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Per-Relay Power Minimization for Multi-user
Multi-channel Cooperative Relay Beamforming

Ali Ramezani-Kebrya, Min Dong, Ben Liang, Gary Boudreau, and Ronald Casselman

Abstract—We investigate the optimal relay beamforming prob-
lem for multi-user peer-to-peer communication with amplify-
and-forward relaying in a multichannel system. Assuming each
source-destination (S-D) pair is assigned an orthogonal channel,
we formulate the problem as a min-max per-relay power mini-
mization problem with minimum signal-to-noise (SNR) guaran-
tees. After showing that strong Lagrange duality holds for this
non-convex problem, we transform its Lagrange dual problem
to a semi-definite programming problem and obtain the optimal
relay beamforming vectors. We identify that the optimal solution
can be obtained in three cases, depending on the values of
the optimal dual variables. These cases correspond to whether
the minimum SNR requirement at each S-D pair is met with
equality, and whether the power consumption at a relay is the
maximum among relays at optimality. We obtain a semi-closed
form solution structure of relay beam vectors, and propose an
iterative approach to determine relay beam vector for each S-D
pair. We further show that the reverse problem of maximizing
the minimum SNR with per-relay power budgets can be solved
using our proposed algorithm with an iterative bisection search.
Through simulation, we analyze the effect of various system
parameters on the performance of the optimal solution. Fur-
thermore, we investigated the effect of imperfect channel side
information of the second hop on the performance and quantify
the performance loss due to either channel estimation erroror
limited feedback.

Index Terms—Multiple users, peer-to-peer, per-relay power,
power minimization, relay beamforming.

I. I NTRODUCTION

Cooperative relaying is one of the key techniques to improve
quality of service and efficient resource usage in our wireless
systems. It has been adopted in current and future multi-
channel based broadband access systems, such as the 4th
generation (4G) orthogonal frequency division multiple access
(OFDMA) systems with LTE and LTE-Advanced standards
[1], [2]. It is also the underlying technique for many potential
features for 5G evolution [3]. In such a network, there are
typically multiple communicating pairs as well as available
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relays. Efficient physical layer design of cooperative relaying
to support such simultaneous transmissions is crucial.

We consider a multi-user peer-to-peer relay network in a
multi-channel communication system, where multiple source-
destination (S-D) pairs communicate through multiple single-
antenna relays using the amplify-and-forward (AF) relaying
strategy. Orthogonal subchannel allocation to each communi-
cating pair is assumed to avoid multi-user interference. For
each S-D pair, all relays assist the pair’s transmission over the
assigned subchannel through cooperative relay beamforming.
We consider that each relay has its own power budget,i.e., it
cannot share power with another relay. This is a more practical
scenario, especially for distributed relay systems. Our focus
is on designing the optimal relay beamformers, aiming at
minimizing per-relay power usage while meeting the minimum
received signal-to-noise (SNR) guarantees.

The vast majority of the existing literature on cooperative
relay beamforming design is focused on a single S-D pair,
considering perfect or imperfect CSI [4]–[7], multi-antenna re-
lay processing matrix design [8]–[11], and relay beamforming
design for two-way relaying [12]–[15]. For multi-user peer-
to-peer relay networks, relay beamforming design has been
considered for single-carrier systems [16]–[25]. For multi-user
transmission in a single-carrier system, each S-D pair suffers
from the interference from other pairs, causing significant
performance degradation and is the main challenge in relay
beamforming design. Due to the complexity involved in such
a problem, an optimal solution is difficult to obtain. Typi-
cally, approximate solutions through numerical approaches are
proposed or suboptimal problem structures are considered for
analytical tractability.

In contrast, cooperative relay beamforming in a multi-
channel system can avoid multi-user interference through
subchannel orthogonalization. However, it adds a new design
challenge of creating additional dimensions of power sharing.
For each relay, its power is shared among subchannels for
relaying signals of all S-D pairs. For each S-D pair, all relays
participate in beamforming the transmitted signal, affecting
the power usage of all relays. Thus, the optimal design of
relay beamformers for per-relay power minimization remains
a challenging problem.

A. Contributions

• In this paper, we study the optimal relay beamforming
problem for multi-user peer-to-peer communication in
a multi-channel system. Assuming perfect CSI, we for-
mulate the multi-channel relay beamforming problem as
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a min-max per-relay power minimization problem with
minimum SNR guarantees. Showing that strong Lagrange
duality holds for this non-convex problem, we solve it in
the dual domain. Through transformations, we express
the dual problem as a semi-definite programming (SDP)
problem to determine the optimal dual variables, which
has a much smaller problem size than that of the original
problem and can be solved efficiently.

• We identify that the optimal relay beamforming solution
of the original problem can be obtained in three cases
depending on the values of the optimal dual variables.
These cases reflect, at optimality, whether the minimum
SNR requirement at each S-D pair is met with equality,
and whether the power consumption at a relay is the
maximum among relays. Among these three cases, the
first one corresponds to the feasibility of the original
problem. For the second and third cases, we obtain a
semi-closed form solution structure of relay beam vectors,
and design an iterative approach to determine the relay
beam vector for each S-D pair.

• We further study the reverse problem of max-min SNR
subject to per-relay power constraints. We show the
inverse relation of the two problems and propose an
iterative bisection algorithm to solve the max-min SNR
problem.

• Through simulation, we analyze the effect of the number
of relays, as well as the number of S-D pairs on the
power and SNR performance under the optimal relay
beam vector solution. Furthermore, we investigate the
effect of imperfect CSI of the second hop. We quantify
the performance loss due to either quantization error with
limited feedback or channel estimation error. It is found
that the loss due to imperfect CSI is mild. Furthermore,
the loss due to quantization is less sensitive to the number
of relays than that due to channel estimation error.

B. Related Work

The problem of optimal relay beamforming design for
a single S-D pair has been extensively studied under total
and per-relay power constraints [4]–[15]. For the multi-user
downlink broadcast channel, MIMO relay beamforming has
been considered in [26], [27]. For transmission of multipleS-
D pairs, the design of relay beam vectors has been studied
under different metrics, including sum rate, sum mean square
error (MSE), relay power, and total source and relay power,
for single-carrier systems [16]–[25] and for multi-channel
systems [28], [29]. Most of these works consider only the
total power across relays either as the constraint or objective
of the optimization problem, which renders the optimization
problems analytically more tractable [16]–[24], [28].

There has been much study on MIMO relay beamforming
for multiple S-D pairs. For example, in [16], a robust design
of MIMO relay processing matrix to minimize the worst-case
relay power has been proposed for multiple S-D pairs, where
the relays have only CSI estimates. With multiple MIMO
relays, the MIMO relay processing design has been considered
to minimize the total relay power subject to SINR guarantees

in [21] for the perfect CSI case and in [18] when only second-
order statistics of CSI are known at the relays. In [19], a
robust MIMO relay processing design with CSI estimates is
considered for sum MSE minimization and MSE balancing
under a total relay power constraint. For a network with
multiple MIMO S-D pairs, the total source and relay power
minimization problem subject to minimum received SINR is
considered in [23] and an iterative algorithm is proposed to
jointly optimize the source, relay, and receive beam vectors
and the source transmission power.

For single-antenna cooperative relay beamforming, the
problem of total relay power minimization subject to minimal
SINR guarantees has been considered for multiple S-D pairs
in [17], where an approximate solution is proposed based
on the semi-definite relaxation approach. Joint optimization
of the source power and distributed relay beamforming is
considered for the total power minimization in [22]. For a
single-carrier relay beamforming system with multiple S-D
pairs, the relay sum power minimization problem is studied in
[24] using an interference zero-forcing approach. In contrast,
we consider a multi-channel system and we solve the per-
relay power with optimal beamforming, which is technically
far more challenging.

To the best of our knowledge, the per-relay power minimiza-
tion problem in multi-channel multi-relay systems has been
studied only in [29]. However, the solution provided there is
incomplete. In this work, we propose an algorithm to provide
a complete solution in several possible cases. It can be shown
that the solution in [29] is one special case of our solution
(i.e., Case 3 in Section III-B3). Our algorithm transforms
the dual problem into an efficient SDP problem and uses an
iterative approach to find the solution. In [29], however, the
dual problem is directly solved using a subgradient method.
Moreover, we have investigated the effect of imperfect CSI
due to quantization error or channel estimation error, while
only the true CSI is assumed in [29].

C. Organization and Notations

The rest of this paper is organized as follows. In Section
II, the system model is described and the min-max per-relay
power problem is formulated. In Section III, the min-max per-
relay problem is solved. We discuss three different cases and
propose an SDP-based algorithm to obtain the optimal relay
beam vectors. In Section IV, we discuss the reverse problem
of maximizing the minimum SNR subject to per-relay power
constraints. Numerical results are presented in Section V,and
conclusions are drawn in Section VI.

Notation: We use‖ · ‖ to denote the Euclidean norm of a
vector.⊙ stands for the element wise multiplication. We use
(·)T , (·)H , and(·)† to denote transpose, Hermitian, and matrix
pseudo-inverse, respectively. The conjugate is represented by
(·)∗. The notationdiag(a) denotes the diagonal matrix with
diagonal entries consisting the elements of vectora. I denotes
an N × N identity matrix. We useY � Z to indicate that
Y − Z is a positive semi-definite matrix.
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Fig. 1. The system model for multi-pair multi-channel relaycommunications.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a two-hop wireless AF relaying system where
M S-D pairs transmit data throughN relays in a multi-
channel communication system. All the nodes in the network
are equipped with a single antenna. We assume that a direct
link is not available between each S-D pair (e.g., due to long
distances). The multi-channel system is assumed to containat
leastM frequency subchannels. Each S-D pair is pre-assigned
a subchannel for its data transmission which is orthogonal to
all other S-D pairs. Each relay can transmit received signals
from all sources over their assigned respective subchannels.
The system model is illustrated in Fig.1.

Since each S-D pair is pre-assigned a subchannel, without
loss of generality, we assume S-D pairm communicates
throughN relays over subchannelm. The S-D transmission is
established in two phases. In phase one, each source transmits
its signal to all the relays. The received signal at relayi over
subchannelm is given by

ym,i =
√

P0hm,ism + nr,m,i (1)

wherehm,i is the channel coefficient on subchannelm be-
tween sourcem and relayi, sm is the transmitted symbol
from sourcem with unit power,i.e., E[|sm|2] = 1, P0 is the
transmission power1, andnr,m,i is the additive white Gaussian
noise (AWGN) at relayi on subchannelm with zero mean and
varianceσ2

r , which is i.i.d. across subchannels and relays. The
received signal vector at all relays over subchannelm is given
by

ym =
√

P0hmsm + nr,m (2)

where hm
∆
= [hm,1, · · · , hm,N ]T and nr,m

∆
=

[nr,m,1, · · · , nr,m,N ]T are the first-hop channel vector
and the relay noise vector for S-D pairm, respectively.

In phase two, each relayi multiplies its received signal
over subchannelm with a beamweightwm,i and forwards it
to destinationm. The received signal at destinationm from
all relays over subchannelm is given by

rm = gT
mWmym + nd,m

=
√

P0g
T
mWmhmsm + gT

mWmnr,m + nd,m (3)

1Note that for simplicity, we assume the transmit powerP0 is the same
for all sources. It is straightforward to extend our resultsto the scenario with
different transmit power at different sources.

where gm
∆
= [gm,1, · · · , gm,N ]T is the second-hop channel

vector for S-D pairm, with gm,i being the channel coefficient

on subchannelm from relay i to destinationm, Wm
∆
=

diag(wm), with wm
∆
= [wm,1, · · · , wm,N ]T being the relay

beam vector for S-D pairm, and nd,m is the AWGN at
destinationm with zero mean and varianceσ2

d, respectively.
The power usage of relayi is given by

Pr,i =

M
∑

m=1

E[|wm,iym,i|2] =
M
∑

m=1

wH
mRmDiwm (4)

whereRm
∆
= diag([Ry,m]1,1, · · · , [Ry,m]N,N), with Ry,m

∆
=

P0hmhH
m+σ2

rI, for m = 1, · · · ,M , andDi denotes theN ×
N diagonal matrix with 1 in thei-th diagonal entry and 0
otherwise.

Definefm
∆
= gm⊙hm = [hm,1gm,1, · · · , hm,Ngm,N ]T . The

received signal power at destinationm is obtained by

PS,m = P0[g
T
mWmhmhH

mWH
mg∗

m] = P0w
H
mFmwm (5)

whereFm
∆
= (fmfHm )∗. The total noise power at destination

m including both the receiver noise and the relay amplified
noise is given by

PN,m = E[nH
r,mWH

mg∗
mgT

mWmnr,m] + σ2
d

= wH
mGmwm + σ2

d (6)

whereGm
∆
= σ2

r diag
(

(gmgH
m)∗

)

. Thus, the SNR at destina-
tion m is given by

SNRm =
P0w

H
mFmwm

wH
mGmwm + σ2

d

. (7)

We use SNR as the quality-of-service (QoS) metric. Many
other QoS metrics, such as BER and data rate, are monotonic
functions of SNR. We assume perfect knowledge of CSI,i.e.,
{hm,gm}Mm=1, in designing the relay beam vectors.

B. Problem Formulation

We focus on a power efficient design of relay beamforming
for multi-pair communications. Our goal is to minimize the
maximum per-relay power usage by optimizing the relay beam
vectors, while meeting the received SNR requirement at each
destination. This min-max relay power optimization problem
is given by

min
{wm}

max
1≤i≤N

Pr,i (8)

subject to
P0w

H
mFmwm

wH
mGmwm + σ2

d

≥ γm, m = 1, · · · ,M. (9)

Denoting Pr,max = maxi Pr,i, the min-max optimization
problem (8) is equivalent to the following problem

min
{wm},Pr,max

Pr,max (10)

subject to
M
∑

m=1

wH
mRmDiwm ≤ Pr,max, i = 1, · · · , N,

(11)

and (9).
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III. M INIMIZING MAXIMUM PER-RELAY POWER USAGE

The per-relay power minimization problem (10) is non-
convex due to the SNR constraint (9). To solve it, we first
examine the feasibility of the problem. Then we show that the
solution can be obtained in the dual domain. The dual problem
is further converted into an SDP with polynomial worst-case
complexity. We obtain a semi-closed form structure of the
beam vectors{wm} and propose our algorithm to obtain the
optimal dual variables in determining{wm}.

We first give the necessary condition for which the opti-
mization problem (10) is feasible.

Proposition 1: A necessary condition for the feasibility of
the relay power minimization problem (10) is

min
1≤m≤M

P0

γm
fHmG†

mfm > 1. (12)

Proof: See Appendix A.
Note that the condition in (12) directly reflects the feasibility

of the SNR constraint in (9), as shown in Appendix A. In
other words, if the condition in (12) is not satisfied, the SNR
constraint (9) cannot be satisfied for allm no matter what
{wm} is used.

A. The Dual Approach

Although the optimization problem (10) is non-convex, we
show that the strong duality holds and hence the problem (10)
can be solved in the Lagrange dual domain. The result is given
below.

Proposition 2: The per-relay power minimization problem
(10) has zero duality gap.

Proof: See Appendix B.
By Proposition 2, since the zero duality gap holds for

the problem (10), the optimal beam vectors{wo
m}Mm=1 can

be obtained through the Lagrange dual domain. Letλ
∆
=

[λ1, · · · , λN ]T andα
∆
= [α1, · · · , αM ]T denote the Lagrange

multipliers associated with the per-relay power constraint (11)
and SNR constraint (9), respectively. The dual problem of the
problem (10) is given by

max
λ,α

min
{wm},Pr,max

L({wm}, Pr,max,λ,α) (13)

subject to λ � 0,α � 0. (14)

The LagrangianL({wm}, Pr,max,λ,α) in (13) is given by

L({wm}, Pr,max,λ,α) =

M
∑

m=1

αmσ2
d + Pr,max(1−

N
∑

i=1

λi)

+

M
∑

m=1

wH
m

(

Km − αmP0

γm
fmfHm

)

wm

(15)

where

Km
∆
= RmDλ + αmGm (16)

andDλ

∆
= diag(λ1, · · · , λN ).

The dual problem (13) can be shown to be equivalent to the
following problem:

max
λ,α

M
∑

m=1

αmσ2
d (17)

subject to Km � αmP0

γm
fmfHm , m = 1, · · · ,M, (18)

N
∑

i=1

λi ≤ 1, (19)

and (14).

To see the equivalence, note that if either (18) or (19) is
not satisfied, there exists some{wm, Pr,max} resulting in
L({wm}, Pr,max,λ,α) = −∞, which cannot be an optimal
solution of the dual problem (13). Therefore, the constraints
(18) and (19) are met at the optimality of the problem (13).
After the inner minimization with respect to (w.r.t.){wm} and
Pr,max, the objective of the dual problem (13) is equivalent to
that in (17).

To solve the problem (17) for the optimal dual variables
{λo,αo}, we now show that it can be reformulated into an
SDP given below to obtain the solution.

min
y

aTy (20)

subject to bTy ≤ 1, y � 0
M+N
∑

j=1

yjΨm,j � 0, m = 1, · · · ,M

where y
∆
= [αT ,λT ]T , a

∆
= [−σ2

d1
T
M×1,0

T
N×1]

T , b
∆
=

[0T
M×1,1

T
N×1]

T , Ψm,m
∆
= P0

γm
fmfHm − Gm, Ψm,M+i

∆
=

−RmDi for m = 1, · · · ,M, i = 1, · · · , N , and all other
Ψm,j are zeros.

The above SDP can be solved efficiently using a standard
SDP solver [30]. Obtaining the optimal beam vector solution
{wo

m}Mm=1 of the problem (13) depends on the values of the
optimal dual variables{λo,αo}. In the following, we partition
the values of{λo,αo} into three cases and derive{wo

m}Mm=1

in each case. We first present the following lemma showing a
certain condition on the value ofαo.

Lemma 1: If λ
o ≻ 0, thenαo ≻ 0.

Proof: See Appendix C.
Note thatλo andαo are the optimal dual variables associated
with the per-relay power constraint (11) and SNR constraint
(9), respectively. The Karush-Kuhn-Tucker (KKT) conditions
require complementary slackness. Thus, Lemma 1 indicates
that if the per-relay power constraint is active (i.e., attained
with equality) at optimality, then the SNR constraint is also
active at optimality. However, note thatαo

m could be zero for
somem, if λo

i is zero for somei.

B. The Optimal Beam Vector {wo
m}

Using Lemma 1, in the following, we partition the values
of {λo,αo} into three cases to derive{wo

m}Mm=1.
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1) Case 1: λ
o = 0. In this case,Km in (16) reduces to

αmGm. For the constraint (18) to hold, we haveαo = 0 (also
see Appendix C). As a result, the objective in (17) becomes
zero. If the SNR constraint (9) could be satisfied for allm,
i.e., the original problem (10) is feasible, the optimal objective
has to be strictly greater than zero which is a contradiction.
This implies the per-relay power minimization problem (10)is
infeasible. In other words, if the optimization problem (10) is
feasible, there should be at least onei such that (11) is active
at optimality,i.e., λo

i > 0.
2) Case 2: λ

o ⊁ 0 andλo 6= 0. In this case, we haveλo
i =

0 for somei’s andαo
m = 0 for somem’s. In the following, we

first consider the case in which at optimality, only one entry
in λ

o and α
o is strictly positive. In other words, only one

S-D pair and one relay meet the SNR constraint and power
constraint with equality, respectively. Then, we explain how
to extend our solution to the case in whichλo

i > 0, αo
m > 0

for arbitrary i’s andm’s. Denotem̃ and ĩ such thatαo
m̃ > 0

andλĩ > 0, respectively, andαo
m = 0 for m 6= m̃ andλo

i = 0
for i 6= ĩ. In this case, we haveλĩ = 1 from the maximization
problem (17), since its optimal objective is increasing w.r.t.
λĩ.

In the following, we first obtain the optimal beam vector
wo

m̃. For m 6= m̃, the optimal beam vectorwo
m cannot be

derived in a similar way as that forwo
m̃. Instead, we formulate

a new optimization problem to obtainwo
m.

Proposition 3: Assumeαo
m̃ > 0. The optimal beam vector

wo
m̃ for the per-relay power minimization problem (10) is

given by

wo
m̃ = ζm̃Ko

m̃
†
fm̃ (21)

where

ζm̃
∆
= σd

[

P0

γm̃
|fHm̃Ko

m̃
†
fm̃|2 − fHm̃Ko

m̃
†
Gm̃Ko

m̃
†
fm̃

]− 1

2

(22)

with Ko
m̃ obtained by substituting the optimal dual variables

αo
m̃ andλo into (16).

Proof: See Appendix D.
Define M ∆

= {1, · · · ,M} \ {m̃}, and definePi,m̃
∆
=

wo
m̃

HRm̃Diw
o
m̃ as the power used at relayi for S-D pair

m̃. The beamforming vectors{wm,m ∈ M} are determined
through solving the following feasibility problem

find {wm,m ∈ M} (23)

subject to max
1≤i≤N

Pi,m̃ +
∑

m∈M

wH
mRmDiwm = P o

r,max,

P0w
H
mFmwm

wH
mGmwm + σ2

d

≥ γm, m ∈ M. (24)

There is no unique solution for the feasibility problem (23).
However, we can always scalewm such that (24) meets
with equality for m ∈ M. Since we assumeαo

m = 0 for
m 6= m̃, the optimal objective of the original problem (10) is
P o
r,max = αo

m̃σ2
d. By Proposition 2, this means, at optimality,

the Lagrangian in (15) isαo
m̃σ2

d. It follows that, under the
assumedαo, λo, we have

∑

m∈M wH
mRmDĩwm = 0. Since

λĩ > 0, the power constraint (11) for̃i is met with equality,
and we havePĩ,m̃ = P o

r,max.

As analyzed above, at optimality, except S-D pairm̃, relay ĩ
does not forward signal from any other sourcem ∈ M. Thus,
to obtainwo

m for m ∈ M, we now propose the following relay
power minimization problem by excluding the consideration
of S-D pairm̃ and restricting the power usage on relayĩ

min
{wm,m∈M},P̃r

P̃r (25)

subject to
∑

m∈M

wH
mRmDĩwm ≤ 0,

∑

m∈M

wH
mRmDiwm ≤ P̃r, ∀i 6= ĩ, (26)

and (24).

Following similar argument as Proposition 2, we can show
that zero duality gap holds for the problem (25). This problem
can be reformulated in the dual domain into an SDP, given by

min
y

cTy (27)

subject to

M+N
∑

j=1

yjΨm,j � 0, m ∈ M,

y � 0,dTy ≤ 1

wherey is defined the same way as in (20),c is defined the
same way asa in (20) except for them̃-th entry,cm̃, being
zero, andd is defined the same way asb in (20) except for
the (M + ĩ)-th entry being zero.

The terms corresponding to S-D pair̃m are eliminated in
both the objective and constraints of (27), which is consistent
with the problem formulation (25).

For the optimization problem (25), we repeat our procedure
to evaluate the values of{αo

m, m ∈ M}.2 If αo
m > 0 for all

m ∈ M, then we can find{wo
m, m ∈ M} similarly to Case 3

as discussed in the following. Otherwise, we follow the steps
to obtain the solution in Case 2. For example, suppose the
per-relay power constraint (26) and SNR constraint (24) are
active for some relaŷi and some S-D pair̂m, i.e., λo

î
> 0 and

αo
m̂ > 0. Let P̃ o

r denote the minimum value of (25). As the
minimum objective of (10) isP o

r,max, we haveP̃ o
r + Pî,m̃ ≤

P o
r,max, and we can findwo

m̂ with similar structure as in (21)
by substituting the optimal dual variables obtained from (27)
into (16).

So far, we have proposed our algorithm to obtain the optimal
beam vector solution{wo

m}, assuming only one entry inαo

and λ
o is strictly positive. The proposed procedure can be

extended to the general case where multiple entries inα
o and

λ
o are positive. In this case, we defineIα ∆

= {m | αo
m > 0}

and Iλ ∆
= {i | λo

i > 0}. According to Proposition 3, the
optimalwo

m for m ∈ Iα has a similar expression as in (21).
Then, we can solve a feasibility problem similar to (23) to
find wo

m for m ∈ {1, · · · ,M} \ Iα. The feasibility problem
can be reformulated into an SDP similar to (27) with updated
c, d, andΨm,j according toIα andIλ.

2Note that the problem (25) is feasible. This is because we consider Case
2 for the original problem, which means the problem is feasible. Thus, only
Cases 2 or 3 will happen in the subsequent iterative procedure.
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Algorithm 1 Solving the per-relay power minimization prob-
lem (10)

1: Check the feasibility condition (12).
2: Solve the SDP problem (20) to obtain the optimal dual

variables{αo,λo}.
3: ObtainIα = {m | αo

m > 0} andIλ = {i | λo
i > 0}.

4: SetΠα = Iα.
5: while Iα 6= {1, · · · ,M} do
6: ComputeKo

m and findwo
m in (21) for all m ∈ Πα.

7: Updatec andd as defined below the problem (27).
8: Solve the SDP problem (27).
9: Find Πα = {l ∈ {1, · · · ,M} \ Iα|αo

l > 0}
andΠλ = {q ∈ {1, · · · , N} \ Iλ|λo

q > 0}.
10: UpdateIα = Iα ∪ Πα andIλ = Iλ ∪Πλ.
11: end while
12: ComputeKo

m and findwo
m in (21) for all m ∈ Πα.

3) Case 3: λ
o ≻ 0. According to Lemma 1, we haveαo ≻

0. FromKm in (16), this means that ifKo
m−αo

mGm ≻ 0, then
αo
m > 0 for all m, and the solution is given by Proposition 3.

According to the proof in Appendix D, it can be shown that
αo

mP0

γm
fHmKo

m
†fm = 1, for m = 1, · · · ,M . In this case, since

α
o ≻ 0, we obtain the optimal beam vectorswo

m directly by
the semi-closed form solution given by (21).

Corollary 1: The maximum per-relay power for the original
problem (10) is given by

P o
r,max =

M
∑

m=1

αo
mσ2

d = σ2
d

M
∑

m=1

γm

P0fHmKo
m

†fm
. (28)

Proof: The first equality in (28) is due to the zero duality
gap by Proposition 2. As shown in Appendix D for Case 3,
we haveαo

mP0

γm
fHmKo

m
†fm = 1 at optimality. Substitutingαo

m

into the objective of (17), we arrive at the expression at the
right-hand side of (28).
Combining Cases 2 and 3, we summarize our algorithm
for solving per-relay power minimization problem (10) in
Algorithm 1.

Note that for both Cases 2 and 3, the beam vector solution
has the semi-closed form structure given in (21). Hence, we
can provide the necessary and sufficient condition for the
feasibility of (10). Note that forζm̃ in (22) to be real, the
term in the bracket at the right-hand side of (22) should be
positive. Therefore, the problem (10) is feasible if and only if
there existsα � 0, λ � 0, with

∑N
i=1 λi ≤ 1 such that

min
1≤m≤M

P0

γm
|fHmK†

mfm|2 − fHmK†
mGmK†

mfm > 0. (29)

C. Complexity Analysis

Now we analyze the complexity of Algorithm 1. Note that
the optimization problem (10) has been converted to an SDP
problem in (20) withM + N variables andM linear matrix
inequality constraints. The SDP can be solved efficiently
using interior-point methods with standard SDP solvers such
as SeDuMi [31], [32]. In the following, we analyze the
complexity based on the standard SDP form in [31]. Based

on the complexity analysis of the standard SDP form, for the
SDP withM + N variables, andM linear matrix inequality
constraints of the size given, the computation complexity per
iteration to solve (20) isO

(

(M +N)2MN2
)

. The number of
iterations to solve SDP is typically between 5 to 50 regardless
of problem size [31]. Thus, the complexity to solve the SDP
is O

(

(M +N)2MN2
)

.
Note that the overall computation complexity to solve

the optimization problem (10) depends on the values of the
optimal dual variables. As shown in Section III-B, if Case 3
happens, only one SDP problem (20) is solved,i.e., the com-
plexity is given byO

(

(M + N)2MN2
)

. If Case 2 happens,
at mostM SDP problems formulated as (27) are solved,i.e.,
the worst-case complexity is given byO

(

(M +N)2M2N2
)

.
In both cases, the algorithm has a polynomial worst-case
complexity w.r.t. the number of relays and S-D pairs. Note
that the above analysis is based on worst-case complexity
estimates. In practice, the complexity is much lower than the
worst-case estimate [31].

IV. M AXIMIZING M INIMUM SNR

The ultimate end-to-end performance measures of the net-
work such as the data rate or bit-error-rate (BER) are direct
functions of the received SNR. It is often desirable to maxi-
mize the worst received SNR at the destinations under power
constraints. In this section, we formulate the max-min SNR
problem subject to per-relay power constraints, and show that
it is the inverse problem of the min-max per-relay power
subject to SNR constraints. Thus, we propose an iterative
algorithm through bisection search to solve the max-min SNR
problem.

In a typical system, the relays have the same front-end
amplifiers and the destinations have the same minimum SNR
requirements. In the following, we assume identical per-relay
power budgets and minimum SNR requirements for the relays
and destinations, respectively. Extension to the non-uniform
power and/or SNR requirement scenarios can follow a similar
approach, and is omitted for simplicity.

The problem of maximizing the minimum received SNR
under a maximum per-relay power budget can be formulated
as

max
{wm},γ

γ (30)

subject to
M
∑

m=1

wH
mRmDiwm ≤ Pr,0, i = 1, · · · , N,

SNRm ≥ γ, m = 1, · · · ,M

wherePr,0 denotes the relay power budget. The min-max relay
power optimization problem (10) with a common SNR target
γ0 is given by

min
{wm},Pr

Pr (31)

subject to SNRm ≥ γ0, m = 1, · · · ,M,
M
∑

m=1

wH
mRmDiwm ≤ Pr, i = 1, · · · , N.
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Algorithm 2 Solving the min SNR maximization problem (30)

1: Set γ0,min such thatP o
r (γ0,min) < Pr,0 andγ0,max such

thatP o
r (γ0,max) > Pr,0. Setε.

2: Setγ0 =
γ0,min+γ0,max

2
.

3: Solve the optimization problem (31) underγ0.
4: if P o

r (γ0) > Pr,0 then
5: Setγ0,max = γ0 andPr = 0 (or Pr < Pr,0 − ε).
6: else
7: Setγ0,min = γ0 andPr = P o

r (γ0).
8: end if
9: if Pr < Pr,0 − ε then

10: Repeat (3)–(9); otherwise, returnγ0.
11: end if
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Fig. 2. CDF of maximum normalized relay power withM = 2.

We use the notationsγo(Pr,0) and P o
r (γ0) to denote the

optimal objectives in problems (30) and (31), to emphasize
their dependency onPr,0 andγ0, respectively. The following
proposition shows the property ofγo(Pr,0) as a function of
Pr,0.

Proposition 4: The optimal max received SNRγo(Pr,0) is
a continuous and strictly monotonically increasing function of
Pr,0, and anyγ < γo(Pr,0) is achievable.

Proof: See Appendix E.

Following Proposition 4, the min-max per-relay power
Pr,0 is achieved whenγo(Pr,0) = γ0, for any γ0, i.e.,
P o
r

(

γo(Pr,0)
)

= Pr,0. Hence the optimization problem (30)
is the inverse problem of (31),i.e.,

P o
r

(

γo(Pr,0)
)

= Pr,0, γo
(

P o
r (γ0)

)

= γ0.

As a result, the SNR maximization problem (30) can be
solved iteratively by solving the per-relay power minimization
problem (31) with bisection search on the maximum per-relay
power targetPr such thatPr → Pr,0. The steps to solve
the max-min SNR problem (30) using bisection search are
summarized in Algorithm 2. It is shown in [31] that SDP prob-
lems have nearly linear convergence regardless of the problem
size. Furthermore, it is well-known that the bisection algorithm
used in Algorithm 2 converges inlog(γ0,max−γ0,min)− log ε
iterations.
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Fig. 3. CDF of average normalized received signal power withM = 2.
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Fig. 4. CDF of average normalized received noise power withM = 2.

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the
performance of the proposed min-max relay power algorithm.
In simulation, the noise powers at the relay and destinationare
set toσ2

r = σ2
d = 1. The first and second hop channelshm

andgm are assumed i.i.d. zero-mean Gaussian with variance
1. The normalized source transmit power (against destination
noise power) is set toP0/σ

2
d = 10 dB. A total of 1000 feasible

realizations are used. Unless otherwise specified, the default
minimum SNR guarantees are set toγm = γ0 = 5 dB for
m = 1, · · · ,M .3

A. Effect of the Number of Relays

In order to study the effect of the number of relays,N ,
on the maximum relay power, we plot the CDF ofPr,max/σ

2
d

obtained in problem (10) under different channel realizations,
as shown in Fig. 2. We setM = 2. The number of relays
are chosen asN = 2i for i ∈ {0, · · · , 5}. It can be noticed
that asN increases, the CDF is shifted to the left, and it also
becomes more concentrated. In addition, the CDF curves do
not converge asN becomes very large. In fact, those curves are
uniformly shifted to the left. The uniform shift is because of
the power gain achieved by relay beamforming. The tightening

3Note that because of the differences between [29] and ours asdiscussed
in Section I-B, we do not perform any comparison of our solution with that
of [29] in simulation.
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Fig. 6. CDF of maximum normalized relay power withN = 4.

of CDF curves reflects the “hardening” of the effective channel
due to beamforming, in the sense that the distribution of the
effective channel becomes tighter.

The CDFs of the average received signal in (5) and noise
power in (6), each normalized againstσ2

d, with N = 2i for
i ∈ {0, · · · , 5} andM = 2 are shown in Fig. 3 and Fig. 4,
respectively. In both figures, we observe that, asN increases,
the CDF is shifted to the left. Furthermore, the amount of shift
decreases, and the CDF shape becomes tighter. In Fig. 4, as
N increases, the amplified noise is reduced to zero, and the
overall noise converges to the receiver noise, which is 0 dB.
This happens because the beam vector norm‖wm‖ decreases
as N increases. For Fig. 3, asN increases, the normalized
received signal power converges to 5 dB which is the minimum
SNR requirement.

To demonstrate the result of the max-min SNR problem
(30), in Fig. 5, the average minimum received SNR,i.e.,
minm SNRm versus averagePr,max/σ

2
d is plotted withM =

4, andN = 2i for i ∈ {1, · · · , 5}. To generate each curve,
we set the minimum SNR requirementγ0 from -10 dB to 10
dB. For eachγ0 value, 1000 realizations are generated and
the averagePr,max/σ

2
d and minm SNRm are computed for

each realization. We see from Fig. 5 that,minm SNRm is
a monotonically increasing function ofPr,max/σ

2
d. Also, for

fixed Pr,max/σ
2
d, the minimum received SNRminm SNRm

increases by more than 5 dB asN doubles.
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Fig. 7. Averageminm SNRm versus averagePr,max/σ2
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B. Effect of the Number of S-D Pairs

For fixedN = 4, the CDF of maximum relay powerPr,max

from the problem (10), normalized againstσ2
d, under various

channel realizations is shown in Fig. 6, withM = 2i for i ∈
{1, · · · , 4}. As expected, asM increases, more relay power
is needed,i.e., the CDF is shifted to the right.

In Fig. 7, the average minimum received SNR
(minm SNRm) versus averagePr,max/σ

2
d is presented

with N = 4, andM = 2i for i ∈ {1, · · · , 5}. We see that,
as expected, the averageminm SNRm increases with average
Pr,max/σ

2
d, while it decreases asM increases because the

number of SNR constraints increases. Consequently, the
relays increase transmission power in order to satisfy the
SNR requirementγ0 for all destinations.

C. Effect of Imperfect CSI

So far, true CSI is assumed. To observe the robustness of the
proposed algorithm w.r.t. the limited number of CSI feedback
bits and channel estimation error, we consider the following
two scenarios when second-hop perfect CSI is not available.

In Scenario 1, there is no error in estimating the second-
hop CSI. However, there is a limited number of feedback bits
in order to send data to the relays. We consider equiprobable
quantization of channel coefficients [33]. LetB denote the
number of available feedback bits. In the equiprobable quanti-
zation, every real and imaginary part of the channel coefficient
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on a subchannel is quantized with equal probability according
to the CSI distribution, which is complex Gaussian.

In Scenario 2, the second-hop channels are estimated with
estimation error; however, no feedback limit is imposed.
Specifically, let us definêh = h + αh̃, where h is the
true subchannel,̂h is the estimated subchannel used in the
optimization problem. The estimation error̃h is assumed
Gaussian,i.e., h̃ ∼ CN (0, 1). The weightα is set to adjust
the variance of error w.r.t. the variance of true CSI.

In Fig. 8, the CDF ofPr,max/σ
2
d under true CSI is compared

with that under imperfect CSI Scenario 1 with2B bits (B bits
for each real and imaginary parts), whereB = 2 and 3. Note
that the performance under limited feedback is close to the
case of true CSI. The degradation is similar for allN values.

Finally, Fig. 9 shows the CDF ofPr,max/σ
2
d of true CSI

as compared with that under imperfect CSI Scenario 2 with
the channel estimation error beingα = 0.1 and 0.3. Again,
we observe that the performance gap from the true CSI
case is relatively small. Furthermore, we observe that, unlike
Scenario 1, the performance is sensitive toN . In particular,
the performance degradation increases asN increases.

VI. CONCLUSIONS

In this paper, we have investigated the problem of relay
beamforming design in a multi-user peer-to-peer relay network
in a multi-channel system. Assuming perfect CSI, the problem
of minimizing the maximum per-relay power usage subject
to minimum received SNR guarantees is formulated. It is
shown that the non-convex problem satisfies strong duality.
We have expressed its dual problem as an SDP with poly-
nomial worst-case complexity. Based on the values of the
optimal dual variables, we have studied the optimal relay
beamforming vectors of the original problem in three cases.
These cases have reflected at optimality whether the minimum
SNR requirement at each S-D pair is met with equality, and
whether the power consumption at a relay is the maximum
among relays. Furthermore, we have shown that maximizing
the minimum received SNR subject to a fixed maximum relay
power constraint is the inverse problem of min-max relay
power subject to a minimum SNR constraint. The max-min
SNR problem is solved iteratively using a bisection search.

We have numerically evaluated the proposed algorithm, and
analyzed the effect of various system parameters on the
performance of the optimal solution. Furthermore, we have
investigated the effect of imperfect CSI over the second hop,
and quantified the performance loss due to limited feedback
or channel estimation error.

APPENDIX A
PROOF OFPROPOSITION1

Proof: The upper-bound ofSNRm is given by (7) by
ignoring the receiver noiseσ2

d in the denominator,i.e.,

SNRm
∆
=

P0|fHmwm|2
wH

mGmwm
. (A.1)

Note that a feasiblewm is not in the null space ofGm, i.e.,
wm /∈ null{Gm}. The upper-bound (A.1) is invariable w.r.t.
the scale ofw. For a fixed SNR upper-bound, the per-relay
power constraint (11) can be satisfied by scaling{w}. Hence,
a necessary feasibility condition of (10) is given by

max
wm /∈null{Gm}

P0|fHmwm|2
wH

mGmwm
> γm, m = 1, · · · ,M. (A.2)

Using the solution of the generalized eigenvalue problem, the
left-hand side of (A.2) is maximized by substitutingwm =
G†

mfm into (A.1). Noting that the maximum value of (A.1) is
P0f

H
mG†

mf , (12) is obtained and the proof is complete.

APPENDIX B
PROOF OFPROPOSITION2

Proof: In order to prove the strong duality property, (10)
is rewritten as an SOCP problem in conic form. The SOCP in
conic form is convex and therefore has zero duality gap [30].
We need to show that the dual of (10) is equivalent to the dual
of the SOCP.

The per-relay power constraint (11) is convex w.r.t.w
∆
=

[wT
1 , · · · ,wT

M ]T . However, the minimum received SNR con-
straint (9) is non-convex. Reformulating the SNR constraint
(9) in a conic form, we have

√

P0|wH
mfm| ≥ √

γm

∥

∥

∥

∥

[

G
1/2
m wm

σd

]
∥

∥

∥

∥

, m = 1, · · · ,M.

(B.1)

Note thatwm can have any arbitrary phase,i.e., it is obtained
uniquely up to a phase shift. The phase could be adjusted such
that wH

mfm becomes real-valued form = 1, · · · ,M . Hence,
the optimization problem (10) can be recast as

min
{wm},Pr,max

Pr,max (B.2)

subject to

√

P0

γm
wH

mfm ≥
∥

∥

∥

∥

[

G
1/2
m wm

σd

]∥

∥

∥

∥

, m = 1, · · · ,M,

(B.3)

and (11)

which is an SOCP. The problem (B.2) is non-convex since the
constraint (B.3) is not in conic form. It is known that strong
duality holds for SOCP in the conic form, but it may not hold
in general forms [30]. However, the primal-dual optimality
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conditions for the problems with constraints in the form of
(B.3) are provided in [34, Proposition 3]. Following a similar
proof, it can be shown that (B.2) has zero duality gap. In the
following, we show that the Lagrangian of (10) is the same
as the Lagrangian of (B.2) using a similar proof as in [35,
Proposition 1].

The Lagrangian of (10) is given by

L1 = Pr,max +

N
∑

i=1

λi

(

M
∑

m=1

wH
mRmDiwm − Pr,max

)

(B.4)

+

M
∑

m=1

αm

(

σ2
d +wH

mGmwm − P0

γm
|wH

mfm|2
)

.

The Lagrangian of (B.2) is obtained by

L2 = Pr,max +
N
∑

i=1

λ̃i

(

M
∑

m=1

wH
mRmDiwm − Pr,max

)

(B.5)

+

M
∑

m=1

α̃m

(

∥

∥

∥

∥

[

G
1/2
m wm

σd

]∥

∥

∥

∥

−
√

P0

γm
|wH

mfm|
)

.

Denotingϕm
∆
=

∥

∥

∥

∥

[

G
1/2
m wm

σd

]∥

∥

∥

∥

+
√

P0

γm
|wH

mfm| ≥ σd and con-

verting the last term of the Lagrangian (B.5), it is equivalent
to

L2 = Pr,max +

N
∑

i=1

λ̃i

(

M
∑

m=1

wH
mRmDiwm − Pr,max

)

+

M
∑

m=1

α̃m

ϕm

(

σ2
d +wH

mGmwm − P0

γm
|wH

mfm|2
)

.

Sinceϕm ≥ σd, by changing the variablesαm = α̃m

ϕm
, there

existsαm ≥ 0 for any α̃m ≥ 0 andm = 1, · · · ,M such that
(B.4) and (B.5) become exactly the same. As a result, strong
Lagrange duality holds for the non-convex problem (10).

APPENDIX C
PROOF OFLEMMA 1

Proof: Substituting (16) into (18), the constraint (18) is
equivalent to

RmDλ + αm

(

Gm − P0

γm
fmfHm

)

� 0. (C.1)

Using contradiction, we show thatGm − P0

γm
fmfHm is an

indefinite matrix. Suppose thatGm � P0

γm
fmfHm . SinceGm is

a positive-definite matrix, we haveP0f
H
mG−1

m fm ≤ γm. ( [35,
Lemma 1]). This contradicts the necessary condition for the
feasibility of (10) as shown in Proposition 1. Ifλo ≻ 0, there
existsαo

m > 0 such that constraint (18) is satisfied. Note that
the objective of the dual problem increases asαm increases.
If there existsλo

i = 0 for somei, thenαo
m can be zero for

somem.

APPENDIX D
PROOF OFTHEOREM 3

Proof: Suppose thatλo satisfies the necessary condition
in Lemma 1, i.e., the optimal dual variables are in the set
defined by Lemma 1. The constraint (18) can be rewritten as
an equivalent inequality using [35, Lemma 1] as follows. The
dual problem (17) is equivalent to

max
λ

max
α

M
∑

m=1

αmσ2
d (D.1)

subject to
αmP0

γm
fHmK−1

m fm ≤ 1, m = 1, · · · ,M, (D.2)

(19), and (14).

In the following, we show the duality between (D.1) and SIMO
beamforming problem similarly to [35]. Comparing (D.1) with
the optimization problem

max
λ

min
α

M
∑

m=1

αmσ2
d (D.3)

subject to
αmP0

γm
fHmK−1

m fm ≥ 1, m = 1, · · · ,M, (D.4)

(19), and (14),

we see that the inner maximization in (D.1) becomes mini-
mization in (D.3) and the SNR inequality is reversed. Substi-
tuting (16) into the left-hand side of (D.2), we define

Φm(αm)
∆
=

αmP0

γm
fHmK−1

m fm, (D.5)

which is a monotonically increasing function ofαm > 0 for
λ
o. Therefore, the constraints (D.2) and (D.4) are met with

equality at optimality. The two problems (D.1) and (D.3) have
the same optimal valueαo

m satisfyingΦm(αo
m) = 1 for m =

1, · · · ,M , i.e., the optimization problems (D.1) and (D.3) are
equivalent. The SIMO beamforming problem (D.3) is given
by substitutingw̃m = αmP0∑

M
m=1

αmσ2

d

K†
mfm into

max
λ

min
wm,α

M
∑

m=1

αmσ2
d (D.6)

subject to
αmP0|wH

mfm|2

‖K
1

2

mwm‖2
≥ γm, m = 1, · · · ,M, (D.7)

(19), and (14).

ForM destinations each equipped withN antennas, the inner
minimization of (D.6) is the SIMO beamforming problem,
where the transmit power and destinationm noise covariance

matrix are
∑M

m=1
αmσ2

d andK̃m
∆
=

∑
M
m=1

αmσ2

d

αmP0

Km, respec-
tively. The solution of the inner minimization of the SIMO
beamforming problem (D.6), is obtained bỹwo

m = K̃†
mfm.

Note that (D.3) is given by substituting̃wo
m into (D.6). The

solution w̃o
m can be scaled by any non-zero coefficientξ̃

such that the scaled̃ξw̃o
m is also an optimal solution. Hence,

the optimization problems (D.1) and (D.6) are equivalent.
Considering the condition forαo in Section III-B2, we have
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Φm̃(αo
m̃) = 1 sinceαo

m̃ > 0. Hence, the solution of (D.6)
can be used to obtain onlywo

m̃ in (10). The optimalwo
m for

m 6= m̃ cannot be obtained using the solution of (D.6) because
the constraints (D.2) and (D.4) are not met with equality if
αo
m = 0. The optimalm̃-th beam vector in (10) is given by

wo
m̃ = ζm̃Ko

m̃fm̃ since the strong duality holds for (10) as
shown in Proposition 2 and the solutioñwo

m̃ is unique only
up to a scale factor. Due to KKT conditions andαo

m̃ > 0, the
SNR constraint (9) is met with equality. The coefficient (22)is
obtained by substitutingwo

m̃ into P0w
H
m̃Fm̃wm̃

wH
m̃
Gm̃wm̃+σ2

d

= γm̃, which
completes the proof.

APPENDIX E
PROOF OFPROPOSITION4

Proof: Using contradiction, it can be shown that the
optimalγo(Pr,0) is strictly monotonically increasing function
of Pr,0. Suppose that{wm}Mm=1 is the optimal beam vector
of the max-min problem (30) achievingγo(Pr,0). Let us
assumePr,1 > Pr,0 and γo(Pr,1) ≤ γo(Pr,0) for some
Pr,1 and Pr,0. The beam vectors{wm}Mm=1 can be scaled
by a real-valued0 < χ < 1 such that, under{χwm}Mm=1,
the SNR becomesγo(Pr,1) with the resulting maximum per-
relay power usageχ2Pr,0 < Pr,1. This contradicts with the
assumption thatPr,1 is optimal for γ = γo(Pr,1). It is not
difficult to show thatγo(Pr,0) is continuous w.r.t.Pr,0. In
order to show that anyγ < γo(Pr,0) is achievable, let us

denoteν
∆
= argminm=1,··· ,M SNRm and

η
∆
=

σd
(

P0

γ wH
ν Fνwν −wH

ν Gνwν

)
1

2

> 0. (E.1)

Note that the denominator ofη is positive sinceγ < γo(Pr,0).
After some manipulation, it can be shown that{ηwm}Mm=1

achieves any arbitraryγ < γo(Pr,0).
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