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Abstract—A cross-network cross-layer design method is pro-
posed to exploit the trunking, diversity, and best service assign-
ment gains available in a heterogeneous wireless network (HWN),
consisting of orthogonal radio access networks (RANs) and
interference-limited RANs. Accounting for traffic-level dynamics
and channel fading, we jointly design the distribution strategy for
elastic and inelastic traffics, and the radio resource management
strategy for RANs, in a network-separable control architecture.
Optimal and quantified near-optimal radio allocation schemes are
proposed for each type of RANs, which are combined into an
on-line design framework that over time provides asymptotically
optimal performance, maximizing the sum throughput utility for
elastic traffic while guaranteeing the throughput requirements
of inelastic traffic. Extensive simulation results demonstrate
substantial performance improvement against suboptimal alter-
natives.

I. INTRODUCTION

The current popularity of mobile Internet not only leads to a
drastic increase in the traffic amount but also creates a hetero-
geneous traffic environment, where both elastic traffic, such as
web browsing, and inelastic traffics, such as video streaming,
coexist. Furthermore, the concurrent deployment of various
radio access technologies, such as 3G, LTE, WiMAX, and
WiFi, has led to heterogeneous wireless networks (HWNs),
where multiple radio access networks (RANs) overlap with
each other. Meanwhile, popular user equipment (UE) such as
smart phones and tablets are becoming more powerful with
their multi-homing capability. This creates a new dimension
of flexibility, i.e., multiple RAN selection, to serve the user
traffic, in addition to the allocation of radio resource within
each RAN. A central question is on how to best match the
heterogeneous traffic to the heterogeneous RANs.

An optimal match between traffic and RANs should fully
exploit the benefits of HWN over traditional homogeneous
networks. First, the trunking gain of multiplexing multiple
traffic flows can be amplified with joint optimization of the
UE traffic and the radio resource of RANs. Second, spatial
transmission diversity and multi-user diversity can be en-
hanced by careful scheduling within each RAN to account for
large- and small-scale channel fading, respectively. Third, the
ramification of multi-radio transmission gain, by allowing the
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UE to simultaneously transmit over multiple RANs, should
be properly planned. A best service assignment principle is
required to distribute to each RAN its most suitable traffic.
Since the above considerations span multiple RANs and mul-
tiple network layers, a joint resource management framework
is required for optimal HWN operation.

There are many technical challenges in the resultant het-
erogeneous joint resource management problem across RANs
and network layers. First, different types of RANs each brings
its own unique design issues. In particular, in an orthogonal
RAN, the radio resource granularity leads to a mixed-integer
non-linear optimization problem, while in an interference-
limited RAN, because of the non-convexity of the SINR
term, the optimal power allocation problem is NP-hard [1].
In addition, due to different hardware and legal constraints,
both the average power and the maximum power of RANs
may be constrained at different levels. Second, to explore
the best-service assignment gain, a deliberate heterogeneous
traffic management scheme has to be designed to explore both
the diverse traffic requirements and the RAN characteristics.
Third, traffic-level dynamics and channel fading should be
considered in a realistic model of the network. These combined
factors present difficult challenges to solve the joint resource
management problem. As explained in Section II, no existing
methods are directly applicable to provide a tractable solution.

In this paper, we specifically focus on how to jointly
design the distribution of heterogeneous traffic among hetero-
geneous RANs and the radio resource allocation strategy in
an HWN that consists of orthogonal RANs and interference-
limited RANs. We propose an on-line cross-network cross-
layer (CNCL) network control and resource allocation frame-
work, which is adaptive to both traffic-level dynamics and
channel fading in the HWN and is shown to offer asymp-
totically optimal throughput utility for elastic traffic while
guaranteeing the required throughput for inelastic traffic. The
main contributions of this paper are summarized as follows:

• The CNCL design introduces several Lyapunov-typed
control techniques [2], [3], [4] into the HWN envi-
ronment. We show that the joint resource management
problem can be divided, without loss in optimality, into
two components: traffic admission control, responsible
for traffic admission and distribution among and within
RANs according to the RAN load and the traffic re-
quirement; and RAN-level radio resource management,
responsible for radio resource allocation in orthogonal
and interference-limited RANs.

• In an orthogonal RAN, the allocation of resource blocks
(RBs) as the basic resource granularity leads to a mixed-
integer non-linear program, while in an interference-
limited RAN, the power allocation problem is NP-hard.
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Solutions are given for both problems, providing opti-
mal or quantified near-optimal performance at each time
slot. Both average and maximum power constraints are
accommodated in all RANs.

• Over multiple time slots, CNCL adaptively handles
traffic-level dynamics and channel fading. The proposed
on-line design is shown to achieve asymptotically optimal
performance, maximizing the sum elastic throughput util-
ity while guaranteeing the inelastic throughput require-
ments.

The organization of the rest of this paper is as follows: In
Section II, we summarize the related work. We give the HWN
model in Section III. The CNCL design method is proposed
in Section IV, along with analytical evaluation leading to a
quantified performance bound. In Section V, we verify the
performance of CNCL through simulation. We summarize this
paper in Section VI.

II. RELATED WORK

The trunking gain, spatial transmission diversity, multi-
user diversity, multi-radio transmission gain, and best service
assignment gain available in HWNs have been defined in [5],
[6], [7], [8], [9], [10]. Even though these works promote
the above benefits of HWNs to improve UE and network
performance. They do not discuss how to derive these benefits
by joint resource optimization in an HWN, which is studied
in this paper.

Some prior works focus on deriving the best service as-
signment gain with a given transmission rate for each link.
Given the capacity region of each RAN, the optimal service
allocation strategy in an HWN is studied in [11]. The Erlang
capacity of an HWN based on the M/M/m queue is given
in [12]. The fairness issue regarding traffic admission control
in an HWN is discussed in [13]. Game theory has been
used to study the admission control problem in an HWN in
[14], [15], [16]. In [17], an on-line traffic admission control
algorithm is proposed for heterogeneous flows. In [18], a
Markov decision approach is used to study on-line admission
control in an HWN to minimize the time average blocking
cost. However, none of the studies above discusses how to
design the radio resource allocation strategy with respect to the
RAN transmission rate, which is a main focus of this paper.

Call admission control and load balancing in the cellular-
WLAN integrated network are studied in [19], [20], [21], [22],
[23]. However, different from the cellular-WLAN architecture,
we study joint resource management in an HWN consisting of
orthogonal RANs and interference-limited RANs. Particularly,
we study practical network constraints, such as resource gran-
ularity in orthogonal RANs and power optimization in both
orthogonal and interference RANs.

There are prior studies that discuss the relation between
the RAN transmission rate and the radio allocation strategy.
Joint power and bandwidth allocation is considered in [24].
However, it only focuses on the orthogonal RAN and does
not consider the resource granularity (e.g., resource block)
constraint. In [25], the UE outage probability is minimized in
an HWN consisting of a CDMA-based RAN and a TDMA-
based RAN, and the RAN selection scheme is discussed in a
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Fig. 1. UE served by a heterogeneous wireless network

CDMA/WLAN heterogeneous wireless network in [26]. Con-
sidering both elastic and inelastic traffic, joint radio resource
management is studied in [27] in an HWN with orthogonal and
interference-limited RANs. Decentralized resource allocation
schemes in the HWN are proposed in [28], [29]. Resource
management for allowing UE to transmit over both single
RAN and multiple RANs is investigated in [30]. However, all
of these works study the HWN performance in a deterministic
fluid-flow traffic model. In contrast, our work considers adap-
tive HWN optimization with stochastic modeling and dynamic
control.

III. HETEROGENEOUS WIRELESS NETWORK MODEL

We consider the downlink of an HWN constituted of N
RANs, denoted by the set R. They may contain a mixture of
interference-limited RANs (e.g., CDMA based) and orthogo-
nal RANs (e.g., TDMA or OFDMA based). We assume that
the RANs use orthogonal radio resources, and hence do not
interfere with each other. For an interference-limited RAN, the
intra-cell interference is considered, while for the orthogonal
RAN, due to channel orthogonality, there is no interference
between transmissions. We denote the set of interference-
limited RANs and the set of the orthogonal RANs as RI and
RO where RI ∪ RO = R, and let NI and NO be the number
of RANs within each set, respectively.

The HWN serves M UEs, denoted by the set M. To
fully exploit the benefit introduced by network heterogeneity,
the UEs have multi-homing capability and can access one
or multiple RANs based on the UE traffic requirement and
the RAN load. As shown in Fig. 1, a traffic admission
controller distributes the UE traffic among RANs based on the
feedback of the RAN state, while each RAN matches its radio
resource to service the admitted UE traffic. For simplicity of
illustration, we assume here that all UEs may freely connect
with all RANs. The proposed model and analysis can be
easily extended to the case where each UE is able to connect
with only a limited subset of RANs, by setting the channel
gain between some RANs and the UE to zero. The important
notations used throughout this paper are summarized in Table
I.
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TABLE I
NOTATION TABLE

M UE set
R, RI,
RO

Sets for RAN, interference-limited RAN, and orthogonal
RAN

nI, nO
Index of the interference-limited RAN and the orthogonal
RAN

WnI ,WnO
Symbol rate of the interference-limited RAN nI and the
orthogonal RAN nO

σ2 Noise power
Γ Channel capacity gap from Shannon bound

Υm,nI
Signal processing gain for UE m in interference-limited
RAN nI

gm,nI (t),
gm,nO,i(t)

Channel gain between UE m and interference-limited RAN
nI, and between UE m and orthogonal RAN nO on RB i
in time slot t

µm,nI (t),
µm,nO,i(t)

Transmission rate for UE m in interference-limited RAN
nI, and for UE m over RB i in orthogonal RAN nO in
time slot t

pm,nI (t),
pm,nO,i(t)

Transmission power of interference-limited RAN nI for UE
m, and of orthogonal RAN on RB i for UE m in time slot
t

PnI , PnO
Average power constraints for interference-limited RAN nI
and orthogonal RAN nO

P̂nI , P̂nO
Instantaneous power constraints for interference-limited
RAN nI and orthogonal RAN nO

am,nO,i(t)
RB allocation decision for RB i in orthogonal RAN nO
regarding UE m in time slot t

JnO RB set in orthogonal RAN nO

π̂nI
Joint channel gain distribution of UEs over interference-
limited RAN nI

ŴnI ,
ŴnO

Maximal transmission rates for UEs in interference-limited
RAN nI and orthogonal RAN nO

Ŵ Ŵ = max{maxnI{ŴnI},maxnO{ŴnO}}
P̂ P̂ = max{maxnI{P̂nI},maxnO{P̂nO}}
TE, TI Sets for elastic traffic and inelastic traffic
Tk

E , Tk
I Index of elastic traffic k and inelastic traffic k

βk Mean throughput constraint for inelastic traffic Tk
I

ME, MI Sets for elastic UEs and inelastic UEs
mk

I Index of an inelastic UE requesting inelastic traffic Tk
I

mE Index of an elastic UE

rn
mk

I
(t) Admitted data for inelastic UE mk

I to RAN n in time slot
t

rmk
I
(t) Sum admitted data for inelastic UE mk

I in time slot t
r̄mk

I
Time average admitted data for inelastic UE mk

I
r̂k Maximal admitted data constraint for inelastic traffic Tk

I

χmE,k(t)
Arrival packet number of elastic traffic Tk

E for elastic UE
mE in time slot t

Xk Maximal arrival packet number of elastic traffic Tk
E

fk Packet size of elastic traffic Tk
E

γn
mE,k

(t) Admitted packet number of elastic traffic Tk
E for elastic UE

mE in RAN n in time slot t

γ̄n
mE,k

Time-averaged admitted packet number of elastic traffic Tk
E

for elastic UE mE in RAN n

R max{
∑

k∈TE
Xkfk, r̂k, ŴnI}

Ymk
I
(t) Virtual queue length for the time-averaged rate constraint

of inelastic UE mk
I in time slot t

ΘnI (t),
ΘnO (t)

Virtual power queue length for the average power constraint
of interference-limited RAN nI and orthogonal RAN nO in
time slot t

Um,n(t) Queue length of UE m in RAN n in time slot t
ρnI Minimal probability of pNO

nI
(t) taking p

opt
nI (t)

A. Interference-Limited RAN Model

In an interference-limited RAN, all UEs shared the same
channel, and the basic radio resource is power. In particular,
for RAN nI, let gm,nI(t) be the channel gain for UE m in time
slot t. Let pm,nI(t) be the RAN transmission power allocated

to UE m at time t. Then the service rate to UE m ∈ M due
to RAN nI is

µm,nI(t) = WnI log
(
1 +

ΓΥm,nIgm,nI(t)pm,nI(t)∑
k∈M\m gm,nI(t)pk,nI(t) + σ2

)
,

where WnI is the symbol rate of RAN nI, Γ is the capacity gap
from the Shannon channel capacity, Υm,nI is the processing
gain for the UE m in RAN nI, and σ2 is the noise power.

Due to hardware limitation and regulatory requirements,
both the average power and instantaneous power may be
constrained. Let PnI and P̂nI be the average and instan-
taneous power constraints, respectively. We must guarantee
that p̄nI = limt→∞

1
t

∑t
u=1

∑
m∈M pm,nI(u) ≤ PnI and∑

m∈M pm,nI(t) ≤ P̂nI , ∀t.

B. Orthogonal RAN Model

For an orthogonal RAN, borrowing from the OFDM termi-
nology, the radio resources include resource blocks (RBs) and
power. Let JnO be the RB set of the orthogonal RAN nO, and
its number is written as JnO . Let binary variable am,nO,i(t)
be the indicator function for the allocation of RB i in RAN
nO to UE m. For RB i in RAN nO at time t, let gm,nO,i(t)
be the channel gain for UE m and pm,nO,i(t) be the RAN
transmission power allocated to UE m. Then the transmission
rate over RB i in RAN nO is

µm,nO,i(t) = WnO log(1 + Γ
gm,nO,i(t)pm,nO,i(t)

σ2
),

where WnO is the symbol rate of RAN nO, Γ is the capacity
gap from the Shannon channel capacity, and σ2 is the noise
power. The overall service rate to UE m due to RAN nO is
µm,nO(t) =

∑
i∈JnO

am,nO,i(t)µm,nO,i(t). Since each RB is
allocated orthogonally in orthogonal RAN nO, we have∑

m∈M
am,nO,i(t) ≤ 1,∀i ∈ JnO .

Similarly to the interference-limited RAN case, let
PnO and P̂nO be the average and instantaneous power
constraints, respectively. We must guarantee that p̄nO =
limt→∞

1
t

∑t
u=1

∑
m∈M

∑
i∈JnO

am,nO,i(u)pm,nO,i(u) ≤
PnO and

∑
m∈M

∑
i∈JnO

am,nO,i(t)pm,nO,i(t) ≤ P̂nO ,∀t.

C. Channel State Processes

We assume that the channel gains, gm,nI(t) and gm,nO,i(t),
are discretized and can take value from a finite set Gm ,
{G1

m, G2
m, · · · , GH

m} of size H . We also suppose that the
channel gains are independent among UEs. For simplify, we
further denote gnO(t) = [gm,nO,j(t)]M×JnO

, and gnI(t) =
[gm,nI(t)]1×M .

Given the above channel gain assumption, for the
interference-limited RAN, we can find a positive constant
ŴnI = maxm{WnI log(1 + ΓΥm,nI

maxj{Gj
m}P̂nI

σ2 )}, which
satisfies µm,nI(t) ≤ ŴnI , ∀m ∈ M, nI ∈ RI. Similarly, for
the orthogonal RAN, we also can have a positive constant
ŴnO = maxm{JnOWnO log(1 + Γ

maxj{Gj
m}P̂nO

σ2 )}, such that
µm,nO(t) ≤ ŴnO , ∀m ∈ M, nO ∈ RO. These upper bounds
will be used later in our analysis.
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D. UE Heterogeneous Traffic Model

An UE may request either inelastic or elastic traffic. Let
TI = {T 1

I , T
2
I , · · · , T

KI
I } be the set of inelastic traffic types of

size KI , and TE = {T 1
E , T

2
E , · · · , T

KE
E } be the set of elastic

traffic types of size KE. For each inelastic traffic session T k
I ,

it has a mean arrival bit rate βk that the HWN is required
to support. An elastic traffic session has no such requirement.
Instead, each elastic traffic type T k

E is distinguished by its fixed
packet size fk.

For notational simplicity, we divide the UEs in the HWN
into the set of UEs with inelastic traffic, denoted by MI of
size MI, and the set of UEs with elastic traffic, denoted by ME
of size ME, so that ME ∪ MI = M. We assume that each
inelastic UE requests only one inelastic traffic type from TI, so
we may denote mk

I as a UE that requests inelastic traffic type
T k

I . In contrast, each elastic UE can request one or multiple
elastic traffic types from TE, and we denote an elastic UE as
mE. Such division of UEs is without loss of generality, since
a UE that requests both inelastic and elastic traffic may be
modeled as multiple UEs that satisfy the above conditions.

For inelastic UE mk
I , let rn

mk
I
(t) be the admitted data rate

of its required inelastic traffic type T k
I to RAN n ∈ R

(orthogonal or interference-limited) at time t. Then the sum
admitted rate for mk

I is rmk
I
(t) =

∑
n∈R rn

mk
I
(t). Since the

average admitted rate for inelastic traffic should be greater than
its arrival rate, we require r̄mk

I
= limt→∞

1
t

∑t
u=1 rmk

I
(u) ≥

βk. Furthermore, to avoid dealing with the trivial case of
infinite admission creating queue instability, we assume a
upper bound r̂k to the admitted data, sufficiently large such
that rmk

I
(t) ≤ r̂k, ∀t,mk

I ∈ MI, k ∈ TI.
For elastic UE mE, let χmE,k(t) be the number of arriving

packets of elastic traffic type T k
E at time t. We assume that

χmE,k(t) is random but upper bounded by Xk, and that the
packets are of constant size fk. Let γn

mE,k
(t) be the number

of packets of type T k
E admitted to RAN n ∈ R (orthogonal

or interference-limited) for UE mE at time t. Then, the total
amount of admitted data for UE mE to RAN n ∈ R is∑

k∈TE
γn
mE,k

(t)fk. Note that the admitted amount of traffic
should be less than the arriving of traffic in each time slot, so
we have

∑
n∈R γn

mE,k
(t) ≤ χmE,k(t),∀t,mE ∈ ME, k ∈ TE.

E. Queue Updating at RANs

A separate queue is maintained for each UE m ∈ M in
RAN n ∈ R. Let Um,n(t) be its queue length at time slot
t. Then, the queue updating function for inelastic UE mk

I in
RAN n ∈ R is expressed as

Umk
I ,n

(t+1) = max{Umk
I ,n

(t)−µmk
I ,n

(t), 0}+ rnmk
I
(t), (1)

and the queue updating function for elastic UE mE is

UmE,n(t+1) = max{UmE,n(t)−µmE,n(t), 0}+
∑
k∈TE

γn
mE,k(t)fk.

(2)

F. Problem Statement

We aim to properly leverage the benefits provided by an
HWN through jointly optimal traffic control and radio resource

allocation within each RAN and across multiple RANs. Our
objective is to maximize the average utility for elastic traffic,
while guaranteeing the time-averaged throughput for inelastic
traffic. Summarizing the system model presented in the previ-
ous subsections, this problem is formulated as follows:

max
pnO (t),pnI (t)

r(t),anO (t),γ(t)

{ ∑
mE∈ME

∑
k∈TE

∑
n∈R

γ̄n
mE,kΨ(fk)

}
(3)

s. t.

r̄mk
I
≥ βk, ∀mk

I ∈ MI, k ∈ TI, (4)

p̄nO ≤ PnO , ∀nO ∈ RO, (5)
p̄nI ≤ PnI , ∀nI ∈ RI, (6)

lim sup
t→∞

1

t

t∑
u=1

[ ∑
m∈M

∑
n∈R

E{Um,n(u)}
]
< ∞, (7)∑

n∈R
rnmk

I
(t) ≤ r̂k, ∀mk

I ∈ MI, k ∈ TI, (8)

rnmk
I
(t) ≥ 0, ∀n ∈ R,mk

I ∈ MI, k ∈ TI, (9)∑
n∈R

γn
mE,k(t) ≤ χk(t), ∀mE ∈ ME, k ∈ TE, (10)

γn
mE,k(t) ≥ 0, ∀mE ∈ ME, n ∈ R, k ∈ TE, (11)∑

m∈M
pm,nI(t) ≤ P̂nI , ∀nI ∈ RI, (12)

pm,nI(t) ≥ 0, ∀m ∈ M, nI ∈ RI, (13)∑
m∈M

am,nO,i(t) ≤ 1, ∀i ∈ JnO , nO ∈ RO, (14)

am,nO,i ∈ {0, 1}, ∀m ∈ M, i ∈ JnO , nO ∈ RO, (15)∑
m∈M

∑
i∈JnO

am,nO,i(t)pm,nO,i(t) ≤ P̂nO , ∀nO ∈ RO, (16)

pm,nO,i(t) ≥ 0, ∀m ∈ M, i ∈ JnO , nO ∈ RO, (17)

where γ̄n
mE,k

= limt→∞
1
t

∑t
u=1 γ

n
mE,k

(u), r(t) =
[rmk

I ,n
(t)]MI×N , pnO(t) = [pm,nO,i(t)]M×JnO

, pnI(t) =
[pm,nI(t)]M×1, anO(t) = [am,nO,i(t)]M×JnO

, and γ(t) =
[γn

mE,k
(t)]ME×N×KE , Ψ(fk) is the utility for servicing one

packet of elastic traffic type T k
E . Given fk, Ψ(fk) is a constant,

which reflects the preference of the network operator towards
elastic traffic type T k

E .
Note that (4), (5), (6), and (7), respectively, are con-

straints on the inelastic traffic rate, orthogonal RAN power,
interference-limited RAN power, and queue stability, all in the
time average sense. Inequalities (8) and (9) are instantaneous
rate constraints on inelastic traffic, and (10) and (11) are
instantaneous packet constraints on elastic traffic. Inequalities
(12) and (13) are instantaneous constraints on the radio re-
source of interference-limited RANs, while (14), (15), (16),
and (17) are instantaneous constraints on the radio resource
of orthogonal RANs.

The above optimization is a challenging cross-network and
cross-layer problem, because of the high levels of correlation
among the different types of RANs and among the different
types of traffic flows in an HWN. Furthermore, due to the
binary RB allocation variable am,nO,i(t) in orthogonal RANs
and the non-convexity of the SINR term in interference-limited
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RANs, this problem is a non-convex mixed-integer program,
which generally has prohibitive computational complexity.
However, we show next that a network-separable joint op-
timization approach can efficiently solve the problem.

IV. ADAPTIVE NETWORK-SEPARABLE METHOD FOR
CROSS-NETWORK CROSS-LAYER OPTIMIZATION

To solve the above optimization problem, we propose an
on-line adaptive network-separable method to jointly design
the traffic admission control strategy and the radio resource
allocation scheme within and cross RANs. It allows each
RAN to design its own resource allocation independently
of the other RANs, and only requires the RANs to report
queue lengths to the traffic admission controller. Furthermore,
we observe that the computationally prohibitive non-convex
optimization sub-problem in interference-limited RANs, do
not need to be solved optimally in every time slot. Instead,
we propose novel methods to find its optimal solution with a
positive probability, which is then used to derive a globally
optimal solution.

A. Network-Separable Reformulation

We first demonstrate how the original problem can be
reformulated into a network-separable form, so that each RAN
may design its own resource allocation independently of other
parts of the system.

We adapt a Lyapunov optimization framework [2] to our
problem, by constructing three virtual queues to accommodate
the constraints (4), (5) and (6). For the average-rate constraint
(4), the corresponding virtual queue has arrival and departure
rates βk and rmk

I
(t) respectively, and its queue length in time

slot t is denoted as Ymk
I
(t). The queue updating function is

then expressed as

Ymk
I
(t+ 1) = max{Ymk

I
(t)− rmk

I
(t), 0}+ βk.

For the average-power constraints (5) and (6), the correspond-
ing virtual queue has arrival rates pnO(t) and pnI(t), and
departure rates PnO and PnI respectively, and their queue
lengths in time slot t are denoted as ΘnO(t) and ΘnI(t)
respectively. The queue updating function is then expressed
as

ΘnO(t+ 1) = max{ΘnO(t)− PnO , 0}+ pnO(t) (18)

and

ΘnI(t+ 1) = max{ΘnI(t)− PnI , 0}+ pnI(t). (19)

The constraints (4), (5), and (6) are satisfied if these three
queues are mean rate stable, which indicates that the input
rate is below the service rate.

We then construct a Lyapunov drift-plus-penalty function
[2] with respect to the network utility objective (3) and the

constraints (4), (5), (6), and (7) as follows:

∆(Q(t)) = E
{1

2

∑
m∈M

∑
n∈R

[
Um,n(t+ 1)2 − Um,n(t)

2
]
+

1

2

∑
mk

I ∈MI

[
Ymk

I
(t+ 1)2 − Ymk

I
(t)2

]
+

1

2

∑
nO∈RO

[
ΘnO(t+ 1)2−

ΘnO(t)
2
]
+

1

2

∑
nI∈RI

[
ΘnI(t+ 1)2 −ΘnI(t)

2
]
|Q(t)

}
−

V E
{ ∑

mE∈ME

∑
k∈TE

∑
n∈R

γn
mE,k(t)Ψ(fk)|Q(t)

}
,

where U(t) = [Um,n(t)]M×N , Y(t) = [Ymk
I
(t)]MI×1, Q(t) =

[U(t),Y(t),ΘnI(t),ΘnO(t)], and V is an arbitrary positive
constant.

Similar to the general derivations given in [2], it is easy to
show that the above is upper bounded by

E
{ ∑

mk
I ∈MI

∑
n∈R

(
Umk

I ,n
(t)− Ymk

I
(t)

)
rmk

I ,n
(t)+

∑
mE∈ME

∑
n∈R

∑
k∈TE

(UmE,n(t)fk − VΨ(fk))γ
n
mE,k(t)+∑

nO∈RO

∑
m∈M

∑
i∈JnO

am,nO,i(t)
{
ΘnO(t)pm,nO,i(t)−Um,nO(t)µm,nO,i(t)

}
+

∑
nI∈RI

∑
m∈M

{
ΘnI(t)pm,nI(t)− Um,nI(t)µm,nI(t)

}
|Q(t)

}
−∑

n∈RO

ΘnO(t)PnO −
∑
n∈RI

ΘnI(t)PnI +
∑

mk
I ∈MI

Ymk
I
(t)βk +B,

(20)

where B is a constant given by B = MNŴ 2 + NP̂ 2

with P̂ = max{maxnI{P̂nI},maxnO{P̂nO}} and Ŵ =
max{maxnI{ŴnI},maxnO{ŴnO}}. The derivations are omit-
ted for brevity.

Furthermore, it is has been proven [2] that any strategy
that minimizes this upper bound, given Q(t), also solves the
original optimization problem, with V as a tuning parameter
that determines the tradeoff between optimization performance
and queueing delay. Therefore, the goal of our joint admis-
sion control strategy and radio resource allocation scheme is
transformed to adaptively minimizing (20) given Q(t) in each
time slot, subject to (8)-(17). By doing so, our network control
method does not require the statistical information of elastic
traffic arrivals and channel fading, and can adapt to changes
in network statistics.

Here we observe some important features of (20). First, the
last four terms are constants given Q(t). Second, to minimize
the conditional expectation, it suffices to minimize what is
inside the expectation operator for each random realization
of the system and given Q(t). Third, and most importantly,
each of the four terms inside the expectation operator can
be minimized independently of the other terms. Furthermore,
we note that these four terms have the following physical
interpretation:

• The first term corresponds to the admission of inelastic
traffic.
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• The second term corresponds to the admission of elastic
traffic.

• The third term can be minimized separately by each
orthogonal RAN.

• The fourth term can be minimized separately be each
interference-limited RAN.

Therefore, the proposed reformulation achieves complete net-
work separation, permitting a distributed approach to solve the
original optimization problem. The handling of each of these
terms are described in the following subsections.

B. Optimal Cross-Network Heterogeneous Traffic Admission
Control Strategy

The minimization of the first two terms of (20) is performed
by the traffic admission controller. We need to deliberately
satisfy the UE traffic requirement as well as to balance the
RAN load. Intuitively, the optimal traffic admission control
strategy is to exploit the cross-network design to obtain the
best-service assignment gain.

1) Inelastic traffic: The optimal admission control deci-
sion for inelastic traffic is based on minimizing the first
term in (20), which reflects the inelastic traffic requirement
and the RAN load through Ymk

I
(t) and Umk

I ,n
(t) separately.

In each time slot t, it suffices to minimize
(
Umk

I ,n
(t) −

Ymk
I
(t)

)
rmk

I ,n
(t). Hence, the following amount of traffic for

mk
I is admitted for RAN n:

r∗mk
I ,n

(t)=


r̂k, if n = argminn′

{
Umk

I ,n
′(t)−Ymk

I
(t)
}

and Umk
I ,n

(t)− Ymk
I
(t) < 0

0, otherwise

.

(21)
We can take Umk

I ,n
(t) and Ymk

I
(t) as the congestion cost

and income of RAN n for serving one bit of inelastic traffic
T k

I . Then, (21) ensures that the inelastic traffic is injected to
the RAN with the highest net income. Thus, the above inelastic
traffic distribution scheme aims to achieve the minimum
congestion cost for serving inelastic UEs.

2) Elastic traffic: The optimal admission control strategy
for elastic UE mE is based on minimizing the second term in
(20) under constraints (10) and (11). Since the corresponding
optimization problem is linear, its optimal solution can be
written as

γn,∗
mE,k

=


χmE,k(t), if n=argminn′{UmE,n′(t)fk−VΨ(fk)}

and UmE,n(t)fk − VΨ(fk) < 0

0, otherwise
.

(22)
For the above elastic traffic admission control strategy, we

can take UmE,n(t)fk and VΨ(fk) as the congestion cost and
income of RAN n for serving one packet of elastic traffic T k

E .
Then, (22) ensures that elastic traffic is injected to the RAN
with the highest net income. Thus, the above elastic traffic
distribution scheme aims to achieve the minimum congestion
cost for serving elastic UEs.

C. Optimal Radio Resource Allocation in Orthogonal RANs
at Each Time Slot

The minimization of the third term of (20) is performed by
orthogonal RANs through power and RB allocation. For each
orthogonal RAN nO, we rewrite this term as

FnO(anO(t),pnO(t)|UnO(t),ΘnO(t)) ,∑
m∈M

∑
i∈JnO

am,nO,i(t)
[
ΘnO(t)pm,nO,i(t)

− Um,nO(t)WnO log(1 + Γ
gm,nO,i(t)pm,nO,i(t)

σ2
)
]
.

Then, to determine the optimal power and RB allocation
decision, we need to solve the following optimization problem:

min
anO (t)

pnO (t)

FnO(anO(t),pnO(t)|UnO(t),ΘnO(t))

s. t.
∑

m∈M

∑
i∈JnO

am,nO,i(t)pm,nO,i(t) ≤ P̂nO ,

am,nO,i(t) ∈ {0, 1}, ∀m ∈ M, i ∈ JnO , (23)∑
m∈M

am,nO,i(t) ≤ 1, ∀i ∈ JnO ,

pm,nO,i(t) ≥ 0,∀m ∈ M, i ∈ JnO .

Because of the binary RB allocation variables am,nO,i(t),
the radio resource allocation problem in the orthogonal RAN
is a mixed-integer non-linear program, which typically has
prohibitive computational complexity. Similar joint power and
RB allocation problem can be found in [31] without considera-
tion of the resource granularity, and in [32] with RB and power
being optimized separately. Our approach is based on the dual
decomposition technique in [33], [34], [35], [36]. However,
due to the average power constrain in the orthogonal RAN,
which is expressed in terms of ΘnO , the method in [33], [34],
[35], [36] cannot be directly applied. Fortunately, the special
structure of our optimization problem allows us to derive an
optimal solution.

1) Continuity relaxation and convexification: We first relax
am,nO,i(t) to the continuous interval [0, 1] and further intro-
duce a new variable sm,nO,i(t) = am,nO,i(t)pm,nO,i(t) for each
UE m and RB i in RAN nO. Then we can rewrite (23) as 1

min
anO
snO

∑
m∈M

∑
i∈JnO

{
sm,nO,iΘnO − Um,nOWnOam,nO,i×

log(1 + Γ
gm,nO,ism,nO,i

σ2am,nO,i
)
}

(24)

s. t.
∑

m∈M

∑
i∈JnO

sm,nO,i ≤ P̂nO , (25)

sm,nO,i ≥ 0, ∀m ∈ M, i ∈ JnO , (26)
0 ≤ am,nO,i ≤ 1, ∀m ∈ M, i ∈ JnO , (27)∑
m∈M

am,nO,i ≤ 1, ∀i ∈ JnO , (28)

where snO = [sm,nO,i]M×JnO
.

1For notation simplicity, the time index t is omitted when it is clear from
the context.
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It is easy to verify that the above optimization problem
is convex, since it is the sum of a linear function and the
perspective function of a convex log function. Furthermore,
since all the constraints are affine functions, the Slater’s
condition is always satisfied, leading to a zero Lagrange
duality gap [37]. In the following, for notation simplicity, we
take ηm,nO = Um,nOWnO and ξm,nO,i =

Γgm,nO,i

σ2 .
2) Lagrange dual solution: We relax the power constraint

(25) by introducing the dual variable λnO , obtaining the
following Lagrangian:

L(snO ,anO , λnO) =
∑

m∈M

∑
i∈JnO

{
sm,nO,iΘnO − ηm,nOam,nO,i×

log(1 + ξm,nO,i
sm,nO,i

am,nO,i
)
}
+ λnO

( ∑
m∈M

∑
i∈JnO

sm,nO,i − P̂nO

)
,

(29)

and the corresponding Lagrange dual:

d(λnO) = min
snO ,anO

L(snO ,anO , λnO)

s. t. (26) − (28).
(30)

A standard solution approach is to solve the following the
Lagrange dual problem

max
λnO

d(λnO)

s. t. λnO ≥ 0.
(31)

It is well known that the maximum of (31) equals the minimum
of (24)-(28) [37]. Therefore, it remains to solve (30) and (31)
to find the optimum λnO , snO , and anO .

To derive the solution to (30), we first give the optimal
relation between anO and snO in Lemma 1.

Lemma 1: The optimal relation between sm,nO,i and am,nO,i

can be written as

sm,nO,i =
[ ηm,nO

(ΘnO + λnO) ln 2
− 1

ξm,nO,i

]+
am,nO,i, (32)

where [x]+ , max{x, 0}.
Proof: See Appendix A.

Then, substituting (32) into (30) and letting

Λm,nO,i(λnO) =
[ ηm,nO

(ΘnO + λnO) ln 2
− 1

ξm,nO,i

]+
ΘnO−

ηm,nO log
(
1 + ξm,nO,i

[ ηm,nO

(ΘnO + λnO) ln 2
− 1

ξm,nO,i

]+)
+

λnO

[ ηm,nO

(ΘnO + λnO) ln 2
− 1

ξm,nO,i

]+
,

we can rewrite (30) as follows:

d(λnO) = min
anO

{ ∑
m∈M

∑
i∈JnO

am,nO,iΛm,nO,i(λnO)− λnO P̂nO

}
s. t.∑
m∈M

am,nO,i ≤ 1, ∀i ∈ JnO ,

0 ≤ am,nO,i ≤ 1, ∀m ∈ M, i ∈ JnO .

(33)

This is a classical linear assignment problem. It is easy to see
that an optimal solution is

am,nO,i =


1, m = argminl{Λl,nO,i(λnO)} and

Λm,nO,i(λnO) < 0

0, otherwise
. (34)

To solve the dual optimization problem (31), we note that
the dual function d(λnO) is concave (since it is a minimum of
linear functions) and there is only one dual variable. Thus, we
could exploit an efficient one-dimensional search method to
obtain its optimal solution. Since we can efficiently calculate
the dual function for any given λnO , we may take the golden-
section search method [38]. We first give an upper bound for
the optimal λ∗

nO
.

Lemma 2: The optimal λ∗
nO

is upper bounded by
max{maxm∈M,i∈JnO

{ ξm,nO,iηm,nO
ln 2 −ΘnO}, 0}.

Proof: See Appendix B.

Given the above upper bound for λ∗
nO

, for a fixed
constant ϵ, if maxm∈M,i∈JnO

{ ξm,nO,iηm,nO
ln 2 − ΘnO} >

0, the number of iteration steps required to ensure
|λnO − λ∗

nO
| < ϵ by the golden-section search method

is log0.618
ϵ

maxm∈M,i∈JnO
{

ξm,nO,iηm,nO
ln 2 −ΘnO}

. Otherwise, if

maxm∈M,i∈JnO
{ ξm,nO,iηm,nO

ln 2 − ΘnO} < 0, we directly have
λ∗
nO

= 0.
3) Tie-breaking and primal recovery: Given the optimal

dual variable λ∗
nO

, it remains non-trivial to find optimal so-
lutions to (24)-(28), a∗nO

and s∗nO
. We define Λ∗

nO,i
(λ∗

nO
) =

minl∈M
{
Λl,nO,i(λ

∗
nO
)
}

. Let us denote CnO,i = {m :
Λm,nO,i(λ

∗
nO
) = Λ∗

nO,i
(λ∗

nO
)}. If |CnO,i| = 1, we have exactly

one minimizer for RB j of RAN nO in (33). Then, to minimize
(33), we only need to allocate RB i to UE m ∈ CnO,i, i.e.,
setting a∗m,nO,i

= 1. Since the optimal solution a∗nO
and s∗nO

to (30) is unique, they are also optimal for (24)-(28) [37].
However, we may have |CnO,i| > 1. In other words, we need

to break ties for the allocation of RB i. Specifically, for the
solution to (33) to also optimize (24)-(28), the tie-breaking
rule must comply with the following two conditions:

1) Primal Feasibility:
∑

m∈M
∑

i∈JnO
sm,nO,i(t) ≤ P̂nO ;

2) Complementary Slackness Condition:
λ∗
nO
(
∑

m∈M
∑

i∈JnO
sm,nO,i − P̂nO) = 0.

Finding such a tie-breaking rule can be computational
intractable, since fractional RB usage is allowed in (33). Here
we exploit the maximal and minimal subgradient of d(λnO) at
λ∗
nO

as in [34], [39].
We first denote XnO = {i ∈ JnO : |CnO,i| = 1}, and let

X c
nO

= JnO\XnO . For RB i ∈ X c
nO

, we could break the tie by
exhaustively and exclusively allocating RB i to exactly one UE
m ∈ CnO,i, and this will lead to

∏
i∈X c

nO
|CnO,i| RB allocation

results, whose convex combination can be further used to
express all the other RB and power allocation results. Note
that the above

∏
i∈X c

nO
|CnO,i| allocation results may include

the optimal power and RB allocation decision in terms of
satisfying the primal feasibility and complementary slackness
condition. If this is true, we just simply use the corresponding
optimal allocation decision, and we are done.
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However, the optimal allocation decision may not be among
them, since the optimal RB allocation may be fractional. In
this case, we can find two allocation decisions among these
allocation results, {amax

nO
(t),pmax

nO
(t)} and {amin

nO
(t),pmin

nO
(t)},

which maximizes and minimizes the subgradient of d(λnO) at
λ∗
nO

, Ω(λ∗
nO
) =

∑
m∈M

∑
i∈JnO

sm,nO,i − P̂nO , respectively.
We denote the maximal and the minimal subgradients as
Ωmax(λ

∗
nO
) and Ωmin(λ

∗
nO
) respectively.

Note that at the optimal λ∗
nO

, Ωmax(λ
∗
nO
) must be positive

and Ωmin(λ
∗
nO
) must be negative. This is because, for optimal

λ∗
nO

, there always exists a fractional RB allocation such that all
available power is used, i.e.,

∑
m∈M

∑
i∈JnO

sm,nO,i− P̂nO =

0, and such a fractional RB allocation is necessarily a linear
combination of Ω(λ∗

nO
) with binary anO . Then, a time sharing

scheme can be adopted to find a zero subgradient based on
Ωmax(λ

∗
nO
) and Ωmin(λ

∗
nO
). That is we can find 0 < znO < 1

such that

znOΩmax(λ
∗
nO
) + (1− znO)Ωmin(λ

∗
nO
) = 0.

Then we use allocation decisions, {amax
nO

(t),pmax
nO

(t)} and
{amin

nO
(t),pmin

nO
(t)}, with the fraction of time znO and 1− znO

separately, at time slot t.
4) Optimality with Respect to (23):
Lemma 3: An optimal RB and power allocation to (23) is

a∗nO
and p∗

nO
= s∗nO

.
Proof: See Appendix C.

Intuitively, the above radio resource allocation strategy in
the orthogonal RAN is to optimally match the RBs to the
UEs under the sum power constraint, which is to exploit the
multi-user diversity gain and the spatial transmission diversity
gain.

D. Probabilistically Optimal Radio Resource Allocation in
Interference-Limited RANs at Each Time Slot

The minimization of the fourth term of (20) is performed
by interference-limited RANs through power allocation. Due
to the non-convex nature of this subproblem, we first provide
a suboptimal solution and later in Section IV-E show how it
can be used to achieve optimality in the overall problem.

For each interference-limited RAN nI, we rewrite the third
term of (20) as

FnI(pnI(t)|UnI(t),ΘnI(t)) ,
∑

m∈M

{
ΘnI(t)pm,nI(t)−

Um,nI(t)WnI log(1 + ΓΥm,nI SINRm,nI(t))
}
,

where
SINRm,nI(t) =

gm,nI(t)pm,nI(t)

φm(pnI(t))

with φm(pnI(t)) =
∑

k∈M\m gm,nI(t)pk,nI(t) + σ2. Then, to
determine the optimal power allocation in each time slot t, we
need to solve the following optimization problem:

min
pnI (t)

FnI(pnI(t)|UnI(t),ΘnI(t))

s. t.
∑

m∈M

pm,nI(t) ≤ P̂nI ,

pm,nI(t) ≥ 0,∀m ∈ M.

(35)

We denote its global optimizer as popt
nI (t).

From the above formulation, it is clear that the optimal radio
resource allocation in each RAN is determined by the queue
lengths UnI(t) and ΘnI(t). We can see that UnI(t) coordinates
the admission control strategy and the radio resource allocation
strategy in the interference-limited RANs.

Due to the non-convexity of the SINR term, the above
optimization problem is NP-hard [1]. A typical technique is
to approximate log(1+SINRm,nI) as log(SINRm,nI) [40], but
it is appropriate only in the high SINR regime. Other known
heuristics include iterative water filling [41] and asymptotic
Lagrange duality either with small tone spacing [42] or with
an infinite number of sub-carriers [43]. However, they are not
applicable to our system as only one carrier is assumed in each
interference-limited RAN. In [44], a globally optimal solution
is obtained with the prismatic branch and bound method, but
it has exponential computational complexity.

Rather than directly computing the global optimum of
(35), we first adopt a successive convex optimization method
to derive a local optimum, which is later used to find a
globally optimal solution to the overall problem (3)-(17).
Existing successive convex optimization techniques include
single condensation [40] and logarithmic approximation [45].
Here we use a more computationally efficient approach.

We first write the term − log(1 + ΓΥm,nI SINRm,nI(t)) as
the difference of two convex functions:

log(φm(pnI(t)))−log(ΓΥm,nIgm,nI(t)pm,nI(t)+φm(pnI(t))).

Then, with some initial p(0)
nI (t), we derive a local optimum as

follows:
1) Approximate log(φm(pnI(t))) with its tangent line at

p
(κ)
nI (t).

2) Solve the resultant optimization problem and assign its
minimizer to p

(κ+1)
nI (t).

3) Let κ = κ+ 1 and repeat from 1) until convergence.
By approximating log(φm(pnI(t))) with its tangent line at
p
(κ)
nI (t) in step 1), the approximated optimization problem is

convex, and can be efficiently calculated. The sequence p(κ)
nI (t)

converges to a local minimizer of problem (35) [46], [47]. We
denote it as pNO

nI
(t).

Most importantly, it can be shown that pNO
nI

(t) is globally
optimal with a positive probability. This is formalized in the
following lemma, which will be used in Section IV-E to derive
a globally optimal solution.

Lemma 4: With an uniformly randomly picked p
(0)
nI (t),

there exists a positive constant 0 < ρnI < 1 such that
Pr{pNO

nI
(t) = popt

nI (t)} ≥ ρnI , ∀nI ∈ RI.
Proof: See Appendix D.

E. From Near-Optimal Per-timeslot Allocation to Optimal
Allocation

With the radio resource allocation strategy introduced in
Subsection IV-D, we can only obtain with a positive probabil-
ity an optimal resource allocation in the interference-limited
RAN for each time slot. Despite this sub-optimality in each
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Algorithm 1: CNCL Resource Allocation Method
Output: HWN control decisions r(t), γ(t), anO(t),

pnO(t), pnI(t) in each time slot t
1 Observe the network state information U(t), Y(t),
ΘnI(t), ΘnO(t), and gnI(t) in time slot t;

2 Decide the admitted inelastic traffic according to (21);
3 Obtain the admitted elastic traffic according to (22);
4 Derive the RB and power allocation decisions, anO(t)

and pnO(t), for the orthogonal RAN as in Section IV-C;
5 Derive the power allocation decision pnI(t) for the

interference-limited RAN as in Section IV-D;
6 Compare to force the near-optimum to the optimum for

the interference-limited RAN as in Section IV-E;

time slot, in this section, we present a pick-and-compare
method that allows us to obtain a time-averaged utility that
is arbitrarily close to the optimal objective in (3).

The pick-and-compare method was first proposed in [48] for
a static network, and it was later extended to wireless networks
in [49], [50], [51]. However, such traditional pick-and-compare
method cannot directly apply to our resource allocation prob-
lem due to the uncountable network control space. Instead,
assisted by the near optimal solution in Subsection IV-D, our
radio resource allocation strategy in the interference-limited
RAN is taken as follows:

1) Derive the near optimal radio resource allocation strat-
egy, pNO

nI
(t), with the technique described in Subsec-

tion IV-D.
2) Define τnI,t = maxτnI

{τnI : gnI(τnI) = gnI(t)}. Then
pNO
nI

(t) is compared with p∗
nI
(τnI,t). The one that gives

a smaller value to FnI(pnI(t)|UnI(t),ΘnI(t)) for the
current queue length, UnI(t) and ΘnI(t), is chosen as
p∗
nI
(t).

We demonstrate the performance optimality of this strategy
in Subsection IV-F.

F. CNCL Summary and Performance Bound

1) Overall CNCL Description: We first summarize the
proposed CNCL resource allocation method in Algorithm 1.

2) Complexity Analysis of CNCL Method: We analyze the
complexity of our CNCL method. For the inelastic traffic
control strategy (21) and elastic traffic control strategy (22),
since they are closed-form expressions, they both have con-
stant complexity.

For the joint RB and power allocation problem (23) in
orthogonal RANs, given the dual variable λnO , the com-
plexity for primal recovery is polynomial. Using the golden-
section search method, the iteration step required to ensure
ϵ-optimality is log0.618

ϵ

maxm∈M,i∈JnO
{

ξm,nO,iηm,nO
ln 2 −ΘnO}

.

For the power allocation problem (35) in interference-
limited RANs, using the successive convex optimization
method, a convex optimization problem has to be solved in
each iteration, which has a polynomial complexity. After a
polynomial number of iterations, a local optimum to (35) can
be achieved. To force the local optimum of (35) to global

optimum, a modified pick-and-compare algorithm is used as
explained in Section IV-E. The pick-and-compare procedure
is run only once in each time slot and has constant time
complexity. However, since the previous power allocation
result has to be recorded for each channel state, this algorithm
requires a storage space of O(HM ), where H is the number
of discretized channel gains, and M is the UE number in
the HWN. Noting that the power allocation problem (35) in
interference-limited RANs is NP-hard, we see that such stor-
age space requirement is necessary to achieve near optimality.
To reduce the required storage space, an improved pick-and-
compare algorithm [52] may be used at the cost of some
additional performance loss.

3) Performance Bound of CNCL Method: We further quan-
tify the performance of our proposed CNCL method in The-
orem 1.

Theorem 1: Under the proposed CNCL method, if gnI(t)
and gnO(t) are i.i.d. in time, we have

lim sup
t→∞

1

t

t∑
u=1

[ ∑
m∈M

∑
n∈R

E{U∗
m,n(u)}

]
≤ B + C

δ
+ V

ε

δ
,

(36)

lim
t→∞

∑
mk

I ∈MI
E{Y ∗

mk
I
(t)}

t
= 0, (37)

lim
t→∞

E{Θ∗
nO
(t)}

t
= 0, ∀nO ∈ RO (38)

lim
t→∞

E{Θ∗
nI
(t)}

t
= 0, ∀nI ∈ RI (39)

lim
t→∞

t∑
u=1

E{
∑

mE∈ME

∑
k∈TE

∑
n∈R

γn,∗
mE,k

(u)Ψ(fk)} ≥

∑
mE∈ME

∑
k∈TE

∑
n∈R

γ̄n,opt
mE,k

Ψ(fk)− ε− B + C

V
, (40)

where R = max{
∑

k∈TE
Xkfk, r̂k, ŴnI}, C =∑

nI∈RI

2MP̂ 2
nI

+2MRŴnI

min{π̂nI}ρnI
, π̂nI is the joint steady state

probability of gnI(t), γ̄
n,opt
mE,k

is the global optimum of (3)-(17),
and δ and ε are small positive constants.

Proof: See Appendix E.

Note that the term C is the induced cost in exchange for
reducing the computational complexity, where the constant ρnI

plays an important role. Specifically,
2MP̂ 2

nI
+2MRŴnI

min{π̂nI}ρnI
is the

cost introduced by interference-limited RAN nI. Intuitively,
higher computational ability will lead to larger ρnI , and this
reflects the tradeoff between the HWN computational ability
and the HWN performance. Moreover, (36) gives an upper
bound for the time-averaged data queue length in the HWN,
which is proportional to the queueing delay based on Little’s
Theorem. Thus, our proposed CNCL method can achieve a
tradeoff between 1−O( 1

V ) network utility and O(V ) queueing
delay. Particularly, by forcing V → ∞, our CNCL method can
obtain the optimal objective in (3).
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V. SIMULATION AND COMPARISON

In addition to the analytical bound provided above, in this
section, we further present a numerical study on the CNCL
method. Simulation is conducted in MATLAB, while the
local optimum in Section IV-D is calculated using LINGO
and then passed to MATLAB. Comparisons are made with
suboptimal alternatives termed SubTraffic, DistanceS, and
SubResource. Specifically, in the SubTraffic method, the UE
traffic is uniformly randomly distributed among RANs, and
in the DistanceS method, the UE only accesses its closest
RAN. Moreover, in both SubTraffic and DistanceS methods,
the resource allocation within each RAN is the same as that in
our proposed CNCL method, i.e., we optimally solve the joint
RB and power allocation problem in orthogonal RANs and
asymptotically optimally solve the power allocation problem
in interference-limited RANs. In the SubResource method, the
traffic distribution scheme is the same as that in our proposed
CNCL method. However, in the SubResource method, power
is equally allocated among RBs in orthogonal RANs [29] and
randomly picked for UEs in interference-limited RANs [49].

A. Simulation Setup

We consider an example HWN constituted of an
interference-limited RAN located at (700m, 1000m), and
an orthogonal RAN located at (500m, 300m). The symbol
rate is 0.2 MBaud/s for the interference-limited RAN. For
the orthogonal RAN, it has 40 RBs, and each has sym-
bol rate of 0.18 MBaud/s. The noise power spectral den-
sity is −174 dbm/Hz. The mean power constraints for the
interference-limited RAN and the orthogonal RAN are PnI =
20 Watt and PnO = 30 Watt, while the maximum power
constraints for them are P̂nI = 40 Watt and P̂nO = 60 Watt
[53].

We assume that UEs in the HWN are randomly allocated
within a square of side-length 2000m centered at the origin.
For inelastic traffic, we assume that its mean throughput
requirement is 1 Mbits/s. While elastic traffic consists of three
types of packets, and they all follow a Poisson arrival process
with mean packet arrival intensity Z = ζ×{2, 3, 1} packets/s,
where ζ is used to scale the mean packet arrival intensity. The
packet sizes are set to {800, 1200, 1500} bytes respectively for
these three arrival intensities. The processing gains for UEs
in interference-limited RANs are uniformly randomly chosen
from [5, 15], and are set as 1 in orthogonal RANs.

We model the channel gain by both large-scale fading and
small-scale fading. For large-scale fading, we assume that it
is only determined by the UE-RAN distance with the path
loss exponent being 4. While for small-scale fading, we model
its amplitude as Rayleigh random variables with unit average
power, which are further quantized into six equal probability
states {0.280, 0.535, 0.734, 0.937, 1.183, 1.649} [54]. We as-
sume the Shannon capacity gap is 0.7. We further set the in-
stantaneous admitted rate constraints for both the interference-
limited RAN and the orthogonal RAN as r̂k = 2 Mbits/s. We
treat the utility of serving an elastic packet as its packet size
to indicate the elastic throughput. We take t = 1000, and the
numerical results are averaged over 1000 time slots.
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Fig. 2. Average elastic UE throughput versus V . The legend labels respec-
tively indicate the arrival rate of elastic traffic, the total throughput, throughput
from the orthogonal RAN, and throughput from the interference-limited RAN.
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Fig. 3. Average inelastic UE service rate versus V . The legend labels
respectively indicate the inelastic traffic data rate, the total service rate, service
rate by the orthogonal RAN, and service rate by the interference-limited RAN.

B. Numerical Results

We fix the elastic traffic intensity ζ = 30, and set the
elastic and inelastic UE numbers both as 4 in Fig. 2 to Fig. 5.
We first study the average throughput of elastic and inelastic
UEs versus V in Fig. 2 and Fig. 3. In Fig. 2, we can see
that increasing V leads to an increase of elastic UE average
throughput when V < 6. While V ≥ 6, the average throughput
of elastic UEs is equal to that of the arrival elastic traffic,
indicating that the optimal objective value has been achieved.
This suggests that optimal performance, which is guaranteed
asymptotically by Theorem 1, can be achieved even for a
moderate V value in reality. Fig. 3 illustrates that the average
service rate of inelastic UEs will reduce to slightly above the
inelastic UE throughput requirement while V increases. This
is because more HWN resource is allocated to elastic UEs as
V increases.

We also show the average queue length of elastic and
inelastic UEs in Fig. 4 and Fig. 5 respectively. We see from
Fig. 4 that increasing V leads to an increase in the average
queue length of elastic UEs. This is because increasing V
is equivalent to admitting more elastic data as shown in
(22). Increasing V also increases the average queue length
of inelastic UEs. This matches our observation from Fig. 3
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Fig. 4. Average elastic queue length versus V
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Fig. 5. Average inelastic queue length versus V

that the inelastic service rate approaches the required rate as
V increases. We see that the queue lengths level off quickly,
as a larger and large portion of the elastic traffic is served.

Varying the elastic traffic arrival intensity ζ and fixing the
elastic and inelastic UE numbers both as 4, we study the
average elastic UE sum throughput in Fig. 6 with V = 2.
We can see that the average elastic UE sum throughput gap
between the CNCL method and the other schemes becomes
larger as ζ increases. This is attributed to the optimal design in
traffic admission control and resource allocation within each
RAN. Comparing with SubTraffic and SubResource methods,
we observe that optimal design in resource allocation within
each RAN brings larger throughput improvement than opti-
mal design of admission control. Moreover, we observe that
the DistanceS method outperforms the SubResource method,
which further indicates the importance of optimal design
in resource allocation within each RAN. Furthermore, the
throughput improvement of SubTraffic over DistanceS shows
that exploring multiple RANs, even sub-optimally, is of critical
importance for HWN performance.

Fixing ζ = 30 and V = 2, we study the elastic UE
average sum throughput versus the number of inelastic UEs
in Fig. 7. We fix the total number of UEs to 8. We observe
that the increase of inelastic UE number decreases the average
throughput of elastic UEs, since more resource is allocated to
inelastic UEs. Similar to Fig. 6, optimal design in resource
allocation within each RAN brings larger throughput im-
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Fig. 6. Comparison of average elastic sum throughput versus ζ
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Fig. 7. Comparison of average elastic sum throughput versus inelastic UE
number

provement compared with optimal design in traffic admission
control. Both Fig. 6 and Fig. 7 show the importance of joint
design in traffic admission control and resource allocation in
the HWN.

VI. CONCLUSIONS

Considering both heterogeneous wireless networks and het-
erogeneous UE traffic, we propose a cross-network cross-
layer design method to jointly optimize UE traffic distribu-
tion among RANs and RAN radio resource allocation. Our
design goal is to asymptotically maximize the throughput of
elastic traffic while satisfying inelastic traffic rate constraints.
Efficient algorithms are proposed to handle the resultant non-
linear NP-hard optimization problem in interference-limited
RANs and the mixed-integer non-linear optimization program
in orthogonal RANs. In addition, the proposed HWN control
framework can adapt to the dynamics at both the packet level
and the channel level, and it permits separable RAN control.
We derive a performance bound for the proposed cross-
network cross-layer design method, and verify its performance
through simulation.

Interesting future research directions may include design-
ing more efficient power allocation methods in interference-
limited RANs, extending the RAN architecture from a single
cell to multiple cells, and imposing more realistic constraints
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such as per-RB power limitation in orthogonal RANs and lim-
iting the number of RANs to which a UE can simultaneously
connect.

APPENDIX A
PROOF OF LEMMA 1

We write the KKT conditions of (30) as follows:

− ηm,nO log
(
1 + ξm,nO,i

sm,nO,i

am,nO,i

)
+

ηm,nOξm,nOsm,nO,i

am,nO,i + ξm,nO,ism,nO,i

(41)
+ um,i − vm,i + ςi = 0, ∀m, i,

ΘnO−
ηm,nOam,nO,iξm,nO,i

(am,nO,i + ξm,nO,ism,nO,i) ln 2
+λnO−θm,i = 0,∀m, i,

(42)
um,i(am,nO,i − 1) = 0, ∀m, i, (43)
vm,iam,nO,i = 0, ∀m, i, (44)
θm,ism,nO,i = 0, ∀m, i, (45)

ςi(
∑

m∈M

am,nO,i − 1) = 0, ∀i, (46)

um,i ≥ 0, vm,i ≥ 0, θm,i ≥ 0, ςi ≥ 0, ∀m, i. (47)

We can derive sm,nO,i =
[

ηm,nO
(ΘnO+λnO−θm,i) ln 2 −

1
ξm,nO,i

]
am,nO,i from (42). It follows from (45) that if

sm,nO,i > 0, θm,i = 0. Then we have sm,nO,i =[
ηm,nO

(ΘnO+λnO ) ln 2−
1

ξm,nO,i

]
am,nO,i. Furthermore, based on (47),

if sm,nO,i = 0, we have θm,nO,i ≥ 0, thus ηm,nO
(ΘnO+λnO ) ln 2 <

1
ξm,nO,i

. Hence, we can express the optimal relation between
sm,nO,i and am,nO,i with respect to (30) as

sm,nO,i =
[ ηm,nO

(ΘnO + λnO) ln 2
− 1

ξm,nO,i

]+
am,nO,i, (48)

where [x]+ , max{x, 0}.

APPENDIX B
PROOF OF LEMMA 2

The optimal s∗nO
can be divided into two cases, which are

s∗nO
= 0M×JnO

and s∗nO
̸= 0M×JnO

.
In the former case, we have

∑
m∈M

∑
i∈JnO

s∗m,nO,i
−

P̂nO = P̂nO . Based on the complementary slackness condition,
we have λ∗

nO
= 0.

While in the latter case, from (32), we can see that if λ∗
nO

≥
maxm∈M,i∈JnO

{ ξm,nO,iηm,nO
ln 2 −ΘnO}, all s∗m,nO,i

’s are equal
to zero, which contradicts s∗nO

̸= 0M×JnO
.

APPENDIX C
PROOF OF LEMMA 3

If there is no tie in the allocation of RB i, based on the
above algorithm, we just allocate RB i to the UE m with
Λm,nO,i(λnO) = Λ∗

nO,i
(λnO). Otherwise, if ties occur in the

allocation of RB i, our tie-breaking rule guarantees that the
primal feasibility and complimentary slackness condition hold.
This gives an optimal solution to (24)-(28). Since (24)-(28) is

a relaxed version of (23), such optimum also provides a lower
bound to (23). In addition, note that the minimizer to (24)-
(28) also satisfies constraints of (23), and thus, our algorithm
provides an optimal solution to (23).

APPENDIX D
PROOF OF LEMMA 4

Lemma 4 is similar to a special case of
Theorem 1 in [4], except that the objective function
FnI(pnI(t)|UnI(t),ΘnI(t)) now contains an additional linear
term

∑
m∈M ΘnI(t)pm,nI(t). Since such a linear term does

not change the general curvature of the objective function,
the same conclusion holds. We omit further proof details and
refer interested readers to [4].

APPENDIX E
PROOF OF THEOREM 1

Recalling the queue updating functions for the inelastic
UE mk

I in (1), for the elastic UE mE in (2), and for the
average power constraint of interference-limited RAN nI in
(19), we have Umk

I ,nI
(t) ≤ Umk

I ,nI
(t−1)+r̂k, and UmE,nI(t) ≤

UmE,nI(t−1)+
∑

k∈TE
Xkfk, and ΘnI(t) ≥ ΘnI(t−1)−PnI .

Let us denote popt
nI (t) as the global minimizer to (35), and

τκ,t < τκ−1,t < · · · < τ1,t, where gnI(τi,t) = gnI(t), ∀i ≤
κ, i ∈ N+. From Lemma 4, there must exist a κ ∈ N+ such
that p∗

nI
(τκ,t) = popt

nI (τκ,t). Then we have∑
m∈M

{
ΘnI(t)p

opt
m,nI

(t)− Um,nI(t)µm,nI(p
opt
nI
(t))

}
≥

∑
m∈M

{(
ΘnI(τκ,t)− (t− τκ,t)PnI

)
popt
m,nI

(t)
}
−∑

mE∈ME

{(
UmE,nI(τκ,t)+ (t−τκ,t)

∑
k∈TE

Xkfk
)
µmE,nI(p

opt
nI
(t))

}
−

∑
mk

I ∈MI

{(
Umk

I ,nI
(τκ,t) + (t− τκ,t)r̂k

)
µmk

I ,nI
(popt

nI
(t))

}
≥

∑
m∈M

{
ΘnI(τκ,t)p

opt
m,nI

(τκ,t)−Um,nI(τκ,t)µm,nI(p
opt
nI
(τκ,t))

}
− (t− τκ,t)

[ ∑
mE∈ME

∑
k∈TE

XkfkŴnI +
∑

mk
I ∈MI

r̂kŴnI+∑
m∈M

PnI P̂nI

]
. (49)

Moreover, from the queue updating functions (1), (2), and
(19), we have ΘnI(t) ≤ ΘnI(t − 1) + P̂nI and Um,nI(t) ≥
Um,nI(t)− ŴnI . It then follows that∑

m∈M

{
ΘnI(t)p

∗
m,nI

(t)− Um,nI(t)µm,nI(p
∗
nI
(t))

}
1)

≤
∑

m∈M

{
ΘnI(t)p

∗
m,nI

(τ1,t)− Um,nI(t)µm,nI(p
∗
nI
(τ1,t))

}
≤

∑
m∈M

{(
ΘnI(τκ,t) + (t− τκ,t)P̂nI

)
p∗m,nI

(τκ,t)−(
Um,nI(τκ,t)− (t− τκ,t)ŴnI

)
µm,nI(p

∗
nI
(τκ,t))

}



13

≤
∑

m∈M

{
ΘnI(τκ,t)p

opt
m,nI

(τκ,t) + (t− τκ,t)P̂
2
nI
−

Um,nI(τκ,t)µm,nI(p
opt
nI
(τκ,t)) + (t− τκ,t)Ŵ

2
nI

}
, (50)

where the inequality 1) is from the compare algorithm in
Section IV-E.

Based on (49) and (50), we have

E
{ ∑

m∈M

{
ΘnI(t)p

opt
m,nI

(t)−

Um,nI(t)µm,nI(p
opt
nI
(t))

}
|UnI(t),ΘnI(t)

}
≥ E

{ ∑
m∈M

{
ΘnI(t)p

∗
m,nI

(t)−

Um,nI(t)µm,nI(p
∗
nI
(t))

}
|UnI(t),ΘnI(t)

}
(51)

− E
{
(t− τκ,t)|UnI(t),ΘnI(t)

}( ∑
mE∈ME

∑
k∈TE

XkfkŴnI+∑
mk

I ∈MI

r̂kŴnI +
∑

m∈M

PnI P̂nI +
∑

m∈M

P̂ 2
nI
+

∑
m∈M

Ŵ 2
nI

)
We denote the probability of channel gain gm,nI(t) be-

ing Gj
m as πj

m,nI
, and write the joint steady state probabil-

ity of gnI(t) as π̂nI . Since E{(t − τκ,t)|UnI(t),ΘnI(t)} ≤
1

min{π̂nI}ρnI
and R = max{

∑
k∈TE

Xkfk, r̂k, ŴnI}, we then
have

E[FnI(p
∗
nI
(t)|UnI(t),ΘnI(t))]− E[FnI(p

opt
nI
(t)|UnI(t),ΘnI(t))]

≤ 1

min{π̂nI}ρnI

(
2MP̂ 2

nI
+ 2MRŴnI

)
. (52)

For the orthogonal RAN nO, we can optimally minimize
E[FnO(anO(t),pnO(t)|UnO(t),ΘnO(t))]. Then based on the
Theorem 4.8 in [2], we can derive the above theorem. Details
are omitted to avoid redundancy.
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