Yt
as

ΨK
Yt

=

∑K−2
m=0 ĒXt

[Xt(Dt+m − (1 − ρ)D′
t+m)|Yt]

KΥ(Xt)
. (17)

By the definition in (12),D′
t is the rate vector corresponding

to the schedule vector in the current time-slot,I(t), and the
channel state in the next time-slot,s(t + 1), implying that
Dt+m − (1 − ρ)D′

t+m for small values ofρ approximately
shows the changes in the rate vectorDt+m due to channel
variations. Note that the sequence ofDt+m’s not only depends
on a particular realization of the channel states but also onthe
randomized algorithmA that finds the candidate schedules.
Therefore, whenK is large,ΨK

Yt
measures the relative changes

in the backlog-rate products, due to channel variations, over a
long horizon, while implicitly embedding the effects of the
algorithmA. This implies thatΨK

Yt
can be used as a measure

for the channel correlation sinceΨK
Yt

becomes small for small
values ofρ if the channel states are highly correlated. It is
important to note that in the definition ofΨK

Yt
, the expectation

is of the typeĒXt
[·], and hence, queue variations after timet

do not affectΨK
Yt

. In addition, note thatΨK
Yt

not only depends
on K andYt but also implicitly depends ont.

Similarly, let

ΦK
Yt

=

∑K−1
m=0 ĒXt

[XtDt+m|Yt]

KΥ(Xt)
. (18)

This definition introducesΦK
Yt

as the time average of backlog-
rate product normalized to the benchmarkΥ(Xt). Hence, we
can useΦK

Yt
as a measure to compare the performance of LM-

RSP with that of the GMWM policy.
As for one other definition, let

ν = min
1≤l≤N

∑

s∈S
π(s)max

I∈I
Dl(s, I). (19)

Thus,ν is the minimum of the average maximum transmission
rate for individual links, over all links in the network. This pa-
rameter is a fundamental property of the system. It immediately
follows that if for every link, there is at least one state in which
the transmission rate is non-zero, thenν > 0, which is assumed
throughout the paper. One importance of this parameter is that
we can obtain a lower bound forΥ(Xt):

Υ(Xt) ≥ ν max
1≤l≤N

Xl(t) ≥
ν√
N

‖Xt‖. (20)

Now, we define a key parameterθ that represents the fraction
of the capacity regionΓ that can be stabilized by LM-RSP.
Specifically, we defineθ as

θ = lim inf
K→∞

inf
Yt

max(1 − ζ′ − 1 − δ

δ
ΨK

Yt
−

√
Nρα

δν
, ΦK

Yt
), (21)

where
ζ

′

= (1 − (1 − ρ)(1 − ζ)). (22)

We assume
√

Nρα
δν

< 1 or, in other words,

ρα <
δν√
N

. (23)

This assumption can be, in general, a necessary condition for
the positivity of the first argument in themax operator of (21).
By the definition of thelim inf, we have the following fact.

Fact 3. For any positiveǫ > 0, there exists a sufficiently large
K

(θ)
ǫ , such that for allYt andK ≥ K

(θ)
ǫ , the following holds:

max(1 − ζ′ − 1 − δ

δ
ΨK

Yt
−

√
Nρα

δν
, ΦK

Yt
) > θ − ǫ.

To shed light on the properties of the parameterθ, and also
to consider an important special case, suppose the channel
process is Markovian. According to our assumptions, there is
a finite number of channel states and schedules. Therefore,
given the hypothetical condition that the queue-length vector
is frozen atXt after time t, as assumed in the definition
of ΨK

Yt
and ΦK

Yt
, the joint process of rates and the channel

states will be a Markov chain with a finite number of states.
If the joint process has a single communicating class and is
aperiodic, e.g., when the randomized algorithm selects any
schedule with a positive probability, and the channel process is
irreducible and aperiodic, then the joint process will be positive
recurrent and will have a steady-state distribution. Hence, as
m → ∞, Dt+m weakly converges to a random vectorD whose
distribution depends on the channel distribution, the algorithm
A, the update rule, and the given vectorX = Xt. A similar
discussion also holds forD′

t+m. Therefore, in the limit of large
K, bothΨK

Yt
andΦK

Yt
become independent of initialI(t) and

s(t). In particular, assumingX = Xt, asK → ∞, we have

ΨK
Yt

→ Ψ∞
X

, Ψ∞
Yt

=
E[X(D − (1 − ρ)D′)]

Υ(X)
, (24)

and

ΦK
Yt

→ Φ∞
X

, Φ∞
Yt

=
E[XD]

Υ(X)
, (25)

where in the above expressions, expectations are taken with
respect to the distributions forD and D

′, and by usingΨ∞
X

andΨ∞
X

, we have misused the notation to emphasize thatΨ∞
Yt

andΦ∞
Yt

depend onYt only throughX = Xt.
As one other observation for this special case, note that by

the Markovian nature of the channel process,ΨK
Yt

and ΦK
Yt

become independent oft whenYt is given. This independence,
Property 2, and the update rule further imply that the distribu-
tions for ΨK

Yt
andΦK

Yt
do not depend on‖Xt‖. Therefore, in

this case, despite the fact that the vectorXt is discrete, for the
purpose of taking theinf over Yt in the definition ofθ, we
can replaceXt, as one element ofYt, with Xt

‖Xt‖ . In addition,

since theinf is taken over all possiblet’s, Xt

‖Xt‖ can take all
possible directions and can be any unit vector in the limit of
large t. Hence, by (24) and (25), for Markovian channels, we
must have

θ = inf
X:‖X‖=1

max(1 − ζ′ − 1 − δ

δ
Ψ∞

X −
√

Nρα

δν
, Φ∞

X ). (26)

B. Theorem on Stability Region

The following is the main result of this paper on the stability
region of LM-RSP.

Theorem 1. Suppose the mean arrival rate vectora lies strictly
insideθΓ, whereθ is defined in(21), and θΓ is a region that
containsθ-scaled of all rates inΓ, i.e., θΓ = {aθ| ∃a ∈ Γ :
aθ = θa}. We have the following:

(a) There exist non-negative constantsβs,I’s such that

a =
∑

s∈S
π(s)

∑

I∈I
βs,ID(s, I), (27)
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and
ǫ , θ − max

s∈S

∑

I∈I
βs,I > 0.

(b) Under LM-RSP, the system described in Section III is
stable in the mean, i.e.,

lim sup
T→∞

1

T + 1

T∑

t=0

E
[
‖Xt‖

]
< ∞.

Proof: The proof of the theorem is given in the appendix.

C. Insights into the RegionθΓ

Here, we discuss several practical implications of the above
theorem by first focusing on general channel processes and
then considering an example of Markovian channel states.

1) Insights Assuming General Channel Processes:As the
first point, the theorem suggests that a scaled version of the
capacity regionΓ can be supported by LM-RSP. The theorem,
moreover, shows that the scaling factor isθ, which by definition
depends on the limiting behavior of the policy when queue
dynamics are ignored. Recall thatθ is a function ofΨK

Yt
and

ΦK
Yt

. As explained in Section V-A,ΨK
Yt

measures normalized
rate changes due to channel variations over time when queue
variations are ignored after timet. Since, for a given time-
slot, the policy updates the schedule vector by comparing a
candidate schedule with the one used in its previous time-slot,
we expect that large channel variations, and thus, largeΨK

Yt
,

negatively affect the update process, and hence,θ. On the other
hand, as explained earlier, for a givenYt, ΦK

Yt
is a measure to

compare LM-RSP with the GMWM policy; a larger and close-
to-one value forΦK

Yt
indicates that LM-RSP uses schedule

vectors with similar backlog-rate products to the ones resulting
from the GMWM policy, and a smaller and close-to-zero value
for ΦK

Yt
indicates that LM-RSP is performing poorly compared

to the GMWM policy. As a result, we intuitively expectθ to
be as large as the least value ofΦK

Yt
for largeK ’s, which is

the inf (overYt) of ΨK
Yt

for largeK ’s. The expression forθ
exactly reflects these observations.

We also observe that the parametersα and ρ can directly
affect θ through the term

√
Nρα
δν

and indirectly through the
termsΨK

Yt
andΦK

Yt
. Recall that these two parameters must be

positive for continuity purposes but, otherwise, can be chosen
arbitrarily7. Note thatδ is a given parameter, andν can be
estimated readily. Hence, we might naturally try to chooseα

and ρ such that
√

Nρα
δν

is arbitrarily small. In fact, assuming
θlim exists, where

θlim = lim
α,ρ→0

θ, (28)

we can ensureθΓ contains a region arbitrarily close toθlimΓ
by assuming sufficiently small values forρ andα, which gives
rise to the following corollary. However, note that, as shown
later, the delay bound can increase proportionally with1

ρα
.

Corollary 1. For any input rate strictly inside the regionθlimΓ,
the parametersα and ρ can be chosen sufficiently small such
that the the system described in Section III is stable under
LM-RSP.

We now consider the effect of channel variations onθ.
Suppose channel states are highly correlated. This impliesthat

7As discussed in Section IV-B, if the update rule is implemented distribut-
edly, ρ may be used to model the inefficiencies in implementing LM-RSP. In
this case, the choice for a positiveα is still arbitrary.

D
′
t+m ≃ Dt+m. Since by definition,E[XD] ≤ Υ(X), from

(17), we haveΨK
Yt

≤ ρ′, where ρ′ ≃ ρ. Assuming thatρ
and α are sufficiently small and using (21), we have that
θ ≥ 1 − ζ′ ≃ 1 − ζ. It is interesting to see how the presence
of the term 1−δ

δ
in θ is canceled by the channel correlation.

Note that the term1−δ
δ

is the average number of times that
the algorithmA must be run before (11) holds for a fixed
X and s. The effect of this term is reduced when channel
correlation is high, which manifests itself in a smallΨK

Yt
. We

can also easily prove that if the candidate schedule returned by
the algorithmA is usedwithout any comparison in each time-
slot, in general, the scaling factor becomesδ(1−ζ). Therefore,
we see that LM-RSP improves the capacity region scaling from
δ(1− ζ) to at least1− ζ and, exploiting channel correlations,
reduces the uncertainty of the randomized algorithmA in
selecting a candidate schedule satisfying (11). A special case
is whereζ = 0, which impliesθ ≥ 1 in the limit of ρ → 0,
and thus,θ = 1. Sinceθ = 1 means throughput optimality,
we conclude that simple linear-complexity algorithms, seethe
discussion in Section IV-C, are sufficient to attain throughput
optimality arbitrarily closely, reminiscent of the results in [5].
We summarize the above in the following corollary.

Corollary 2. The stability regionθΓ contains the region(1−
ζ)Γ andθlim ≥ 1− ζ in the limit of highly correlated channel
states and smallρ and α. In particular, whenζ = 0, in the
limit, the regionθΓ expands to the capacity regionΓ, and LM-
RSP becomes throughput optimal.

2) Insights Assuming Markovian Channel Processes:Our
discussion so far considers networks with general channel
processes. In the following, to obtain specific results, we
focus on an important class of Markovian channels and well-
investigated interference models. Suppose the channel states of
wireless links are independent. Furthermore, suppose the state
of each link is a Markov chain with two states, namely theg
state representing the “good” state and theb state representing
the “bad” state. We assume that the state of a link in each
transition can take a different value with probabilityr. Hence,
r may representindividual link variation rate over one time-
slot. As the worst-case scenario, we assume in theb state the
transmission rate is zero. We do not impose any assumption,
other than positivity, on the transmission rate in theg state.
Therefore, when two links are in theirg states, they can see
possibly different but non-zero transmission rates.

As for the interference, we consider the classicnode-
exclusive interference model[8][4][9][10], where a node can
only send to or receive from one other node at any time. This
interference model motivates us to view the network as a graph
G(V, E), whereV is the set of users andE is the set of all links
in the network. Given this graph, avalid schedule is amatching,
where a matching is a set of edges no two of which share a
common vertex. We assume the algorithmA always returns a
matching with respect toG, ensuring that the schedule vectorIt

is also a matching. Note that our discussion here easily extends
to the more generalκ-hop interference model [4], according to
which, no two links withinκ hops can successfully transmit at
the same time.

Having defined the channel and interference models, we now
derive an upper-bound forΨK

Yt
. Recall thatΨK

Yt
is almost the

time average of̄EXt
[Xt(Dt+m−(1−ρ)D′

t+m)|Yt] taken over
m, 0 ≤ m ≤ K − 2, and normalized toΥ(Xt). Consider the
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time t + m, and suppose thelth link is in its g state and is
scheduled to receive non-zero transmission rate. In the next
time-slot, with probabilityr, the state of this link changes to
the b state, whose definition implies thatD′

l(t + m) = 0. On
the other hand, with probability1 − r, the link stays in itsg
state. Since by definition,D′

t+m is the rate at timet + m + 1
but with the schedule vectorIt+m used at timet+m, and since
by assumption schedule vectors are matchings, we see that no
links that can possibly interfere with thelth link are scheduled
at timet+m+1. Hence, when thelth link stays in itsg state, we
must haveD′

l(t+m) = Dl(t+m). In the case where thelth link
is in its b state at timet+m, or not scheduled at timet+m, then
Dl(t+m) = 0. Considering all the above cases for linkl, it is
easy to see that̄EXt

[Xl(t)(Dl(t+m)−(1−ρ)D′
l(t+m))|Yt] ≤

ĒXt
[Xl(t)(r + ρ(1 − r))Dl(t + m)|Yt].

Since the above discussion holds for all links, we have that

ĒXt
[Xt(Dt+m − (1 − ρ)D′

t+m)|Yt]

≤ (r + (1 − r)ρ)ĒXt
[XtDt+m|Yt],

which implies thatΨK
Yt

≤ (r + (1 − r)ρ)ΦK
Yt

. Using this
inequality, the definition ofθ, and the fact thatmax(a −
bx, x) ≥ a

1+b
, we can show that

θ ≥ 1 − ζ′ −
√

Nρα
δν

1 + 1−δ
δ

(r + (1 − r)ρ)
. (29)

The term
√

Nρα
δν

in the right hand side of (29) can be made
arbitrarily small by choosing the policy parameterα sufficiently
small, which, as we show later, comes at the price of increasing
the delay-bound proportionally to1

α
. Summarizing the preced-

ing discussions, we have the following corollary.

Corollary 3. Suppose the state of each link is a two-state
Markov chain with transition probabilityr and independent of
the states of other links in the network. In addition, suppose the
interference can be modeled by the node exclusive interference
model or, more generally, by theκ-hop interference model.
Finally, suppose the algorithmA always returns a matching
(or a κ-valid matching) with respect to the network graphG.
Then, for any input rate strictly insideθminΓ, where

θmin =
1 − ζ′

1 + 1−δ
δ

((1 − r)ρ + r)
.

there exists a sufficiently smallα such that the network is sta-
bilized under LM-RSP. In other words, the regionθΓ contains
the interior of the regionθminΓ in the limit of smallα’s. In
addition, whenρ ≪ δ, we have

θlim ≥ θmin ≃ 1 − ζ

1 + 1−δ
δ

r
.

The corollary essentially states that afixed fraction of the
capacity regionΓ, regardless of the number of data flowsN ,
can be stabilized by LM-RSP given that the pair(ζ, δ) and
the rater are fixed. Furthermore, it remarkably states that the
total channel variation rate1 − (1 − r)N , which is close to
Nr for small r’s, does not appear in the lower-bound fraction
θmin, and what appears is the individual link variation rater.
As the last observation, note that the more restrictive is the
interference model, i.e., whenκ becomes large in theκ-hop
interference model, the smaller is the regionΓ. However, the
corollary assures that for a given(ζ, δ) andr, the lower-bound
fraction θmin is not affected by the choice ofκ, and thus, a
fixed fraction ofΓ can be stabilized no matter how restrictive
is the interference.

VI. LM-RSP DELAY PERFORMANCE

In this section, we study the delay performance of LM-RSP.
We start by introducing a few important parameters.

A. Convergence ParameterK and Norm Lower-BoundB

Here, we introduce two key parameters that play a central
role in the delay analysis. The first isKǫ that essentially is
a function of how fast channel states converge to their steady
states, where the variableǫ is used to measure the closeness of
the input rate to the boundary of the regionθΓ. In our analysis,
Kǫ determines the number of steps used in the Lyapunov drift-
analysis. To formally defineKǫ, suppose a positiveǫ is given,
and letǫ1 = 1

6
1

Dmax

ν
N

ǫ
4 , ǫ2 = δ

2ǫ1, andǫ3 = ǫ
4 . We defineKǫ

as

Kǫ = 2 max(K1,ǫ1, K
(γ)
2,ǫ2

, Dmax

6

δ

N

ν

4

ǫ
, K(θ)

ǫ3
), (30)

whereK1,ǫ1 andK
(γ)
2,ǫ2

are defined in Section III-B, andK(θ)
ǫ3

is defined in Fact 3.
The second parameter isBK

ǫ , which acts as a lower-bound
for the norm of‖Xt‖, above which the Lyapunov drift becomes
negative in our analysis. More specifically, if‖Xt‖ ≥ BK

ǫ ,
then within theK timeslots after timet, the inequalities in
Property 2 and Fact 2 hold with high probability. To formally
defineBK

ǫ , suppose for a givenK and a positiveǫ, ǫ4 andǫ5
are defined byǫ4 = 1

6
1

Dmax

ν
N

ǫ
4

δ
2K

and ǫ5 = ǫ4
4 . Let Ãǫ4 =

Aǫ4 +
√

NDmax, whereAǫ4 is defined by Fact 1. We define
BK

ǫ as
BK

ǫ = max(BC
1,ǫ5

, BC
2,ǫ5

), (31)

where C = KÃǫ4 , and BC
1,ǫ5

and BC
2,ǫ5

are defined by
Property 2 and Fact 2, respectively.

B. Big O Notation

As a notational convenience in our following analysis and
discussions, we use the bigO notation with multiple variables.
In such cases, we assume the ordinary bigO notation holds
individually for each presentindependentvariable as it takes its
limiting value. In particular, we consider the scaling behaviors,
asN → ∞, ρ → 0, α → 0, δ → 0, ζ → 1, or ǫ → 0, whereǫ
is defined in Theorem 1.

C. Theorem on Average Expected Queue-Lengths

The following is the main theorem on the average expected
queue-lengths.

Theorem 2. Under the assumptions in Theorem 1, the expected
queue-lengths satisfy the following:

∑

1≤l≤N

Xl = lim sup
T→∞

1

T + 1

T∑

t=0

[ N∑

l=1

E
[
Xl(t)

]]

≤ B(
√

N + 2
N

νǫ
‖a‖) + O

(KN2

δǫ

)

,

whereν is defined in(19), ǫ is given by Theorem 1,δ is defined
in Property 1,K = Kǫ, andB = BK

ǫ .

Proof: The proof of the theorem is given in the appendix.

To gain insights into the delay performance of LM-RSP
using the above theorem, we need to study the properties of
the parametersKǫ andBK

ǫ , whereǫ is defined in Theorem 1.
Note that this value ofǫ is used to determineǫi’s, 1 ≤ i ≤ 5,
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defining Kǫ and BK
ǫ . We start by considering the definition

of BK
ǫ given in (31), implying thatBK

ǫ ≥ BC
2,ǫ5

. It is easy to
see that sincef(·) is linear in the range[−ρ, ρ], we can set
BC

2,ǫ5
= C(8

√
NDmax

2ραǫ5
+ 1). It is also easy to verify that this

form for BC
2,ǫ5

is indeed necessary when constant multiplicative
factors are ignored. Hence, by the definitions forǫ4 andǫ5, and
that C = KÃǫ4, all given in Section VI-A, we have

BC
2,ǫ5

= Ω(
N1.5K2

ραδǫ
). (32)

By (30), we haveK > DmaxN
δνǫ

, and by (23), we haveρα <
δν√
N

. Using these inequalities, the equality (32), and thatBK
ǫ ≥

BC
2,ǫ5

, it is easy to seeB(
√

N + 2 N
νǫ
‖a‖) dominates the term

O
(

KN2

δǫ

)

. We, therefore, have the following corollary.

Corollary 4. The dominant term in the average queue-length
is B(

√
N + 2 N

νǫ
‖a‖).

Note that the dominant term implicitly depends onK =
Kǫ through the termB = BK

ǫ . Therefore, to have a specific
bound on the average queue-lengths, we need to also studyKǫ.
By definition, Kǫ depends onK1,ǫ1 , K

(γ)
2,ǫ2

, andK
(θ)
ǫ3 , which

can be considered as convergence rates. The first two rates are
essentially the convergence rate of the channel process to its
steady state. The third rateK(θ)

ǫ3 , depends on both the channel
convergence rate and the update policy. Hence, towards having
a specific average delay-bound, we need to focus on a particular
channel model, as discussed next.

D. Specific Delay Bound for Markovian Channels

As a special example, suppose the channel state is a Markov
chain as described in Section V-C2, where the state of each
link is a two-state Markov chain with transition probability r
and independent of states of other links in the network. The
following is the key lemma [32] that we use to study the
convergence rates of Markov chains.

Lemma 1. Suppose a Markov chain is defined on the finite
state spaceX with transition probabilitiesP (x, y), where
x ∈ X and y ∈ X . Let πk be the distribution afterk
transitions given an initial distributionπ0. Then, given any
initial distribution π0 and stationary distributionπ, we have

∑

x∈X
|πk(x) − π(x)| ≤ 2(1 − β)

⌊ k
k0

⌋
,

wherek0 is a positive integer and

β =
∑

y∈X
min
x∈X

P k0(x, y),

whereP k0 denotes the transition probability afterk0 transi-
tions.

We first concentrate onK(θ)
ǫ3 . Since the channel is Marko-

vian, by the definition ofK(θ)
ǫ3 and the discussion leading to

(24) and (25), we see thatK(θ)
ǫ3 depends on how fastΨK

Yt

and ΦK
Yt

converge toΨ∞
Yt

and Φ∞
Yt

, respectively. Recall that
in ΨK

Yt
and ΦK

Yt
queue dynamics are ignored, andI(t + k),

k > 0, is updated by settingX(t+k) = X(t). Using this along
with the discussion leading to (24), we see that the process
{(st+k, It+k), k ≥ 0} is also a Markov chain on the space
S × I. Our goal is to find an appropriate value forβ to apply
Lemma 1 to this Markov chain.

Consider thelth link whose statesl is by itself a two-state
Markov chain with steady-state probabilitiesπ(b) = π(g) =
0.5. Settingk0 = 1, we can use Lemma 1 to show that

∑

s∈{b,g}
|πk(sl = s) − π(sl = s)| < 2(1 − βl)

k, (33)

whereβl = 2r if r < 0.5, andβl = 2 − 2r otherwise. Since
there areN links with independent states, the above inequality
indicates that afterk transitions after timet, with probability at
least(1

2 − (1−βl)
k)N , the statest+k satisfiesst+k = s, where

s can be any state inS. On the other hand, by Property 1,
with probability at leastδ, inequality (11) withX = Xt and
s = st holds for any time-slott. This implies that for any state
s ∈ S, there exists a setAXt,s, AXt,s ⊂ I, such that for all
I ∈ AXt,s, inequality (11) holds forIr = I andX = Xt, and

∑

I∈AXt,s

µXt,s(I
r = I) ≥ δ, (34)

whereµXt,s is defined in Section IV-A.
Now, suppose at timet + k, for a givenk, the algorithmA

chooses the scheduleI that belongs to the setAXt,st+k

8. This
happens with probabilityµXt,st+k

(Ir = I). In this case, we
haveϕ(t + k) ≥ −ζ. Assumingρ > 2ζ, by the update rule,
we have that with probability at least14 , It+k = I

r(t + k) =
I. This and the discussion in the previous paragraph imply
that for any channel states and I ∈ AXt,s, regardlessof the
initial state(st, It), afterk time-slots, with probability at least
P k

min

(
(s, I)

)
= 1

4 (1
2 − (1 − βl)

k)NµXt,s(I
r = I), the chain

will be at state(st+k, It+k) = (s, I). Using this lower bound
as the minimum transition probability in the expression forβ
and replacingk with k0, we can show thatβ for the Markov
chain{(st+i, It+i), i ≥ 0} satisfies

β ≥
∑

(s,I):s∈S,I∈AXt,s

P k0

min

(
(s, I)

)

=
∑

s∈S

∑

I∈AXt,s

(
1

2
− (1 − βl)

k0)N 1

4
µXt,s(I

r = I)

=
1

4

∑

s∈S
(
1

2
− (1 − βl)

k0)N
∑

I∈AXt,s

µXt,s(I
r = I)

≥ 1

4
δ(1 − 2(1 − βl)

k0)N , (35)

where, to obtain the last inequality, we have used (34) and that
|S| = 2N . Hence, we have obtained a lower-bound forβ given
anyk0. Next, we use this bound along with Lemma 1 to study
the convergence ofΦK

Yt
to Φ∞

Yt
.

Supposeπk(·, ·) is the distribution of the Markov chain
{(st+i, It+i), i ≥ 0} after k transitions, givenst and It.
From the definition ofΦK

Yt
andΦ∞

Yt
, given in (18) and (25),

respectively, we have that

|ΦK
Yt

− Φ∞
Yt

| =
1

KΥ(Xt)
∣
∣
∣

K−1∑

k=0

∑

s,I

(
πk(s, I) − π(s, I)

)
XtD(s, I)

∣
∣
∣

<

√
N

Kν‖Xt‖

K−1∑

k=0

∑

s,I

∣
∣
∣(πk(s, I) − π(s, I)

∣
∣
∣

√
N‖Xt‖Dmax

8In the context of this discussion, since we are focusing onΦK
Yt

, by its
definition, queue dynamics after timet are ignored, and thusAXt+k,st+k

=
AXt,st+k

.
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≤ NDmax

Kν

⌈ K
k0

⌉
∑

i=0

k02(1 − β)i ≤ 2NDmax

ν

k0

K

1

β
, (36)

where the first inequality follows from (2) and (20), and the
second inequality is a direct result of Lemma 1. Let

k0 =

{

⌈ ln(4N)
− ln(1−βl)

⌉, r 6= 0.5

1, r = 0.5
,

which implies that(1 − βl)
k0 ≤ 1

4N
. This inequality and (35)

further imply thatβ ≥ δ
8 . Therefore, from (36), we have that

|ΦK
Yt

− Φ∞
Yt

| <
16NDmax

ν

k0

Kδ
. (37)

We can obtain a similar upper-bound for|ΨK
Yt

− Ψ∞
Yt

| by
considering separately two Markov chains corresponding to
the pairs(st+k, It+k) and (st+k+1, It+k), k ≥ 0, respectively.
Specifically, we can show that

|ΨK
Yt

− Ψ∞
Yt

| <
1

K

(

1 +
32NDmax

ν

k0

δ

)

.

Using this inequality, the one in (37), and the definition ofθ,
it is easy to see that we can set

K(θ)
ǫ3

=
⌈ 1

δǫ3

(

1 +
32NDmax

ν

k0

δ

)⌉

= Θ(
Nk0

ǫ3δ2
). (38)

Using similar approaches, we can show thatK1,ǫ andK
(γ)
2,ǫ2

can be chosen as

K1,ǫ1 =
⌈4k0

ǫ1

⌉

= Θ
(k0

ǫ1

)

(39)

and

K
(γ)
2,ǫ2

=
⌈8k0

ǫ2
+

ln(2)

ln((1 − δ)−1)

⌉

= Θ
(k0

ǫ2

)

. (40)

Finally, using the definition ofKǫ and equalities (38), (39), and
(40), we can easily verify that we can chooseKǫ such that

Kǫ = Θ(
Nk0

δ2ǫ
). (41)

After studyingKǫ for a Markovian channel model, we now
return to finding an upper-bound for the dominant term given
by Corollary 4. Suppose arrivals are limited by a constant
Amax

9, i.e.,Al(t) < Amax, 1 ≤ l ≤ N . Using this assumption,
we can setÃǫ4 =

√
N(Amax + Dmax), whereÃǫ4 is given

in the definition forBK
ǫ . Using the same discussion leading

to (32) while not excluding the effect of̃Aǫ4 , we see that̃Aǫ4

contributes a
√

N term intoBC
2,ǫ5

, and therefore, we can have

BC
2,ǫ5

= Θ(
N2K2

ραδǫ
). (42)

In addition, suppose

BC
1,ǫ5

= O(
N2K2

ραδǫ
). (43)

This for instance is the case where the algorithmA chooses
candidate schedules from a fixed set with equal probabilities.
In this particular case, the distribution ofI

r does not depend
on Xt, and thus,BC

1,ǫ5
can be assumed to be any positive real

number. Note thatBC
1,ǫ5

depends on a specific implementation
of the algorithmA, a topic that is not the focus of this paper.

Recall thatB = Bǫ andK = Kǫ. It follows from (31), (41),
(42), and (43) that

B(
√

N + 2
N

νǫ
‖a‖) = O

(N4.5k2
0

ραδ5ǫ3

)

+ O
(N5k2

0 ‖a‖
ραδ5ǫ4

)

. (44)

9Recall that we earlier in Section III-A introduced̃Amax as the upper-bound
for the second moments of the arrival process.

In addition, since− ln(1 − βl) ≥ βl, we havek0 ≤ ln(4N)
βl

,
which along with equality (44) and Corollary 4 leads to the
following corollary.

Corollary 5. Suppose the state of each link is a two-state
Markov chain with transition probabilityr and independent
of the states of other links in the network. In addition, suppose
arrivals are limited by a suitably large constant,BC

1,ǫ5
satisfies

BC
1,ǫ5

= O(N2K2

ραδǫ
), and ρ > 2ζ. Then, assumingr ≤ 0.5, the

average queue-lengths satisfy the following:
∑

1≤l≤N

Xl = O
(N4.5(ln(N))2

ραδ5ǫ3r2

)

+ O
(N5(ln(N))2 ‖a‖

ραδ5ǫ4r2

)

.

If r > 0.5, the same result holds except that the termsr2 should
be replaced with(1 − r)2.

We are finally at a stage to study how delay scales according
to various network- or policy-related parameters. Supposethe
input rate isa = (λ1, · · · , λN ) strictly insideθΓ, and consider
the coefficientsβs,I’s corresponding to the ratea, as specified
in Theorem 1. Letθa = maxs∈S

∑

I∈I βs,I, where by the
theorem we haveθa < θ. Based on the definition ofθ andθa,
it is clear that the rate vectorθ

θa
a belongs to the boundary of

θΓ. Since the regionθΓ serves as thereferencestability region,
the rateµl = θ

θa

λl, 1 ≤ l ≤ N , which is thelth element of
the vector θ

θa

a, can be regarded as theeffective service rate
for the lth link. This provides the motivation to defineς as
ς = θa

θ
and to considerς as the effective load for each link.

Based on this definition, we haveλl = ςµl, 1 ≤ l ≤ N , and
for ǫ, as defined in Theorem 1 and used throughout previous
discussions, we have thatǫ = (1− ς)θ. From Little’s theorem,
we have that the overall average delay for each packet, denoted
by D̄, is given by1/(

∑N
l=1 λl)

∑

1≤l≤N Xl, which along with

the inequality
∑N

l=1 λl ≥ ‖a‖ and Corollary 5 leads to the
following corollary.

Corollary 6. Suppose the state of each link is a two-state
Markov chain with transition probabilityr and independent
of the states of other links in the network. In addition, suppose
arrivals are limited by a suitably large constant,BC

1,ǫ5
satisfies

BC
1,ǫ5

= O(N2K2

ραδǫ
), and ρ > 2ζ. Then, assumingr ≤ 0.5, the

overall average queue delaȳD satisfies

D̄ ,

∑

1≤l≤N Xl
∑N

l=1 λl

= O
( N4.5(ln(N))2

ραδ5(1 − ς)3θ3r2ςµ(t)

)

+ O
( N5(ln(N))2

ραδ5(1 − ς)4θ4r2

)

,

where µ(t) is the total service rate and is given byµ(t) =
∑

1≤l≤N µl. If r > 0.5, the same result holds except that the
termsr2 should be replaced with(1 − r)2.

Note that the format of the obtained delay-bound is similar
to the average delay for the M/M/1 queue, which is1

(1−ς)µ ,
with ς as the load andµ as the service rate. Remarkably,
the corollary states that delay is polynomially bounded as the
variables of interest, including the number of data flowsN ,
take their limiting values. In particular, we see that delayis
O
(

1
r2

)
as the link variation rater takes smaller values, and is

O
(

1
δ5

)
as δ → 0. In the next section, we consider both the

throughput and delay performance of LM-RSP.



11

VII. JOINT THROUGHPUT-DELAY PERFORMANCE

In this section, with the help of the corollaries provided
earlier, we investigate the throughput and delay scaling asthe
variables of interest take their limiting values. As discussed
earlier, Theorem 1 and Corollary 1 state that LM-RSP can
stabilize a fraction of the capacity regionΓ. Corollary 3 further
shows that the policy can stabilize afixed fraction θmin of
the capacity region regardless of the number data flowsN if
the rest of parameters are fixed. However, as expected and
inherently present in Theorem 2, the delay-bound increases
with N . Specifically, Corollary 4 characterizes the dominant
term in the delay-bound, leading to Corollary 6 that states delay
is bounded by a polynomially increasing function ofN .

An interesting trade-off occurs when parametersρ and α
take vanishingly small values. Recall that these parameters
must be positive for continuity purposes. From Corollaries1-3,
we observe that asα and ρ take smaller values, the stability
regionθΓ is ensured to contain a region arbitrarily close to the
region θlimΓ or, for Markovian channels, the regionθminΓ.
Corollary 6, on the other hand, shows that this comes at the
price of increasing the delay-bound proportionally to1

αρ
.

A similar trade-off exists when the channel states be-
come increasingly correlated. Specifically, as discussed in Sec-
tion V-C1, increasing channel correlation increasesθ and, thus,
expands the stability region. We also discussed that channel
correlation helps the policy compensate for a smallδ. This
is more explicitly stated in Corollary 3, which shows that for
a particular Markovian channel process, as the link variation
rater decreases, the lower-bound regionθminΓ expands almost
proportionally to (1 + (r + ρ)1−δ

δ
)−1. In particular, in the

limit of r → 0 and ρ → 0, for ζ = 0 and any positive
δ, we haveθmin → 1, and thus, throughput-optimality can
be achieved, similar to the observation in [5]. However, as
shown in Corollary 6, this makes the delay-bound increase
proportionally tor−2 asr → 0.

Finally, we focus on the pair(ζ, δ). Part (b) of Theorem 1
and also Corollaries 1-3 all state thatζ can directly affectθ
through the term(1 − ζ′) = (1 − ρ)(1 − ζ) or, otherwise,
the term (1 − ζ). By Corollary 6, since for a given load
factor ς, the delay-bound increases proportionally to1

θ4 as
θ → 0, we have that the larger isζ, the smaller isθ, and
the larger should be the delay. Therefore, increasingζ has
negative effects on both throughput and delay. Recall that
the parameterδ is the least probability that the candidate
schedules are withinζ-neighborhood of the optimal schedules.
Therefore, as is clear in the definition forθ, smaller values for
δ decreaseθ. Specifically, Corollary 3 shows thatθmin, as a
lower-bound forθ, decreases almost proportionally toδ

δ+ρ+r
as

δ approaches zero. Decreasingδ has also an adverse effect on
the delay-bound since by Corollary 6, the bound can increase
proportionally to 1

δ5 as δ decreases. As the final remark, note
that if it is possible to increaseδ, at the expense of increasing
the complexity of algorithmA, it can be sufficient to make sure
that δ has the same order asr. This is an intuitive observation
and a result of Corollary 3, which states that for Markovian
channels, we may haveθmin ≃ δ

δ+(1−δ)r (1− ζ). For instance,
when δ = r, if the update rule is not used, the scaling of
the capacity region isr(1 − ζ) whereas using LM-RSP can
ensureθmin ≥ 1

2 (1−ζ), which implies a significant throughput
improvement especially whenr ≪ 0.5.

VIII. C ONCLUSION

In this paper, we have studied the stability region and delay
performance of a linear-memory randomized scheduling policy
LM-RSP for networks with time-varying channels. LM-RSP
uses an update rule along with a randomized algorithm that
with probability at leastδ finds a candidate schedule vector that
is within ζ-neighborhood of optimality. The complexity of LM-
RSP depends on the complexity of the randomized algorithm
and, in particular, may be linear. We have proved that LM-RSP
can stabilize a scaled version (fraction) of the capacity region
and quantified the corresponding scaling factor as a function
of the parameters in LM-RSP and the limiting behavior of
rate changes due to channel variations. Furthermore, we have
provided an average delay-bound for general ergodic channel
processes. For a particular class of Markovian channels, we
have shown that the average delay isO( 1

r2 ), as r → 0,
wherer is the link (individual channel) variation rate, and is
bounded by a polynomially increasing function of the number
of data flows. In addition, for this class of channels, we have
shown that a minimum fraction δ

δ+r
(1 − ζ) of the capacity

region can be stabilized. Our results also indicate that while
the minimum fraction decreases linearly asδ → 0, the delay
may increase as1

δ5 , and therefore, the effect ofδ on delay may
be more severe than the one on the stability region. The results
in this paper are promising and motivate further research as
they indicate that even when channels are time-varying, using
randomized policies can help stabilize apredictable fraction
of the capacity region, in networks with limited computation
power and memory resource, while assuring a polynomially-
bounded delay.

APPENDIX

PROOFS OFTHEOREM 1 AND THEOREM 2

Here, we provide the proof-sketches for Theorems 1 and 2.
The interested reader is referred to [30] for detailed proofs and
also the proofs of the lemmas listed at the end of this appendix.

Proof of part (a) of Theorem 1: Sincea is strictly inside
θΓ, there should be a ratea1 insideΓ such thata = θa1. By
the definition ofΓ, it is easy to see that there should exist non-
negative constantsβ′

s,I’s such that for alls ∈ S,
∑

I∈I β′
s,I < 1

and a1 =
∑

s∈S π(s)
∑

I∈I β′
s,ID(s, I). Using this equality

and settingβs,I = θβ′
s,I, we see that for these choices ofβs,I’s,

a satisfies (27), andǫ as defined byǫ = θ−maxs∈S
∑

I∈I βs,I

is positive, as required.
Proof of part (b) of Theorem 1: We use aK-step drift

analysis to prove part (b) of the theorem. The main difficulty
here is to properly use the properties of LM-RSP in the drift
analysis. Consider the following Lyapunov function:

V (Yt) =
N∑

l=1

Xl(t)
2.

We can write theK-step drift as follows:
∆(K)t = E[V (Yt+K) − V (Yt)|Yt]

=

K−1∑

k=0

E[V (Yt+k+1) − V (Yt+k)|Yt]

=

K−1∑

k=0

E[(Xt+k+1 + Xt+k)(Xt+k+1 − Xt+k)|Yt]

=
K−1∑

k=0

E[2Xt+k(At+k − Dt+k)
︸ ︷︷ ︸

δ1,k

+2Xt+kUt+k
︸ ︷︷ ︸

δ2,k

+
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(At+k − (Dt+k − Ut+k))(At+k − (Dt+k − Ut+k))
︸ ︷︷ ︸

δ3,k

|Yt].

(45)

Based on the above expression, there are three main summa-
tions, corresponding toδ1,k, δ2,k, andδ3,k, respectively, each
of which should be upper-bounded appropriately. To upper-
bound the summation overδ2,k, note that by the definition of
U(t), Ui(t) ≤ Dmax, and if Xi(t) > Dmax, thenUi(t) = 0.
Therefore,

K−1∑

k=0

E[δ2,k|Yt] ≤
K−1∑

k=0

ND2
max = KND2

max. (46)

As for the summation overδ3,k, we have that

K−1∑

k=0

E[δ3,k|Yt] ≤
K−1∑

k=0

E[At+kAt+k|Yt] + E[Dt+kDt+k|Yt]

≤ KE[‖A‖2] + KND2
max.

The heart of the proof, however, lies in deriving an upper-
bound for the summation overδ1,k. It requires Lemmas 2-
6, which are listed at the end of the proof of theorem. First,
consider the following straightforward observations:

E[Xt+kAt+k|Yt] ≤ E[XtAt+k|Yt] + E[

k−1∑

i=0

At+iAt+k|Yt]

= Xta + k‖a‖2, (47)

and
K−1∑

k=0

E[XtAt+k − Xt+kDt+k|Yt]

= KXta −
K−1∑

k=0

E[Xt+kD
∗
t+k|Yt]

+
K−1∑

k=0

E[Xt+k(D∗
t+k − Dt+k)|Yt]. (48)

Since by the assumption in Theorem 1a is strictly inside
θΓ, part (a) of the theorem holds. Specifically, there exist non-
negative constantsβs,I’s such that equality (27) holds, andǫ
as defined in part (a) is positive, i.e.,

ǫ = θ − max
s∈S

∑

I∈I
βs,I > 0. (49)

To use the results of Lemmas 2-6, suppose10 ǫi’s, 1 ≤ i ≤ 8,
andǫ′i’s, 2 ≤ i ≤ 4, are defined as given in Table I, whereǫ is
given by (49). We set

K = 2 max(K1,ǫ1 , K
(γ)
2,ǫ5

, Dmax

6

δ

N

ν

4

ǫ
, K(θ)

ǫ7
) = Kǫ, (50)

where the last equality follows from the definition ofKǫ given
in (30). In addition, letB = BK

ǫ2,ǫ3
, whereBK

ǫ2,ǫ3
is defined in

Lemma 4. These choices imply that

B = BK
ǫ , (51)

whereBK
ǫ is defined in (31).

10Note that the sequence ofǫi’s, 1 ≤ i ≤ 5, here is different from the ones
in Section V-A.

TABLE I
TABLE OF DEFINITIONS

ǫ1 = ǫ4 = ǫ′
4

= 1

6

1

Dmax

ν
N

ǫ
4

ǫ2 = ǫ′
2

= 1

6

1

Dmax

ν
N

ǫ
4

δ
2K

ǫ3 = ǫ′
3

= 1

6

1

Dmax

ν
N

ǫ
4

δ
8K

ǫ5 = 1

6

1

Dmax

ν
N

ǫ
4

δ
2

ǫ6 = Dmax

“

δ−1
`

2Kǫ2 +
`

(1 + 2ǫ3)2K − 1
´´

+ ǫ4 + 2ǫ5δ−1 + δ−1

K

”

ǫ′
6

= Dmax

“

2Kǫ′
2

+
`

(1 + 2ǫ′
3
)2K − 1

´

+ ǫ′
4

”

ǫ7 = ǫ
4

ǫ8 = ǫ1Dmax + ǫ6

C1 = C′
3

=
√

NDmax‖a‖ + ND2
max

C2 = 2δ−1(1 − δ)C1

C3 = C2 +
√

NDmax‖a‖ + ραδ−1
`

‖a‖ +
√

N(Ãmax + Dmax)
´

C4 = 2C2 + N(Ã2
max + 3D2

max)

C5 = 2C3 + 2‖a‖2 + 2ND2
max

With these choices, we can put together the results in (45)-
(48) and Lemmas 3, 5, and 6 to obtain the following for
‖Xt‖ ≥ B:
∆(K)t ≤ KC4 + K2C5

− 2K

(

1 − max
s∈S

∑

I∈I
βs,I −

min
( ρα‖Xt‖

δ Υ(Xt)
+ ζ

′

+
1 − δ

δ
ΨK

Yt
, 1 − ΦK

Yt

)
)

Υ(Xt)

+ 2K
√

N(ǫ1Dmax + ǫ6)‖Xt‖, (52)
whereǫ6, C4 andC5 are given in Table I.

With our choices forǫi’s, 1 ≤ i ≤ 5, andK, it is easy to
verify that

ǫ1Dmax + ǫ6 <
ν

N

ǫ

4
. (53)

In addition, using the inequality in (20), the assumption that
K ≥ K

(θ)
ǫ7 with ǫ7 = ǫ

4 , and the fact thatmin(f(x)) =
−max(−f(x)), we can show that

1 − min(
ρα‖Xt‖
δ Υ(Xt)

+ ζ
′

+
1 − δ

δ
ΨK

Yt
, 1 − ΦK

Yt
)

≥ max(1 −
√

Nρα

δν
− ζ

′ − 1 − δ

δ
ΨK

Yt
, ΦK

Yt
)

> θ − ǫ7 = θ − ǫ

4
.

Using (20), (49), (52), and the previous inequality, we have

∆(K)t ≤ KC4 + K2C5 −
2ν√
N

K(ǫ − ǫ

4
− N

ν
ǫ8)‖Xt‖,

where ǫ8 = (ǫ1Dmax + ǫ6). Using (53), for‖Xt‖ ≥ B, we
obtain

∆(K)t ≤ CK − Kξ‖Xt‖,
whereξ = νǫ√

N
and

CK = KC4 + K2C5. (54)
Using the assumption that the second moments of the arrival

process are finite as specified in (3), we can generalize the
above inequality for all‖Xt‖ as

∆(K)t ≤ CK − Kξ ‖Xt‖1‖Xt‖≥B + CK,B1‖Xt‖<B

≤ −Kξ ‖Xt‖1‖Xt‖≥B + CK + CK,B ,
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where1(·) is the indicator function and

CK,B = 2KB‖a‖ + KE[‖A‖2] + K(K − 1)‖a‖2

+ K2ND2
max. (55)

Now, we take the expectation of∆(K)t with respect to the
distribution ofYt, which leads to

∆′(K)t , E
[
‖Xt+K‖2

]
− E

[
‖Xt‖2

]

≤ −Kξ E
[
‖Xt‖1‖Xt‖≥B

]
+ CK + CK,B.

Considering the above inequality for timesi + jK for i ∈
{0, . . . , K − 1} and j ∈ {0, . . . , J − 1}, and summing overi
andj, we obtain

K−1∑

i=0

J−1∑

j=0

∆′(K)i+jK =

K−1∑

i=0

(
E
[
‖Xi+JK‖2

]
− E

[
‖Xi‖2

])

≤ −Kξ
K−1∑

i=0

J−1∑

j=0

E
[
‖Xi+jK‖1‖Xi+jK‖≥B

]

+ JK(CK + CK,B).

Since norm is a non-negative function, from the above, we have
that

K−1∑

i=0

J−1∑

j=0

E
[
‖Xi+jK‖1‖Xi+jK‖>B

]

≤ 1

Kξ

K−1∑

i=0

E[‖Xi‖2] +
J

ξ
(CK + CK,B).

Using the fact thatE[‖Xt‖1‖Xt‖<B] < B, and lettingt =
i + jK andT = JK − 1, we obtain

T∑

t=0

E
[
‖Xt‖

]
≤ (T + 1)B +

1

Kξ

K−1∑

i=0

E[‖Xi‖2]

+
J

ξ
(CK + CK,B). (56)

Since the first and second moments of the arrival process are
finite, for a fixedK, the summation on the righthand side of
(56) can be bounded by an appropriate constantC6. Hence, we
must have

∑K−1
i=0 E[‖Xi‖2] < C6. Therefore, we have

T∑

t=0

E[‖Xt‖] ≤ (T + 1)B +
1

Kξ
C6 +

J

ξ
(CK + CK,B).

Finally, dividing by T + 1 and lettingT → ∞, by assuming
J → ∞, we obtain

lim sup
T→∞

1

T + 1

T∑

t=0

E
[
‖Xt‖

]
≤ B +

CK + CK,B

ξK
< ∞, (57)

which completes the proof of part (b) of Theorem 1.
Proof of Theorem 2: To start, first note that

∑N
l=1 Xl(t) ≤

√
N‖Xt‖. We can use this inequality, the one

in (57), and equalityξ = νǫ√
N

along with the definitions for
CK and CK,B , given in (54) and (55), respectively, to show
that

lim sup
T→∞

1

T + 1

T∑

t=0

[ N∑

l=1

E
[
Xl(t)

]]

< B(
√

N + 2
N

νǫ
‖a‖)

+
N

νǫ

(

2NÃ2
max + 11δ−1ND2

max + 16 δ−1ND2
maxK

+ 4δ−1ρα
√

N(Ãmax + Dmax)K
)

, (58)

where according to the proof of part (a) of Theorem 1,K = Kǫ

and B = BK
ǫ ; see (50) and (51), respectively. To obtain the

above inequality, we have also used the fact that ifa ∈ Γ, then
al < Dmax, 1 ≤ l ≤ N , and hence,‖a‖ <

√
NDmax.

Note thatK depends onN and δ. Therefore, to complete
the proof, it suffices to show that the expression in the large
brackets in (58) isO

(
KNδ−1

)
with respect to variablesδ

andN . This easily follows since by (23),
√

Nραδ−1ν−1 ≤ 1,
completing the proof.

Lemma 2. For C1 given in Table I and all values oft, s ∈ S,
and m ≥ 0, we have that

E
[
Xt+m+1

(
D

∗(Xt+m+1, s) − D
∗(Xt+m, s)

)
|Yt

]
< C1.

Lemma 3. Supposea is given by(27), where non-negative
constantsβs,I’s satisfy

∑

I∈I βs,I ≤ 1 for all s ∈ S. For any
positiveǫ1, if K ≥ K1,ǫ1 , then we have

∆Xt
, KXta −

K−1∑

k=0

E[Xt+kD
∗
t+k|Yt]

≤ K2ND2
max + KDmax

√
Nǫ1‖Xt‖

− K
∑

s∈S
π(s)(1 −

∑

I∈I
βs,I)XtD

∗(Xt, s),

whereK1,ǫ1 is defined in Section III-B.

Lemma 4. Suppose arbitrary positive integerK and arbi-
trary positive real numbersǫ2 and ǫ3 are given. LetÃǫ2 =√

NDmax + Aǫ2 , where Aǫ2 is defined by Fact 1, and let
BK

ǫ2,ǫ3
= max(BC

1,ǫ3
, BC

2,ǫ3
), whereC = KÃǫ2 and BC

1,ǫ3
and

BC
2,ǫ3

are defined by Property 2 and Fact 2, respectively. Then,
the following inequality holds if‖Xt‖ ≥ BK

ǫ2,ǫ3
:

∣
∣
∣
∣
∣

K−2∑

m=0

E

[

Xt

(
Dt+m − (1 − ρ)D′

t+m

)∣
∣Yt

]

−
K−2∑

m=0

ĒXt

[

Xt

(
Dt+m − (1 − ρ)D′

t+m

)∣
∣Yt

]
∣
∣
∣
∣
∣

≤ KDmax

√
N
(

2Kǫ2 +
(
(1 + 2ǫ3)

2K − 1
))

‖Xt‖.

Lemma 5. Suppose arbitrary positive real numbersǫ2, ǫ3, ǫ4,
andǫ5 are given, andK−1 ≥ max(K1,ǫ4 , K

(γ)
2,ǫ5

), whereK1,ǫ4

andK
(γ)
2,ǫ5

are defined in Section III-B. If‖Xt‖ ≥ BK
ǫ2,ǫ3

, where
BK

ǫ2,ǫ3
is defined in Lemma 4, the following inequality holds:

K−1∑

k=0

E
[
Xt+k(D∗

t+k − Dt+k)|Yt

]

≤ KC2 + K2C3 + K
√

Nǫ6‖Xt‖ + Kραδ−1‖Xt‖

+ KΥ(Xt)
(

ζ
′

+
(1 − δ)

δ
ΨK

Yt

)

,

whereC2, C3, and ǫ6 are given in Table I, andζ
′

is defined
in (22).

Lemma 6. Suppose arbitrary positive real numbersǫ′2, ǫ′3, and
ǫ′4 are given. SupposeK ≥ K1,ǫ′

4
, whereK1,ǫ′

4
is defined in

Section III-B. Then, if‖Xt‖ ≥ BK
ǫ′
2
,ǫ′

3

, whereBK
ǫ′
2
,ǫ′

3

is defined
in Lemma 4, the following inequality holds:

K−1∑

k=0

E[Xt+k(D∗
t+k − Dt+k)|Yt]

≤ K2C′
3 + K

√
Nǫ′6‖Xt‖ + KΥ(Xt)(1 − ΦK

Yt
),

whereC3 and ǫ′6 are given in Table I.
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