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Abstract—Throughput optimal scheduling policies in general More recently, in the context of time-varying channels, the
require the solution of a complex and often NP-hard optimizéion  authors of [6][7] have shown throughput optimality can be

problem. Related literature has shown that in the context of ; ; F A ; ;
time-varying channels, randomized scheduling policies ¢a be achieved if at the generic time-slof the randomized policy

employed to reduce the complexity of the optimization probtm Ccompares the picked schedule vector with the one used at
but at the expense of a memory requirement that is exponentla the most recent occurrence of the same channel state at time-
in the number of data flows. In this paper, we consider a Linear  slot ¢. This proposal, therefore, requires a table with a size

Memory Randomized Scheduling Policy (LM-RSP) that is based proportional to the number of channel states, and hence, its

on a pick-and-compare principle in a time-varying network with ; ; ol
N one-hop data flaws. For general ergadic channel Iolrocesses,memory requirement is exponential in the number of data flows

we study the performance of LM-RSP in terms of its stability (INkS) N. In practice, however, mobile systems are computa-
region and average delay. Specifically, we show that LM-RSP tionally limited and have limited memory resource. Therefo
can stabilize a fraction of the capacity region. Our analyss any attempt to practically implement such randomized pesdic
characterizes this fraction as well as the average delay as ashould aim at reducing both the complexity of computatiod an
function of channel variations and the efficiency of LM-RSP n the required memory storage

choosing an appropriate schedule vector. Applying these seilts ’

to a class of Markovian channels, we provide explicit resutt on N this paper, we are interested in addressing the following
the stability region and delay performance of LM-RSP. guestions under the assumption that randomized policies ar
employed for scheduling:
l. INTRODUCTION « How much sub-optimality in the network throughput is

One key characteristic of the wireless communication introduced by a reduced memory requirement, especially
medium is its random variations due to user mobility and When the available memory storage can increase only

unpredictable changes in the radio environment. This mtiees linearly with the number of data flows? _
enduring challenge of efficient resource scheduling exefigm ¢ What is the delay scaling? Does the delay increase
difficult in wireless networks, especially as the networkesi exponentially as the channel states become increasingly
increases. In their seminal work [1], Tassiulas and Ephdesi correlated and the number of data flows increase?

propose athroughput optimalscheduling policy, commonly Inspired by the above challenging questions, in this paper,
referred to as the Generalized Maximum Weight Matchinge focus on a linear-memory randomized scheduling policy
(GMWM) policy, that stabilizes the network fanyinput rate | M-RSP, which essentially follows the same pick-and-corepa
that is within thenetwork layer capacity regiorin this context, principle as the one used in the randomized policies in [H[6
the network layer capacity region is defined as the closure it is generalized in the following respects. First, the atpd
the set of all input rates that can Iséably supported by the rule for the comparison of schedules in LM-RSP is generdlize
network using any possible scheduling policy [1][2][3]. to be probabilistic. Second, LM-RSP uses a more general
The GMWM policy in each time-slot maximizes the summodel for the randomized algorithm, according to which,
of backlog-rate products given the channel states and quewith a probability not less than a positivg the algorithm
lengths, where this maximization can be considered asAareturns a schedule vector that is withianeighborhood
GMWM problem, which can be NP-hard depending on thef the optimal solution. Considering different values foet
underlying interference model [4]. The complexity of theair (¢,d) allows us to study algorithms with a wide range of
GMWM policy naturally has motivated many researchers tecomplexity levels. Note that a value éfless than one allows
develop sub-optimal algorithms that approximate its sofut us to model algorithms with nondeterministic results, pags
In particular, Tassiulas in a pioneering work [5] shows thahose implemented in a distributed manner. In this paper, we
simple randomized policies based on thiek-and-compare limit our model to a network withV one-hop data flows, e.g,
principle are sufficient to achieve throughput optimalitiiese downlink or uplink of a cellular or a mesh network.
policies in each time-slot userandomizedalgorithm A to se- ~ Our main contribution in this paper is to analytically char-
lect acandidateschedule vector that with non-zero probabilitycterize the performance of LM-RSP in terms of its assodiate
6 can be the optimal solution to the GMWM problem. Oncetability region and average delay in the context of timeyivay
a schedule vector is picked, it is compared with the previoghannelsFirst, for general ergodic channel processes, we show
schedule in terms of the sum of backlog-rate products, afitht the stability region is acaled versiorffraction) of the net-
the one with the larger sum is selected for scheduling. Thigork layer capacity region. Our analysis quantifies theisgal

approach, however, assumes time-invariant channels. factor and demonstrates how it changes wlannel variations
o _ _ _ _ ' and thecomputational efficiencgf the randomized algorithm
A preliminary version of this work is published in IEEE IWQ&B07. A. In addition, our analysis provides a general average delay
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Second to obtain more specific results, we consider an One difficulty in implementing the GMWM policy is having
important class of Markovian channels where the state a€cess to updated queue information. In [6], it is shown that
each link is a two-state Markov chain. We assume that a linkder general conditions, delayed or infrequent queugtten
holds its state during one timeslot, but the state may charigéormation does not affect the stability region. A simitasult
from one timeslot to another with (transition) probability is shown to hold [19], when the queue-length-based schegluli
and independent of the states of other links in the networkt the base station is combined with congestion controlat th
For this simple yet worst-case modeling class of channelsgnd user, which can lead to weighted proportional fairn&Sk [
represents thendividual link variation rate over one timeslot, In this paper, therefore, we assume that the queue infoomati
and we show that for appropriate choice of parameters whifeavailable and, instead, focus on the memory requirenraht a
the average delay ié)(r%), asr — 0, LM-RSP can stabilize the complexity of the scheduling policies.

a minimum fraction%(l — () of the capacity region, e.g., The main difficulty in implementing the GMWM policy is
when the interference is specified by the node exclusive moite complexity since this policy can be NP-hard depending
[8][4][9][10] or, more generally, by thex-hop interference on the assumed interference model [4]. This has motivated
model [4], where no two links withinc hops can success-many researchers to develop sub-optimal constant-fagtor a
fully transmit at the same time. It is worth mentioning thaproximations to the GMWM policy. For instance, in [8],
this minimum fraction does not depend on ttedal channel the impact ofimperfect schedules is studied, where, as an
variation rate, which approximately equals- for small r's, example, a Maximal Matching (MM) scheduling algorithm is
but, instead, depends on the individual link variation rate used to stabilize at least half of the capacity region. Duitsto

In addition, note that while the capacity region shrinkslaes t simplicity of implementation, MM scheduling has been widel
interference becomes more restrictive, e.g., wkeincreases investigated in the literature [20][4][21][10][22]. Desp the

in the x-hop interference model, these results indicate thsct that these works address the issue of complexity, they a
the minimum fraction remains fixed. Another important yegenerally proposed for networks with time-invariant chelsn
intuitive implication of these results is that if it is poslE or otherwise, do not exploit the channel correlation to iover

to increase), at the expense of increasing the complexity adhe scheduling performance.

algorithm 4, it is sufficient to make sure thathas the same The use of randomized policies, based on the pick-and-
order asr in order to make sure that LM-RSP stabilizes @ompare principle, to reduce the complexity of throughput
fraction close to(1 — () of the capacity region. optimal scheduling first appeared in [5]. In a more recentkwor

Our results further verify that the average delay can ljg], the authors propose distributed schemes to implement a
polynomially bounded as the number of data flows increaseandomized policy similar to the one in [5] that can stakiliz
e.g., when channels are Markovian, as described earlier. #e entire capacity region. Both policies in [5] and [9], lewer,
far as we are aware, our results are the first to rigorouslye proposed for time-invariant channels. In the context of
show that the delay does not need to increase exponentigilfie-varying channels, other recent proposals that arecbas
with the number of data flows or channel correlation whethe policy in [5] include [6][7]. Although these proposalsa
randomized policies are used in the context of time-varyingroughput optimal, their memory requirement is exporatii
channels. Finally, note that in the limit of highly corredt the number of data flows, and thus, they may not be amenable
channels, our results include the one in [5], which states$ tho practical implementation in large networks.
linear-complexity algorithms are sufficient to attain thghput  |n a different context, dynamic rate allocation has been pro
optimality. _ _ _ ~ posed in [23]. This algorithm normalizes the feasible rdtgs

The rest of this paper is organized as follows. In Section Bppropriate weights and chooses the user with the largest no
we review the related work. In Section IlI, we provide detailmalized rate. Opportunistic scheduling is used in [24][26],
about the system model, and, in Section IV, we explain thgnere the long term fairness is achieved by assigning sffset
operation of LM-RSP. In Sections V and.\./I, we state the maig the users’ utility functions [24], or by dynamically uptey
results of the paper on LM-RSP's stability region and delayiroughput weights [25][26]. MaxMin fair scheduling is dted
performance, respectively. In Section VII, we discuss ingrt  in [27]. User level performance of channel-aware schedulin
observations. Finally, in Section VI, we conclude the @ap algorithms has been investigated in [28]. Asymptotic prips
of the proportional fair sharing algorithms are studied28][

) ) Our work in this paper does not consider the issue of fairness
_ Stable resource control for ereles_s networks first appkargstead, we focus on throughput optimality and investighee
in [1], where both the GMWM policy and the throughputmpact of channel variations on the performance of linear-

capacity region are characterized. The work in [1], howevehemory low-complexity randomized scheduling policies.
uses many simplifying assumptions for the channel andarriv

processes. This result has been further extended by many . s M
researchers [11][2][12][6][3]. Recently, Neely and Mauliees- - DYSTEM MODEL

tablished the network layer capacity region for generabéig We consider a wireless network with one-hop source-

channels and arrival processes [3]. In fact, the same &tag destination pairs, where each pair represents a datat.flow

rule in [1] has been used as the scheduling component for rgfe ; . :
; . . ssociated with each data flow, we consider a separate queue,
control [13], energy optimal design [14], congestion cohtr

. maintained at the source of the flow, which holds packets to
[15][16], and the study of utility-delay tradeoffs [17]. lAbf be transmitted over a wireless link. Examples of this type of
these papers generally assume that the scheduler has a%&twork include downlink or uplink of a cellular or a mesh
to the solution of the complex GMWM problem. AnOthernetwork
example of the throughput optimal control is the exponéntia '

rule proposed in [18]. 1Extension to multi-hop flows is possible using the methodfL]f8].

II. RELATED WORK



A. Queueing where U(t) represents the wasted service vector with non-

We assume the system is time-slotted, and channels hBRgative elements; the service is wasted when in a queue the
their state during a time-slot but may change from one timgumber of packets waiting for transmission is less than the
slot to another. Les(t) be the matrix of all channel stateshumber that can be transmitted, i.e., wh¥q(t) < Dy(t) for
from any given node to any other nodeg in the network at somel, 1 <! < N.
time ¢. For instance, in the downlink of a cellular network
s(t) will reduce to the vector of user-base-station channgr Channel State Process
states, i.e.s(t) = (s1(t),...,sn(t)), wheres;(t) is the state ~ We assume the channel state process is stationary and
of the iy, link at time ¢. Throughout the paper, we use boldrgodic. In particular, similar to [3], we assume for anyegiv
face to denote vectors or matrices. L&trepresent the set positivee, there exists d; . such that for’ > K  regardless
of all possible channel state matrices with finite cardtgali of the system statat time¢ denoted by
|S|. Let D;(t) denote the discrete rate over thg link at Y (t) = (X(t),1(t),s(t)),
time ¢, and D(t) be the corresponding vector of rates, i.e\ye have

D(t) = (D1(t),...,Dn(t)). In addition, letI;(t) represent =
the amount of resource used by thelink at time ¢, andI(¢) m(s) —E| = 1, Y| <e, (6)
be the corresponding vector, i.d(t) = (I1(¢t), -, In(t)). s;S’ [K kz:%) (o ”

The vec.torI(t) contains both schedulilng.and resource Usagghere r(s) is the steady-stateprobability of the channel at
information, and hereafter, we refer to it simply as sichedule states, and1. is the indicator function for the event This
vector Detalils for the selection of(t) are provided in Sec- jnequality simply states that the expected value of theageer
tion IV. Let 7 denote the set containing all possible schedujgymper of visits to a given channel state converges to itsigte
vectors, with finite cardinalityZ]|. state probability, and the sum of the absolute value of the
Note that the exact specification of the schedule veltdr gifferences, over all possible states, vanishes for safftby

is system dependent. For instance, in CDMA systems, it M@yqq time-intervals. The above further implies that thexists
represent the vector of power levels associated with vegele, -(v) \,ch that fork > K" we have
2,e = 2,e

links, or when the interference is characterized by theop P

interference model [4], the vectdr(t) can be an activation 1 —~

vector representing a sub-graph in the network. Z ‘”(S) - Bl=x= - Z 7K*kls(t+k):s|Y(t)H <6
Since transmission rates are completely characterizezhgiv<® o= k=0 [B7E k=0 N

the channel states, the schedule vector, and the inteciereffnere {7i}i2, is an increasing sequence of positive real

model, we have numbers with the property théitm; ... v; = 7 < co. Note
D(t) = D(s(t), I(¢)). 1) that Kél) in general depends on the sequereg}2,. Of
We assume that transmission rates are bounded, i.e., forP@fticular interest is the case where=3_’_, (1—4)’, which
sc S andI e, defines the sequenge; } 32, for the rest of the paper. Examples
Di(s,1) < D 1<I1<N ) of processes that satisfy the above inequalities includeai®i
for some largeD ’ -0 mer T == not limited to Markov chains.
Let Al(t) be_ the nurr_1ber of packets arriving in time-slot IV. SCHEDULING PoLicy
¢ associated with théy, link (or data flow), andA(t) be the |, yis section, we elaborate on the statistical structtitae

vector of arrivals, i.e. A(t) = (A1(t), -+, An(t)). We assume

X S A algorithms that provide sub-optimal solutions to the GMWM
arrivals are i.i.c2 with mean vector

problem, and describe the operation of LM-RSP that uses

E[A(t)] = a= (a1,...,an), these algorithms. We start by providing a brief overview of
and with finite second moments: the network layer capacity region and the precise definitibn
E[A?(t)] < A,2,., 1 <I<N, (3) the GMWM problem.
for a suitably largeA,,.,. Assuming|| - || represents the In [1][2] and recently under general assumptions in [3], it
Euclidean norm of a vector, we defifiéf|A||2] as has been shown that the capacity region is given by
N I'=> n(s) Convex-HulfD(s, I)|T € Z}. 7)
E[|A[%] = E[|A@®)IP] = D> E[AF(1)). (4) ses
=1 Moreover, it has been shown that the GMWM policy is

Since the arrival process is i.i.d., we see thgfA|?] is well- throughput optimal in that it stabilizes the network for all
defined and is independent af By Markov’s inequality, we input rates that are strictly insidg [1][2][3]. This policy at
have the following fact. each time-slot setX = X(¢) ands = s(¢), and uses the
schedule vectoF* (¢) that isargmax to the following GMWM

Fact 1. For any given positive, there exists a sufficiently large>> .=~~~
Y9 b e ylarg optimization problem:

A, such that forA > A., we havep(||A(#)| > A) < e.

N
Finally, let X(t) = (X1(¢),...,Xn(t)) be the discrete maxZXlDl(s,I), subject tol € 7. (8)
vector of queue-lengths, wher&;(¢t) is the queue-length =
associated with théy, link. Using the preceding definitions, Hence, the GMWM policy uses a schedule vector that maxi-
we see thaiX(t) evolves according to the following equationmizes the sum of backlog-rate products. However, note keat t
X(t+1)=X(t)+ A(t) —D(t) + U(¢), (5) optimization problem given in (8) can be NP-hard [8][4]. We

2This assumption is made to simplify the analysis, and thension to 3|f there are more than one schedule vector maximizing thensation in
non-i.i.d. arrivals is straightforward. (8), we define theargmax to be any of such schedule vectors.
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therefore consider a policy based on randomized algorithssalar factor. These statements may naturally hold sinee th
that can provide approximate solutions to the optimizatiorbjective function in (8) is a continuous function &, and
problem in (8). In the following, we first elaborate on thessuming|X., — X;|| < C, for anys andI, by (2), we must
structure of the considered sub-optimal algorithms. have

. . . . XoD(s,I) — X1D(s, I NCD g
A. Sub-optimal Algorithms Approximating GMWM Problem .|. 2D(s, 1) ol (s, < v -
Hence, finite changes in the queue-length vector have a finite

In this paper, we assume that there exists a randomizghact on the backlog-rate product. This and the fact that
algorithm A, either centralized or distributed, that at each tlmQKD*(X s) linearly* increases with||X|| suggest that the

slot ¢ provides the network with @andidateschedulel”(?) impact when normalized t&X;D*(X;,s) can be arbitrarily
from the setZ. We use superscriptto emphasize thal'(¢) isa gmgall if |X,|| is sufficiently large. We therefore expect the
candidate schedule v_ect_or s_elected by the randomizedthigor algorithm A, for each pair(s, I), to seesimilar normalized
A. In general, the distribution of the selected schedtilg) gjue$ of the backlog-rate products correspondingXe and

depends orK(t)Tand s(t). We definex s () to be the . ‘Hence, for giverX,, X», ands, the algorithm is expected
distribution for I"(¢). Note that the policy developed in this;, assign similar probabilities fdr = I when||X,—X|| < C,

paper does not need the knowledgeiaf(:) s (-), and only anqx, | is sufficiently large. In the case whede, = X,
requires the algorithmi to satisfy Properties 1 and 2, as willipo backlog-rate product correspondingde, for all s € S and
be discussed shortly. _ _ I € 7, is a3-scaled version of the one ;. Therefore, we
Given X ands, let the optimal scheduleand theoptimal  eypect the distribution foF” corresponding t&X to be exactly
rate associated with the GMWM problem bE (X,s) and  he same as the one correspondingto Having detailed the
D*(X,s), where structure of the algorithmd, we next focus on the operation

I"(X,s) = argmax XD(s, I), (9) of LM-RSP.
ez
and B. LM-RSP’s Operation and Scheduling
D*(X,s) = D(s,I"(X,s)). (10) We start by defining several useful functions. I#t(t) and

Note that in the aboveXD(s,I) denotes the scalar productD’ (£ — 1) be defined as
of the vectorsX and D(s,I), and for simplicity, we have D" (t) = D(s(t),I"(t)),
dropped the dot operator. In the rest of the paper, we use
same method to denote scalar products of vectors. In additio ,
note that by (1),D(s,I) is the rate vector corresponding to ) D(t - 1) =D(s(t), I(t — 1.))_’. (1?)
the channel state and the schedule vectdr We assume the reSpeCtlvely. ACCOfdlng to the above deflnltlons, we setitha
algorithm A has the following property. the network uses the candidate schedi(e) at time-slott, the
) resulting rate vector will b®" (t) whereas if the network keeps
Property 1. There exist a constanf, 0 < ¢ < 1, and a ysjng the schedule vector of the previous time-slét,— 1),
constanty, 5 > 0, such that, for any giveiX ands € S, with /(4 — 1) will be the rate vector (at time-sla). In addition,
probability at least, the algorithmA finds a candidate vector |et ;(¢) be defined as
I" that satisfies the following: X(t) (D" (t) — D'(t — 1))
XD(s, I) 2 (1 - )XD*(X, 5). a1 = XD (0, XD (¢ — 1) + al X0
This property simply states that the selected schedlle wherea is apositivebut otherwisearbitrary constant. Later in
with probability at leasts is within ¢-neighborhood of the this section, we elaborate on the motivation to considerra no
optimal solution in terms of the backlog-rate product. Weero value forx. Based on the above definitiop(t) measures
can consider this property as a generalized version of thnormalized improvement in terms of backlog-rate product
ones in [5][6][8][7][9], modeling the sub-optimality of ¢h when the candidate scheddlgt) is preferred ovei(t —1) at

(13)

algorithm A through the introduction of the paii(, ). The
following further details the structure of the algorith/m by
stating a property for the distribution sgtix s(-);s € S, X €
({oyuz*)N}.

Property 2. Consider two queue-length vectaks, and Xo,
and suppos¢X, — X, || < C for a given constan€’ > 0. For
any given positive, there exists a sufficiently IargBEE such
that if |X,]| > Bf, then

Z |/LX275(IT = I) - /Lxl-,S(IT = I)| <€,

Iz
for all s € S. Moreover, for any two giverK; and Xo, if
X5, = X4, for somegs > 0, then, for alls € S andI € 7,

/sz-,S(IT = I) = /Lxl-,S(IT = I)

This property states that the distributions #6rare almost
the same when two queue-length vectors @dose and large.

This property also states that the distribution is exadtlg t

same if two queue-length vectors differ only by a multiptica

time-slott. We definep(t) = 0 if X(¢) = 0.

We are now ready to describe the operation of LM-RSP. We
assume that the policy, either centralized or distributakies
as the input the vectoEt — 1), X(t), ands(¢); and using the
algorithm A, updates the schedule veciidt) according to the
following:

« Using the algorithmA, the policy selectd(0) according
to the initial X(0) ands(0).
o Fort >0, it determined(t) through the following steps.
— First, the policy uses the algoritha to selectI”(¢)
according toX(¢) ands(t).
— Next, it updated(¢) according to the following rule:

) {Ir(t) with probability £ ((t))

I(t - otherwise ’
“4Later, we show thaKD* (X, s) > S
dependent constant as defined in (1§/)._
SHere, for a giveriX, the product is normalized tXD*(X, s).
SHere, by normalization, we mean division by a well-definedction.

1)

v

[|X]|, wherev is a positive system
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wherep(t) is defined in (13), and: (—1,1) — [0,1] erroneous. These inaccurate estimates may make the campute

is a non-decreasing continuous function. ©(t) and, in particular, its sign to be different from their adtua
We assume thé(y) —0.5 is an odd function ofs, andf(y) Values. Hence, the sign 9f(t) alone may not be sufficient
has the property that for comparison purposes. This suggests to usevétieg and
1 > not only the sign, ofp(¢) to evaluate and select the vectors
flo) = { 07 v < p_ , I(t — 1) andI"(¢). In this case, while the choice for a positive
e « is arbitrary, the value ofp may be adjusted to account for

where( < p < 1. In the rest of the paper, we assume thghe extent within which the estimates are inaccurate. Nudé t
function f () is linear in the rangé-p, p| andf(¢) = 0.5+35  when LM-RSP is implemented in a centralized manner, the

for || < p; we leave finding the optimaf(y) as an interesting choice for botha and p is arbitrary as long ase > 0 and

open problem for future research. Considering the defmidb o < p < 1.

»(t) and the properties fof (-), it is easy to see that w.p. 1 _

XD =~ (1=pD (1= 1) > —pa| X @4 & cOMPOW AR

T ; ; _ ; S mentioned earlier, at each time-sipthe policy

g?t(i)thatasmnar inequality holds by replacili(¢ —1) with solves the optimization problem in (8) to fidd(X(t),s(¢))

X ﬁtthe schedule vector. This problem is in general non-conve
ue to physical layer interferences, and can be NP-hardri4].
contrast, LM-RSP assumes access to the algorithrvhose

because the only past information required to updétg in A : i
each time-slot is the vect@(t—1) whose size is proportional to complexity depends on the value qf the palyd). For instance,
wheno = 1 and ¢ = 0, the algorithmA always returns the

N. As mentioned earlier, other similar proposals in the cante timal soluti d whebi — I71-1 andc — 0. the alaorith
of time-varying channels [6][7], store one vector feach optimaf sofution, and whe = 7| an (=0, € aigorithm
possible channel state. However, the number of statesdisese SIMPIY selects schedule vectors with equal probabilitiess

; ; il to see that the latter case, with purely random sefectio
exponentially with N, which implies that these proposals£3Sy , . : .
require an exponentially increasing memory storage. can make the complexity of LM-RSP linear M. This special

One subtle point in the design of the policy is the introdu&ase is attractive mainly from a theoretical point of viencs it

tion of o(¢) and f(¢(t)) in the update process af¢). These achieves throughput-optimality in the limit of highly celated

functions allow LM-RSP to take soft decisions when conf@nnels, despite an exponentially increasing delay duketo

; : o P tially decreasing with the number of data flows (see
paring two different schedules, generalizing similar jpras exponen X ) )
approaches in [5][6][7][9]. Specifically, these functiogsable Corollaries 2 and 6). More interesting examples are digmiss

LM-RSP to probabilistically choose either of the SChed“le?oﬁﬂé%g/e;?xacdis—tgilbotgeg1a1|3;;3h$r:2r2§\{§|§Féi?]gggtm:; d
r H . ‘C-€ € ] ’
1t — 1) or I'(#), according to the value ob(t); a larger x > 1 ande > 0 are tuning parameters such tifat= 1 — 2

The above description suggests that the memory requirem
of the policy islinear in the number of data flow#&/. This is

positivep(t) implies that selectindg” (¢) as the schedule vector e dte
results in a larger backlog-rate product, which accordnthe andj =1- N7

monotonicity of f(y), increases the probability of selecting

I"(t). Similarly, a smaller negative(t) increases the chance V. LM-RSP STABILITY REGION

of selectingI(z — 1) as the schedule vector for time-slot In this section, we study the stability region of the network

However, a mere generalization is not the main motivatiafhder LM-RSP by first providing several key definitions.
for the introduction and use af(¢) and f(¢(t)). The main o
motivation is to make the distribution df¢) continuouswith ~A. Key Definitions
respect toX (¢) for large||X(#)||, and thus, is analysis-inspired. For notational convenience, in the rest of the paper, where
More specifically, we have the following fact, which resultappropriate, we use subscripts also to show dependencies on
from the continuity of f(-), the assumption that > 0, and time; hence, e.g., we ha, 2 X(t). Let T(X,) be defined
the fact that the distribution df(¢) is completely determined gs
by the values fod(t — 1), X(t), I"(¢), ands(t). T(X,) = E[X,D*(X,,s)], (16)

Fact 2. Suppose two vectoX; and X, are given such that where the expectation is over the steady-state distribuatidche
X2 — X;|| < C. For any given positive:, there exists a channel process, anD*(X;,s) is defined in (10). Based on
sufficiently largeB§’, such that if|X;|| > Bf', then for all this definition,Y(X;) denotes the expected value of tmeax-
I"t) e Z, I(t — 1) € Z, s(t) € S, andI € {I"(¢),I(t — 1)} imumbacklog-rate product and, thus, is the expected backlog-
the following holds: rate product if the GMWM policy is used, and the queue-length
Ip(I(t) = I|X(t) = Xa,s(t),I"(t),I(t — 1)) vector is fixe(kji atXh = }ét. The quanﬁityT(?(t), theref(;re, ]
—p(I() = IX(t) = X1, (), T (1), I(t — 1)) < e. (15) gggns;glrv;oﬁ;ese.nc marko measure the performance of su
One important point that should not be buried under theIn our analysis, we often encounter distributions and ex-
main motivation is that introducing(¢) and f(y) allows us to pected values of random variables where after a particuahar t
consider and embed in our model the efficiency of the upddtequeue dynamics are ignored. To make this notationally clea
rule when it is implemented distributedly. The update rule isuppose a r.vZ is given, which can be a function of the
its original form [5][6][7] simply takes a decision based orchannel process and the selected schedules. We define]
only thesignof (t) and uses the schedule vector, eithgr— and px,(Z = z) as the expectation of the r.%Z and the
1) or I"(t), with the larger backlog-rate product. When thgrobability thatZ = z, respectively, given the hypothesis that at
update rule is implemented in a distributed manner, howevany timet’, wheret’ > ¢, the policy update¥(t') by assuming
the estimates oK (t), X(t)D"(t), andX(t)D’(t — 1) can be X(t') = X(¢). In other words, these notations emphasize that



after timet, the policy makes decisions based onaoleequeue- Fact 3. For any positives > 0, there exists a sufficiently large

length information at timet. These notations further assumeay?)| such that for ally,; and K > K%, the following holds:

that the updated channel state informatigit’), ¢ > ¢, is 1_6 VNoa

available. Note that without the above hypothesis, bottatgu max(1 — ¢’ — — P ,

gueue and channel state information are available for LNRRS o ov

to update the schedule vector. To shed light on the properties of the paraméteand also
Having introducedEx, [-], we define¥% as to consider ankimportant spdecial case, suppose the rc}:hannel
K—2 , rocess is Markovian. According to our assumptions, there i

2om= B, [Xe(Derm — (1 _p)D”m)'Yt]. (17) g finite number of channel sta?es and schedﬁles. Therefore,

KY(Xy) given the hypothetical condition that the queue-lengthtarec

By the definition in (12),D; is the rate vector correspondings frozen atX, after time ¢, as assumed in the definition

to the schedule vector in the current time-sib,), and the of ¢ and &% , the joint process of rates and the channel

channel state in the next time-slaf{t + 1), implying that states will be a Markov chain with a finite number of states.

Ditm — (1 — p)Diy,, for small values ofp approximately |f the joint process has a single communicating class and is

shows the changes in the rate vecldy,,, due to channel gperiodic, e.g., when the randomized algorithm selects any

variations. Note that the sequenceldf, ,,’s not only depends schedule with a positive probability, and the channel pgede

on a particular realization of the channel states but alsthen jrreducible and aperiodic, then the joint process will bsitize

randomized algorithmA that finds the candidate schedulesecurrent and will have a steady-state distribution. Herse

Therefore, wherk is Iarge,\IJ{ measures the relative changes, — o, D,,.,,, weakly converges to a random vecidwhose

in the backlog-rate products, due to channel variationsr av distribution depends on the channel distribution, the rtlym

long horizon, while implicitly embedding the effects of the4, the update rule, and the given vectir= X,. A similar

algorithm A. This implies that?$ can be used as a measurgliscussion also holds fap;, .. Therefore, in the limit of large

for the channel correlation sincey,, becomes small for small i, both q;gt and q;{ become independent of initid(t) and

values ofp if the channel states are highly correlated. It ig(¢). In particular, assumingX = X;, as K — oo, we have

Uy, Y ) >0—e

K _
WYt_

important to note that in the definition df{, the expectation 1 /
is of the typeEx, [], and hence, queue variations after time Uy, = UR LUy = EX(D T ()1< P)D )], (24)
do not affectl'yy . In addition, note tha’{; not only depends (X)
on K andY, but also implicitly depends ot an
Similarly, let ) oK . ox 2 oy E[XDL (25)
K om0 Bx, [XiDym[ Y] T(X)
Py, = KT(X;) ‘ (18) ' where in the above expressions, expectations are taken with

H 1 i !/ 1 oo
This definition introduce®% as the time average of backlog-resloeCt to the dlstrl_bunons fdD and_D » and by usingv’yx
¢ andVg, we have misused the notation to emphasize ¥t

rate product normalized to the benchma&fkX;). Hence, we nd@3 depend orY; only throughX — X,

can usebf as a measure to compare the performance of LN ¢ . . ;
RSP with that of the GMWM policy. As one other observation for this special case, note that by

As for one other definition, let the Markovian nature of the channel proc_e@_é}t and &,
. become independent 6fvhenY is given. This independence,
V=8 GS”(S) Tax Di(s, 1). (19) Property 2, and the update rule further imply that the digtri

_tions for ¥§; and @y do not depend offj X||. Therefore, in

Thusf,u .isdt_h_edmi?li_ml?m of thellal\_/el:age rﬂaximum tkra_lrlﬁ.missmgpﬂs case, despite the fact that the vecXris discrete, for the
rate forindividuallinks, over all links In the network. This pa-, ,.nose of taking thénf over Y, in the definition ofd, we

rameter is a fundamental property of the system. Itimmedjiat .., replaceX;, as one element oY ;, with -Xt. In addition,

follows that if for every link, there is at least one state ihigh heinf is tak I bl HP)%H e all
the transmission rate is non-zero, ther 0, which is assumed SINCe theinf is taken over all possiblés, 5y can take a

throughout the paper. One importance of this parameteris tRossible directions and can be any unit vector in the limit of
we can obtain a lower bound fof (X,): larget. Hence, by (24) and (25), for Markovian channels, we

v must have
T(X¢) 2 v max Xi(t) = —NHXt”- (20) 1_5 VN pa
<I< _ . _ oo o0
Now, we define a key parametgthat represents the fraction 0= x;|f§ﬂ:1 max(1 ¢ 5 ¥x Sv %) (26)

of the capacity regiod” that can be stabilized by LM-RSP.

Specifically, we definé as B. Theorem on Stability Region

0 = lim inf inf max(1 — ¢’ — 1_6\1;§t — Wpa,(l){?f), (22) The following is the main result of this paper on the stayilit
wherie(éoo Y Y ov ' region of LM-RSP.
¢ = (1—(1—=p)(1=0)). (22) Theorem 1. Suppose the mean arrival rate vectolies strictly
SN oa _ inside ", whered is defined in(21), and 6I" is a region that
We assume=== < 1 or, in other words, containsé-scaled of all rates inT, i.e., ' = {ag| Ja € I :
pa < 5_” (23) = fa}. We have the following:
_ _ ) VN _. (&) There exist non-negative constamts;’s such that
This assumption can be, in general, a necessary conditron fo
the positivity of the first argument in theax operator of (21). a= Z 7(s) Z Bs1D(s, 1), (27)

By the definition of thelim inf, we have the following fact. seS Iez



and D} ,, ~ Dy n. Since by definitionE[XD] < T(X), from

€29 —maxZﬂs_I > 0. a7), we have\IJ{ < o/, wherep’ ~ p. Assuming thatp
s€S 17 and « are sufficiently small and using (21), we have that
(b) Under LM-RSP, the system described in Section Il > 1— (" ~ 1 — (. Itis interesting to see how the presence
stable in the mean, i.e., of the terml%‘s in @ is canceled by the channel correlation.
1 E Note that the termt=2 is the average number of times that
1imSUPT—HZE[ (Xl } < 0. the algorithm A must be run before (11) holds for a fixed
T=e0 t=0 X ands. The effect of this term is reduced when channel

Proof: The proof of the theorem is given in the appendixcorrelation is high, which manifests itself in a smﬁl{ﬁt. We
m can also easily prove that if the candidate schedule reduoge
C. Insights into the Regiofl’ the algorithmA is usedwithoutany comparison in each time-

Here, we discuss several practical implications of the abo$ol: in general, the scaling factor beconi¢s— (). Therefore,
theorem by first focusing on general channel processes ég’fisee that LM-RSP improves the capacity region scaling from
then considering an example of Markovian channel states. 0(1 —¢) to atleastl — ¢ and, exploiting channel correlations,

1) Insights Assuming General Channel Processas:the réduces the uncertainty of the randomized algoritmin
first point, the theorem suggests that a scaled version of §fdecting a candidate schedule satisfying (11). A speeisé c
capacity regior” can be supported by LM-RSP. The theoren{S Where¢ = 0, which impliesé > 1 in the limit of p — 0,
moreover, shows that the scaling factofjsvhich by definition and thus,¢ = 1. Since# = 1 means throughput optimality,
depends on the limiting behavior of the policy when qued€ conclude that simple linear-complexity algorithms, e
dynamics are ignored. Recall thatis a function of % and discussion in Section IV-C, are sufficient to attain thropigh
®E . As explained in Section V-APE measures norﬁ1alized°pt'mal'w arbitrarily closely, reminiscent of the resulh [5].

raté changes due to channel variations over time when qudg Summarize the above in the following corollary.

variations are ignored after time Since, for a given time- corollary 2. The stability regiorfT' contains the regiorfl —
slot, _the policy updatc_as the schedule vector by_ comparning-& andg,;,, > 1 — ¢ in the limit of highly correlated channel
candidate schedule with the one l_Jsed in its previous tioE-Sletstas and smalp and a. In particular, when¢ = 0, in the
we expect that large channel variations, and thus, lar§e, |imjt, the regiondI" expands to the capacity regidh and LM-
negatively affegt the upc_zlate process, and he@o@n the other Rsp pecomes throughput optimal.
hand, as explained earlier, for a givan, <I>$t is a measure to
compare LM-RSP with the GMWM policy; a larger and close- 2) Insights Assuming Markovian Channel Process€sir
to-one value for®y indicates that LM-RSP uses scheduleliscussion so far considers networks with general channel
vectors with similar backlog-rate products to the onesltiesy  processes. In the following, to obtain specific results, we
from the GMWM policy, and a smaller and close-to-zero valu@cus on an important class of Markovian channels and well-
for <I>{§t indicates that LM-RSP is performing poorly comparethvestigated interference models. Suppose the chanriessta
to the GMWM policy. As a result, we intuitively expeétto wireless links are independent. Furthermore, supposetdte s
be as large as the least value®§, for large Ks, which is of each link is a Markov chain with two states, namely the
theinf (overY,) of \I/{ for large K's. The expression fof state representing the “good” state and &rstate representing
exactly reflects these observations. the “bad” state. We assume that the state of a link in each
We also observe that the parametersand p can directly transition can take a different value with probabilityHence,
affect ¢ through the term@ and indirectly through the 7 may represenindividual link \_/ariation rate over one time-
terms¥¥ and®% . Recall that these two parameters must BEOL AS the worst-case scenario, we assume inbteate the
positive for continuity purposes but, otherwise, can beseno transmission rate is zero. We do not impose any assumption,
arbitrarily’. Note thats is a given parameter, and can be Other than positivity, on the transmission rate in fetate.
estimated readily. Hence, we might naturally try to choase Therefore, when two links are in their states, they can see
and p such that—@”"‘ is arbitrarily small. In fact, assuming possibly d|ﬁerer1t but non-zero transm!ssmn rates. ]
0, €Xists, where As for the interference, we consider the classiode-
(28) exclusive interference modg][4][9][10], where a node can
only send to or receive from one other node at any time. This
we can ensurél’ contains a region arbitrarily close #,,,I" interference model motivates us to view the network as argrap
by assuming sufficiently small values fprand«, which gives G(V, E)), whereV is the set of users anfl is the set of all links
rise to the following corollary. However, note that, as showin the network. Given this graphyalid schedule is anatching
later, the delay bound can increase proportionally vy}ct;h where a matching is a set of edges no two of which share a
common vertex. We assume the algoritbhralways returns a

the parametersy and p can be chosen sufficiently small sucﬁnatChing with respect 16, ensuring that the schedule veclpr
that the the system described in Section IIl is stable unds also a matching. Note that our discussion here easilyndste

{8 the more general-hop interference model [4], according to
LM-RSP. : . o :
which, no two links withinx hops can successfully transmit at
We now consider the effect of channel variations &n the same time.
Suppose channel states are highly correlated. This imihl&#s  Having defined the channel and interference models, we now
o _ _ , . " derive an upper-bound fob% . Recall thatV% is almost the
As discussed in Section IV-B, if the update rule is impleredndistribut- t 4

H £ !
edly, p may be used to model the inefficiencies in implementing LMPRI® time average OEXt [Xt(Dt+m - (1 _p)Dt+m)|Yt] tak_en over
this case, the choice for a positiveis still arbitrary. m, 0 <m < K — 2, and normalized tdr'(X;). Consider the

Glim = lim 97
a,p—0

Corollary 1. For any input rate strictly inside the regiah;,,.I,



time ¢t + m, and suppose thé, link is in its g state and is VI. LM-RSP DELAY PERFORMANCE

scheduled to receive non-zero transmission rate. In thé nexj, this section, we study the delay performance of LM-RSP.

the b state, whose definition implies th@ (¢t + m) = 0. On

the other hand, with probability — r, the link stays in itsy
state. Since by definitior); , . is the rate at timg +m + 1 A Convergence Parametéf and Norm Lower-Bounds
but with the schedule vectdy, ,, used at time¢+m, and since  Here, we introduce two key parameters that play a central
by assumption schedule vectors are matchings, we see thatele in the delay analysis. The first &, that essentially is
links that can possibly interfere with ttig, link are scheduled a function of how fast channel states converge to their gtead
at timet+m+1. Hence, when thg, link stays in itsg state, we states, where the variabtés used to measure the closeness of
must haveD; (t+m) = D,(t+m). In the case where thg link the input rate to the boundary of the regi@n. In our analysis,
is in its b state at timg+m, or not scheduled at timerm, then K. determines the number of steps used in the Lyapunov drift-
D;(t+m) = 0. Considering all the above cases for lihkt is analysis. To formally defind(., suppose a positiveis given,
easy to see thdix, [X;(t)(D;(t+m)—(1—p)Dj(t+m))| Y] < and lete; = § 52— %%, 2 = Se1, andes = §. We definek.
Ex, [Xi(t)(r + p(1 =)Dyt +m)[Y,]. as

Since the above discussion holds for all links, we have that ;- _ 2maX(K1,€1,K(7) D 6N 4 E(g)% (30)

g , 2enr Dmasy s oo
]Ext [Xt(DH—m - (1 - p)DH—m)'Yt]
- - - <(r+(1-r)p)kx, [XtDt+m|Yt]7. . is defined in Fact 3;62
which implies that¥§ < (r + (1 — 7)p)®%,. Using this  The second parameter BX, which acts as a lower-bound

whereK; ., and KQ(W) are defined in Section III-B, anﬂ’e(_f)

inequality, the definition off, and the fact thatnax(a — for the norm ofi| X,||, above which the Lyapunov drift becomes
bx,x) > 195, we can show that negative in our analysis. More specifically, |iX;|| > BX,
1 — ¢! — YNpo then within the K timeslots after timet, the inequalities in
> ¢ v . (29) Property 2 and Fact 2 hold with high probability. To formally
14+ 52(r+ (1 =7r)p) define BX, suppose for a give and a positive:, ¢, andes

: _ 1 1 v e O __ €4 _
The term Y222 in the right hand side of (29) can be madé&'® defined by, = 55— FZW_and €s = 7. Let A, -
. i - iCi A, +VND where A, is defined by Fact 1. We define
arbitrarily small by choosing the policy parametesufficiently o maz € y :
small, which, as we show later, comes at the price of incngasiB: as
the delay-bound proportionally t§. Summarizing the preced- BE = max(B{. ,BS..), (31)
ing discussions, we have the following corollary. where ¢ — K[lm, and 310,65 and BQC,65 are defined by

Corollary 3. Suppose the state of each link is a two-staféroperty 2 and Fact 2, respectively.
Markov chain with transition probability and independent of

the states of other links in the network. In addition, sugpih® B Big © Notation

interference can be modeled by the node exclusive intadere
model or, more generally, by the-hop interference model.
Finally, suppose the algorithml always returns a matching
(or a k-valid matching) with respect to the network gragh
Then, for any input rate strictly insidé,,;,I", where

As a notational convenience in our following analysis and
discussions, we use the b{@ notation with multiple variables.
In such cases, we assume the ordinary ®@igotation holds
individually for each presenhdependentariable as it takes its
, limiting value. In particular, we consider the scaling bebes,

1-¢ _ asN —o0,p—0,a—0,06—0,— 1, 0re— 0, wheree
1+ 585((1—r)p+7) is defined in Theorem 1.
there exists a sufficiently small such that the network is sta-
bilized under LM-RSP. |)I{l other words, the regi@h contains C. Theorem on Average Expected Queue-Lengths
the interior of the regiord,,;,,I" in the limit of smalla’s. In The following is the main theorem on the average expected

emin =

addition, whenp < §, we have gueue-lengths.
) o~ i Theorem 2. Under the assumptions in Theorem 1, the expected
Orim > 0 .
B queue-lengths satisfy the following:
. . . T N
The corollary essentially states thaffiged fraction of the ~ v - 1
capacity regiorT’, regardless of the number of data flows > Xi= hjlffip T+1 > [ZE[Xl(t)”
can be stabilized by LM-RSP given that the péird) and 1si=N =0 1=l ,
the rater are fixed. Furthermore, it remarkably states that the <B(WN+ 2ﬁ|\a”) n O(KN )
total channel variation rate¢ — (1 — r)", which is close to - ve de /’

Nr for small’s, does not appear in the lower-bound fractiowherer is defined in(19), e is given}lgy Theorem B, is defined
0,.in, and what appears is the individual link variation rate in Property 1,K = K., and B = B.*.

As the last observation, note that the more restrictive & th  proof: The proof of the theorem is given in the appendix.
interference model, i.e., whef becomes large in the-hop -
interference model, the sma!ler is the regiobnHowever, the gain insights into the delay performance of LM-RSP
corollary assures that for a givéq, 9) andr, the lower-bound | iy the above theorem, we need to study the properties of

fraction 6,,,;,, is not affected by the choice of, and thus, a the parameter®’, and BX, wheree is defined in Theorem 1.

fixed fraction ofI" can be stabilized no matter how restrictiveNote that this value of fs used to determine’s, 1 < i < 5
is the interference. L1509,



defining K. and BX. We start by considering the definition Consider thely, link whose states; is by itself a two-state
of B given in (31), implying thatBX > 320,65, It is easy to Markov chain with steady-state probabilitiesh) = 7 (g) =
see that sincef(-) is linear in the rangd—p, p], we can set 0.5. Settingko = 1, we can use Lemma 1 to show that

B, = C(2NDuee 1 1) |t is also easy to verify that this Z |mi(s1 = s) — w(s; = s)| < 2(1 — B)*, (33)

2paes
form for B§€5 is indeed necessary when constant multiplicative  se{s,9}

factors are ignored. Hence, by the definitionsdpandes, and \where 3, = 2r if » < 0.5, and 3, = 2 — 2r otherwise. Since

that C' = K A,,, all given in Section VI-A, we have there arelV links with independent states, the above inequality
c NISK? indicates that aftek transitions after time, with probability at
Bye, = Q pade )- (32) least($ — (1—3)*)V, the states, satisfiess,,x = s, where

s can be any state i5. On the other hand, by Property 1,

Dopaz N
By (30), we havex’ > , and by (23), we havea < ooty at leasw, inequality (11) withX = X, and

dre

v Using these inequalities, the equality (32), and At >

VNT T _ s = s; holds for any time-slot. This implies that for any state
B .., it is easy to see3(V'N + 22 ||a||) dominates the term s ¢ S, there exists a seflx, s, Ax, s C Z, such that for all
O(Kls—fz) We, therefore, have the following corollary. I € Ax, s, inequality (11) holds fol” = I andX = X, and
Corollary 4. The dominant term in the average queue-length Z pxs(I"=1) 2 9, (34)
is B(VN + 22 |al)). o TeAxes _
) o whereux, s is defined in Section IV-A.
Note that the dominant term implicitly depends é&h = Now, suppose at time-+ &, for a givenk, the algorithmA

K. through the termB = BX. Therefore, to have a specificchgoses the schedulethat belongs to the setx, .. 8. This
bound on the average queue-lengths, we need to@also Afudy happens with probabilityix, ,,, (I" = T). In th7is+case, we
By definition, K. depends onk ,, Kél)y and K, which have o(t + k) > —¢. Assumingp > 2¢, by the update rule,
can be considered as convergence rates. The first two ratesy@ have that with probability at Iea%t, L =T(t+k) =
essentially the convergence rate of the channel proceds tofi This and the discussion in the previous paragraph imply
steady state. The third rafé’, depends on both the channethat for any channel state andI € Ax, ., regardlessof the
convergence rate and the update policy. Hence, towardadnavinitial state (s;, I;), afterk time-slots, with probability at least
a specific average delay-bound, we need to focus on a particu?” . ((s,I)) = (3 — (1 — 3)")V ux, s(I" = I), the chain
channel model, as discussed next. will be at state(s;4x, I:+x) = (s,I). Using this lower bound
as the minimum transition probability in the expression for
and replacingk with &y, we can show thag for the Markov

D. Specific Delay Bound for Markovian Channels chain {(s:ss,T,11),i > 0} satisfies

As a special example, suppose the channel state is a Markov ko
chain as described in Section V-C2, where the state of each gz Z P ((s,1)
link is a two-state Markov chain with transition probalyilit (s,1):s€5, 1€ Ax, s
and independent of states of other links in the network. The _ 1 ko \N L o
following is the key lemma [32] that we use to study the - Z Z (5 —(1=5)%) Z“vas(l =D
convergence rates of Markov chains. sCSICAX, «

. . . . . 1 1 k}o N T

Lemma 1. Suppose a Markov chain is defined on the finite 1 2(5 -1=8)%) Z px,s(I"=1)
state spaceX with transition probabilities P(z,y), where scS IeAx, s
xr € X andy € X. Let m, be the distribution afterk 1 Ko\ N
transitions given an initial distributionty. Then, given any 2 15(1 =201 -8)7)7, (35)

initial distribution 7y and stationary distributionr, we have where, to obtain the last inequality, we have used (34) aad th
N : :
_ <91 — gL |S| = 2. Hence, we have obtained a lower-bound fogiven
Z i) = ml@)] < 2(1 = B)"o7, any kq. Next, we use this bound along with Lemma 1 to study
the convergence oy to &% .
Supposery(-,-) is the distribution of the Markov chain

reX
wherek is a positive integer and

8= ZmigflPk“(a?,y), {(st+:,Li44),¢ > 0} after k transitions, givens, and I;.
yex 7€ From the definition 0@{ and @ , given in (18) and (25),

where P¥ denotes the transition probability aftés, transi- respectively, we have that
tions. 0o 1

o S ST 9

We first concentrate orK(gg). Since the channel is Marko- p t1

vian, by the definition ofKEf and the discussion leading to ‘ — ‘

: I - I))X:D(s,I
(24) and (25), we see thd(e(_f) depends on how fast¥, = ; (me(s,T) — (s, 1)) XD, I)

and ®§ converge tol$y and 5, respectively. Recall that N K
in ¥§ and ®§, queue dynamics are ignored, afd + k), N ‘ I — I ‘ NIX, D

k > 0,'is updated by settin® (¢ + k) = X(¢). Using this along  ~ K] X,]| ,;) ZI (me(s, 1) = (s, | VNIXi ]| Do
with the discussion leading to (24), we see that the process

{(st+#,Lr1x),k > 0} is also a Markov chain on the space 8In the context of this discussion, since we are focusingddp, , by its

S xZ. Our goa] is to find an appropriate value f8rto apply gefinition, queue dynamics after tinteare ignored, and thuslx, ) s,y =
Lemma 1 to this Markov chain. AXyosin
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[o In addition, since—In(1 — 3) > 3, we havek, < In(4N)

1
< NDimaz Z ko2(1 - B)" < M@l, (36) which along with equality (44) and Corollary 4 leads to the
Kv =0 v Kp following corollary.

where the first inequality follows from (2) and (20), and th
second inequality is a direct result of Lemma 1. Let

%orollary 5. Suppose the state of each link is a two-state
Markov chain with transition probability- and independent

ko = f%]v r#0.5 of the states of other links in the network. In addition, sagg
1, r=05" arrivals are limited by a suitably large constarB,lc_65 satisfies
2 -2 . o
which implies that(1 — ;)% < ;& This inequality and (35) Bf.., = O(%75-), andp > 2(. Then, assuming < 0.5, the
further imply that3 > 2. Therefore, from (36), we have that average queue-lengths satisfy the following:
16NDppas k N*5(In(N))?
K 0o mazx N0 — R S S
[Py, — %, [ < Y Ks (37) 1§<:NX1 O( pad5 372 )
We can obtain a similar upper-bound fob{y — U< | by o N3(In(N))? [al|
considering separately two Markov chains corresponding to + O(T)'
the pairs(s;yx, i) and (sgrri1, Iiir), k& > 0, respectively. pad>etr
Specifically, we can show that If » > 0.5, the same result holds except that the terfhshould
1 39N D, 10 ko be replaced with(1 — r)2.
|\IJ{§—\IJ§?|<—(1+7W”—). _ .
¢ ¢ K ) We are finally at a stage to study how delay scales according

Using this inequality, the one in (37), and the definitiondof to various network- or policy-related parameters. Suppbee
it is easy to see that we can set input rate isa = (A1, -+, Ay) strictly insidedT", and consider
KO _ [i (1 n 32N Doz @ﬂ _ @(N_ko) (38) the coefficientss 1’s corresponding to the rate as specified
& | feq v ) TV eg02 in Theorem 1. Letfy = maxses ) o7 Os1, Where by the
i i (v) theorem we havé, < 0. Based on the definition df andf,,
Cagsgggcﬁgggr zgproaches, we can show that. and K, , it is clear that the rate vectq;%a belongs to the boundary of
ko ko fT'. Since the regioldl" serves as thﬁgfer_encstablhty region,
Kie, = {E—W = @(6—) (39) the ratey; = %)\z, 1 <1 < N, which is thely, element of
! ! the vector%a, can be regarded as tledfective service rate
for the Iy, link. This provides the motivation to defing as
Kél)z = [S—kO + L))lﬂ = 9(];—2). (40) ¢ = % and to considet as the effective load for each link.

€9 111((1 -4 H T — <] <
Finally, using the definition of<. and equalities (38), (39), andfEé?Seedagnd;?ilrsle%eﬂlnq—lﬁgbsgfn hf\g?] = s, L < 1< N, and

) X d used throughout previous
(40), we can easily verify that]‘\’]\’: can chooke such that discussions, we have that= (1 —¢)6. From Little’s theorem,
0

K. =0( ). (41) Wwe have that the overall average delay for each packet, eeénot

%€ by D, is given by1/(>"N A X, which along with
After studying K. for a Markovian channel model, we now y g YL/ (o M) 2 <ien X g

. . N
return to finding an upper-bound for the dominant term giv&ﬁe |n.equaI|tyZl:1 A1 2 all and Corollary 5 leads to the
by Corollary 4. Suppose arrivals are limited by a consta llowing corollary.

Amaz® 1.8, 41(t) < Amaz, 1 <1 < N. Using this assumption, Corollary 6. Suppose the state of each link is a two-state
we can setd., = VN(Amaz + Dimaz), Where A, is given Markov chain with transition probability- and independent
in the definition for BX. Using the same discussion leadin@f the states of other links in the network. In addition, saggp

to (32) while not excluding the effect of.,, we see thatd.,, arrivals are limited by a suitably large constarB,IC,65 satisfies

contributes a/N term into BY,_, and therefore, we can havepe O(A,gi?:)' and > 2¢. Then, assuming < 0.5, the

and

5

c (NQKQ) (42) overall average queue delay satisfies
2,65 PP -~ v
o pade B X 4.5 2
In addition, suppose D= M = O( 5N (1n§l\g))2 )
N2K? SN pad® (1 — )3 P ricu,
Les = O( o) (43) o ( N5(In(N))? )
pad® (1 —<)*04r2 )’

This for instance is the case where the algoritAnthooses ) ) s
candidate schedules from a fixed set with equal probalsilitidVhere ) is the total service rate and is given by =

In this particular case, the distribution & does not depend 2-1<i<n #i- If 7> 0.5, the same result holds except that the
onX,, and thus,BC.. can be assumed to be any positive re4rmsr* should be replaced withl — ).

number. Note thaBf . depends on a specific implementation Note that the format of the obtained delay-bound is similar
of the algorithm4, a topic that is not the focus of this paperiy the average delay for the M/M/1 queue WhiChdSl—)
1 7{ 1
Recall thatB = B. andK = K.. It follows from (31), (41), yjth ¢ as the load and: as the service rate. Remarkably,
(42), and (43) that - 552 [al the corollary states that delay is polynomially boundedhes t
N _ o (Nky N°kg ||la variables of interest, including the number of data flois
B(\/N—i_ 2V€”a”) N O(pa5563) O( paddet ) (44) take their limiting values. In particular, we see that deiay
O TLQ as the link variation rate takes smaller values, and is
°Recall that we earlier in Section IlI-A introduceth, . as the upper-bound % asd — 0. In the next section, we consider both the

for the second moments of the arrival process. throughput and delay performance of LM-RSP.
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VIl. JOINT THROUGHPUFDELAY PERFORMANCE VIIl. CONCLUSION

In this paper, we have studied the stability region and delay

In this section, with the help of the corollaries providegberformance of a linear-memory randomized schedulingpoli
earlier, we investigate the throughput and delay scalinthas LM-RSP for networks with time-varying channels. LM-RSP
variables of interest take their limiting values. As disers uses an update rule along with a randomized algorithm that
earlier, Theorem 1 and Corollary 1 state that LM-RSP camth probability at least finds a candidate schedule vector that
stabilize a fraction of the capacity regidn Corollary 3 further is within ¢-neighborhood of optimality. The complexity of LM-
shows that the policy can stabilize fexed fraction 6,,;,, of RSP depends on the complexity of the randomized algorithm
the capacity region regardless of the number data fldiv and, in particular, may be linear. We have proved that LM-RSP
the rest of parameters are fixed. However, as expected &aé stabilize a scaled version (fraction) of the capacigjore
inherently present in Theorem 2, the delay-bound increag®¥d quantified the corresponding scaling factor as a fumctio
with N. Specifically, Corollary 4 characterizes the dominaf the parameters in LM-RSP and the limiting behavior of
term in the delay-bound, leading to Corollary 6 that statdayl rate changes due to channel variations. Furthermore, we hav
is bounded by a polynomially increasing function 5t provided an average delay-bound for general ergodic channe

An interesting trade-off occurs when parametgrand o  Processes. For a particular class of Mari<owan channels, we
take vanishingly small values. Recall that these paramet§@ve shown that the average delay (¥>), asr — 0,
must be positive for continuity purposes. From Corollafie3, wherer is the link (|nd|_\/|du('_;1I channel) variation rate, and is
we observe that as and p take smaller values, the stability®ounded by a polynomially increasing function of the number
regiondl is ensured to contain a region arbitrarily close to th@f data flows. In addition, for.th|§ class of channels, we have
region 6;,, I or, for Markovian channels, the regiah,;,[. Shown that a minimum fraction (1 — ¢) of the capacity
Corollary 6, on the other hand, shows that this comes at tfR9i0n can be stabilized. Our results also indicate thatewhi
price of increasing the delay-bound proportionallyato. the minimum fraction decreases linearly @s- 0, the delay

A similar trade-off exists when the channel gtates b%jay Increase a%, and therefore, the effe_c.t 6fon_delay may
come increasingly correlated. Specifically, as discusseskeic- . € more severe than thg one on the SFablhty region. Theteesul
tion V-C1, increasing channel correlation increaéesd, thus, n th'.s baper are promising and motivate fqrther regearch.as
expands the stability region. We also discussed that crhanthey indicate that even when channels are time-varyinggusi

correlation helps the policy compensate for a sndallThis domized policies can help stabilizepeedictablefraction
is more explicitly stated in Corollary 3, which shows that foof the capacity region, in networks with limited computatio

. : . . _.-power and memory resource, while assuring a polynomially-
a particular Markovian channel process, as the link vanmati P y g apoy y

rater decreases, the lower-bound regihy,,I" expands almost bounded delay.
proportionally to (1 + (r + p)%‘;)‘l. In particular, in the PROOFS OFTHEOREM 1 AND THEOREM 2

gT&ethg\/;m?n aidlp, ;do’thfl?sr’ gchrou(g);hapnu(i-(?gt)i/mgcl)itsyl/mégn Here, we provide the proof-sketches for Theorems 1 and 2.
be achieved, similar to the observation in [5]. However, %e interested reader is referred to [30] for detailed paofd
shown in Corollary 6, this makes the delay-bound increa o the proofs of the lemmas listed at the end of th|s_app1end|
proportionally tor—2 asr — 0. Proof of part (a) of Theorem:1Sincea is strictly inside
Finall f th . 5). Part (b of Th 1 0T, there should be a rate, insideI" such thata = fa;. By
inafly, we tocus on the pai¢, 9). Part ( ). 0 €OTeM 2 the definition ofT, it is easy to see that there should exist non-
and also Corollaries 1-53 all state thatcan directly affect? negative constantg, s such that for alk € S, >y, 8.1 < 1
_ i s, ’ s,
ihe term (1 ~ ). By Corollary 6. since for & given Ioad 27921 = Yes 7(5) Yrey 3, D(s.1). Using this equality
- =Y y o g and setting’s 1 = 0. 1, we see that for these choices/fy’s,

factor ¢, the delay-bound increases proportionally to as g ; .
9 — 0, we have that the larger is, the smaller is@%@and a satisfies (27), and as defined by = 0 —maxscs > ez s
is positive, as required.

the larger should be the delay. Therefore, increagjingas i .
negative effects on both throughput and delay. Recall that Proof of part (b) of Theorem:1 We use ak-step drift

the parameter is the least probability that the candidat naIy_sls to prove part (b) of the th.e"fem- The main d'ﬁ'C“'FV
schedules are withig-neighborhood of the optimal schedules‘f:ereI Is to prop_zrly L;]seftrrle properties of L';/"RS_P in the drift
Therefore, as is clear in the definition fér smaller values for analysis. Consider the fo ojgvmg Lyapunov function:
0 decreasd. Specifically, Corollary 3 shows tha,;,, as a V(Yy) = ZX ()’
lower-bound fol, decreases almost proportionallystgi? as ¢ — W
{ne Gelay-bound since by Corollary 6. the bound can mereass, 22" Write thelc-step dritas follows:

y-bou I y y o, u I _
proportionally to= asé decreases. As the final remark, note-g?K)t =E[V(Yirx) = V(YY)
that if it is possible to increas® at the expense of increasing Kl
the complexity of algorithn, it can be sufficient to make sure — Z EV (Yerrrr) = V(Yerr) Y]
thatd has the same order as This is an intuitive observation k=0
and a result of Corollary 3, which states that for Markovian
channels, we may hak,;,, ~ s—5-(1 - (). For instance, = Z E[(Xitk+1 + X)) (Xt br1 — Xir)| Y]
when § = r, if the update rule is not used, the scaling of
the capacity region is(1 — ¢) whereas using LM-RSP can
ensure,,;, > +(1—¢), which implies a significant throughput  — Z B2 Xe+k(Avrr = Degr) +2 X x U +
improvement especially when< 0.5. k=0 S1n bk

APPENDIX

K-1

k=0
K-1




(Atpk — (Degrk — Upir)) (Apyk — Dotk — Urpr)) [ Y]

03,k

(45)
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TABLE |
TABLE OF DEFINITIONS

Based on the above expression, there are three main sum

tions, corresponding t6; i, d2 %, andds ;, respectively, each

of which should be upper-bounded approprlately To uppér-

bound the summation ovép j, note that by the definition of

U(t), Ui(t) < Dpmaz, and if X;(t) > Duas, thenU;(t) =0

4 D’V?‘LO/\TN

ma~—¢ =1 1 ved

= €2~ 6 Dpas N 42K

—e =Ll 1 ved

€3 = €3~ 6 Dypas N 48K
er—=L_1 ves
5= 6 Dpmaz N42

—1
€6 = m‘“”( TH2Ke2 + ((1+263)2K ))+E4+2655’1+5T)

Therefore,

€ = Dimas (2K e, + (1 +264)°K = 1) +¢,

)

= KND?

max*

K-1

> E[6x|Ye] < Z ND?, . = (46)

k=0
As for the summation oveio,_,k, we have that

K— K—-1

<Y ElAwkAvii] Y] + EDex Dy | Y]
k=0

< KE[|A[?

1
E[03,%|Y ]
k=0

+ KND?

max*

€7 =

€8 = €1 Dmaz + €6

Cl 03 - \/_Dmal‘Ha” + NDmaz

Co =26"1(1-6)Cq

CS = C2 + \/7Dmaz||aH + pCVéil (”aH + \/W(Amaz + Dmaz))

Cy =202+ N(Amaz + 3D72n(u)

Cs = 203 +2|al|> + 2N D7,

The heart of the proof, however, lies in deriving an upper-

bound for the summation ovef; ;. It requires Lemmas 2-

With these choices, we can put together the results in (45)-

6, which are listed at the end of the proof of theorem. Firs{48) and Lemmas 3, 5, and 6 to obtain the following for

consider the following straightforward observations:

k-1
EXirArir Y] <EXAi| Y]+ E[Z A Ay kY
i=0
= X;a + k|a|?, (47)
and
K-1
EXiAik — X Diegr| Yy
k=0
K1
= KXja— Y B[X; D}, [Y/]
k=0
K-1
+ Z EXt+k(Diyy — Deyr)[Ye].  (48)
k=0

Since by the assumption in Theoremalis strictly inside
0T, part (a) of the theorem holds. Specifically, there exist-no
negative constantss 1's such that equality (27) holds, anrd
as defined in part (a) is positive, i.e.,

¢ rsnea‘s)‘(Zﬁs’I >

IeZ

(49)

To use the results of Lemmas 2-6, supgfsgs, 1 < i < 8,
andel’s, 2 < i < 4, are defined as given in Table |, wherés
given by (49). We set

6N 4

K= 2max(K1,€1,K§1>,,Dmazg—— KY) =K. (50)
»

)

where the last equality follows from the definition &% given
in (30). In addition, letB = BX _., whereBf _is defined in
Lemma 4. These choices |mply that

B = BX,
where BX is defined in (31).

(51)

10Note that the sequence ef's, 1 < i < 5, here is different from the ones
in Section V-A.

[X¢l = B:
A(K); < KCy + K*Cs

—2K|(1- ST —
< wex D fe

IeT
i (2201
5 T(Xy) 5

+ 2KV N (1 Dppaz + €6)||1Xe ],
whereeg, C4y andC5 are given in Table I.
With our choices fore;’s, 1 < ¢ < 5, and K, it is easy to
verify that

;10
Oy, 1 <I>¥t)>T(Xt>

(52)

€1Dpmaz + €6 < %i (53)
In addition, using the inequality in (20), the assumptioatth

K > K9 with e; = £, and the fact thatmin(f(z)) =
—mazx(—f(z)), we can show that
n PO ” tH ! 1-94 K _ &K
1 mln((S TX )+< +—5 Uy, 1-2y,)
VN pa o 1=46
> max(l - —==— = —qu{g,cb{)
>0—er=0- S,

Using (20), (49), (52), and the previous inequality, we have

AK), < KCy+ K205 — 2L g(e— - N

_ A IX
\/N € 4 UES)H tHa

whereeg = (€1 Dmax + €6). Using (53), for||X;|| > B, we
obtain
A(K
and
Cx = KOy + K*Cs. (54)
Using the assumption that the second moments of the arrival
process are finite as specified in (3), we can generalize the
above inequality for all|X| as
A(K): < Cx — K¢ | X¢|[1yx,>5 + Cr.Bl %, |<B
< K¢ |IXe|| 1%, >8 + Ck + Ck.B,

)¢ < Cr — K& X,

where¢ = Ve
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where1, is the indicator function and above inequality, we have also used the fact thatdf I, then
Cx.5 =2KBlall + KE[|A|} + K(K ~ Dfjal) @ < Dmaz 1 <1 < N, and henceja|| < VN Dpnaa-
’ Note thatK depends onV and . Therefore, to complete

2 2
+ KN Dy _ (55) the proof, it suffices to show that the expression in the large
Now, we take the expectation ak(K), with respect to the brackets in (58) isO(KNé~!) with respect to variables
distribution of Y, which leads to and N. This easily follows since by (23}/Npad—1v—1 < 1,
AN(K) 2 E[| Xk [1?] = E[[|Xe1?] completing the proof. [ |
< -KEE[ [IXe|1yx,>8 | + Ck + Crk 5. Lemma 2. For C; given in Table | and all values df s € S,

Considering the above inequality for timeés- jK for ¢ € andm > 0, we have that

{0,...,K —1}andj € {0,...,J — 1}, and summing ovei rx D*(X _D*(X v C
and j, we obtain [Xitm1(D*(Xetm+1,8) (Xtm,8))|Ye] < Cr.

K—1J-1 K—1 Lemma 3. Supposea is given by(27), where non-negative
SN AN (K)ivix =Y (B[IXissx|?] - B[|X:|?])  constantsssr's satisfyd . fs1 < 1 for all s € S. For any
i=0 j=0 i—0 positivee;, if K > K, ,, then we have
—-1J-1 K-1
< K§ ZE X+ L%, 411> B] Ax, £ KXa— Y B[X; 14D Y]
1=0 j=0 k=0
+ JK(Ck + Ck.B). < K2ND? .+ KDpaoVNer | X4 ||
Since norm is a non-negative function, from the above, we hav _K )1 — )X, D*(X
sin > rls)(1 - X XD (X,
K-1J-1 o sEe <€
]E |\Xz‘+jK||1||x1:+jKH>B} where K ., is defined in Section IlI-B.
i=0 j=0 Lemma 4. Suppose arbitrary positive integell’ and_arbi-
trary positive real numbers, and e¢3 are given. LetA., =
< K§ Z E[||X; %] (OK +Ck.B). VNDinaw + Ae,, Where A, is defined by Fact 1, and let
_ _ BE .. =max(B{,,BS.,), whereC = KA, and Bf ., and
Using the fact thaﬂE[||XtH1HXt”<_B] < B, and lettingt = B§_are defined by Property 2 and Fact 2, respectively. Then,
i+ K andT = JK — 1, we obtain the following inequality holds if X,|| > BX . :
K—
K-2
E X (Ir'+1)B (11X
m=0
+ —(CK-i-CK B)- (56) K2
¢ ’ = 3 Bx, [Xe(Dism — (1= 9D, | Y]
Since the first and second moments of the arrival process are 7nZ:O X t( vem = (1=p) t+m)‘ ‘

finite, for a fixed K, the summation on the righthand side of oK
(56) can be bounded by an appropriate constgntHence, we < KDmam\/N(zKEQ + ((1 + 2€3)™" — 1)) ([ Xe]-

K—l 2
must have)_;_," E[||X:]*] < Cs. Therefore, we have Lemma 5. Suppose arbitrary positive real number§ €3, €4,

andes are given, and< —1 > max (K ¢ ,K( whereK .
ZEHXt” T+1 +_Cﬁ+ (CK+CKB) € g m X( leq ) l,eq

K¢ 13 and K, ”) are defined in Section IlI-B. IfX,|| > BE cs» Where
Flnally, dividing by T + 1 and lettingT — oo, by assuming BE .. |s deflned in Lemma 4, the following mequallty holds:
J — oo, we obtain K-1
T *

Ckx+C E| X1 5(Diyx — D) Yy

limsup = S B[IXl] < B+ % <0, 57) = [ " )
T—o0 =0 9 1
. <
which completes the proof of part (b) of Theorem 1. m < KCy+ K?Cy 4+ KVNeo| X + K pad™[|X|
Proof of Theorem 2 To start, first note that + KT(Xt)(C, T (1 ; 9) \I,gt)’

Zz L Xu(t) < V/N||X,||. We can use this inequality, the one
in (57), and equalite = < along with the definitions for whereCs, Cs, and e are given in Table I, and’ is defined

Cx and Ck g, given in (Sﬁ) and (55), respectively, to shown (22).

that Lemma 6. Suppose arbitrary positive real numbets €5, and
L e, are given. Suppos& > K, .., where K, .. is defined in
3 o 4 €l €,
hmjup ; ; } <B(VN + 2 ” ) Section IlI-B. Then, if|X;|| > Bf,( . » Where B, el is defined
N T in Lemma 4, the following mequaﬂty holds:
+ = (2NA3W +1167'ND2,, +16 6" ND2, K K1
- EX:i+x(Df,, — D Y
+46 pa\/_(Amam+Dmam)K)7 (58) Igo (Xt (Dipp t+k)[ Y]
where according to the proof of part (a) of Theorenk1l= K. < K2C4 + K\/—Engt” + KY(X)(1 - ¢$t)a

K.
and B = Bf; see (50) and (51), respectively. To obtain the SihereCy, and ¢, are given in Table I.
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