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Abstract—For device-to-device (D2D) communication under-
laid in a cellular network with uplink resource sharing, both
cellular and D2D pairs may cause significant inter-cell inter-
ference (ICI) at a neighboring base station (BS). In this work,
under optimal BS receive beamforming, we jointly optimize the
power of a cellular user (CU) and a D2D pair for their sum
rate maximization, while satisfying minimum SINR requirements
and worst-case ICI limit in multiple neighboring cells. We solve
this non-convex joint optimization problem in two steps. First,
the necessary and sufficient condition for the D2D admissibility
under given constraints is obtained. Next, we consider joint power
control of the CU and D2D transmitters. We propose a power
control algorithm to maximize the sum rate. Depending on the
severity of ICI that D2D and CU may cause, we categorize
the feasible solution region into five cases, each of which may
further include several scenarios based on minimum SINR
requirements. The proposed algorithm is optimal when ICI to a
single neighboring cell is considered. For multiple neighboring
cells, we provide an upper bound on the performance loss by
the proposed algorithm and conditions for its optimality. We
further extend our consideration to the scenario of multiple
CUs and D2D pairs, and formulate the joint power control
and CU-D2D matching problem. We show how our proposed
solution for one CU and one D2D pair can be utilized to solve
this general joint optimization problem. Simulation demonstrates
the effectiveness of our power control algorithm and the nearly
optimal performance of the proposed approach in the setting of
multiple CUs and D2D pairs.

Index Terms—Device-to-device communication, inter-cell inter-
ference, power control, receive beamforming.

I. INTRODUCTION

The increasing popularity of mobile devices with data

hungry applications has resulted in a fast growing demand

for high-rate data access experiences. It is anticipated that

it will be challenging for the currently deployed Long Term

Evolution (LTE) and LTE-Advanced systems to satisfy such

demand in the future. New technologies to further improve
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the capacity and spectrum efficiency are required for future

cellular system evolution. One promising solution is device-

to-device (D2D) communication, in which nearby users can

setup a direct communication link to transmit data to each

other without going through the base station (BS), by reusing

cellular spectrum resources [2]–[5]. Such resource reuse by

both cellular users (CUs) and D2D pairs can offload cellular

traffic and improve radio resource utilization. As a result, it

is shown that D2D communication can increase the overall

network spectrum efficiency [2].

For D2D communication underlaid in a cellular system to

reuse spectrum resource assigned to CUs, uplink resource

sharing is in general preferred for several reasons [6], [7].

Downlink spectrum reuse for D2D communication would

require a D2D pair to have a new transmit chain, which

is more costly than uplink spectrum reuse, where only a

new receive chain is required at the D2D receiver (such as

in LTE systems). In addition, uplink traffic is often lighter

than downlink traffic, with uplink resources more likely being

available for D2D communication. Furthermore, it is easier

to manage the interference incurred at the BS [4]. When a

D2D pair reuses the channel resource of a CU, they generate

intra-cell interference to each other. Furthermore, both D2D

and CU transmissions cause inter-cell interference (ICI) to

neighboring cells. Thus, the use of D2D communication and

corresponding resource allocation need to ensure satisfactory

quality-of-service (QoS) for both D2D pairs and CUs, as well

as to maintain a satisfactory ICI limit to neighboring cells.

For a D2D underlaid cellular network, interference manage-

ment to D2Ds and CUs in the same cell has been investigated

in various aspects in the literature [6]–[22]. The works in

[6]–[15] focus on interference management to meet minimum

QoS requirements for both D2Ds and CUs. Maximizing the

sum rate of D2Ds and CUs while meeting the minimum QoS

requirements through power control, resource allocation, or

association techniques among users is considered in [16]–

[19]. The problem of joint D2Ds and CUs association and

power control to maximize the sum rate has been considered

in [20], [21]. Despite the above results, the ICI due to

D2D communication has not been investigated in the existing

literature. For a practical system, the ICI caused by both D2Ds

and CUs in a neighboring cell should be carefully controlled

to not exceed a certain level. In addition, due to the challenges

involved in the problem, existing power allocation schemes for

interference mitigation proposed in the literature are typically
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heuristics whose performance gap from the optimal cannot be

guaranteed.

In this work, we consider D2D communication underlaid

in a cellular system for uplink resource sharing. We assume

all users are equipped with a single antenna, while the BS

is equipped with multiple antennas. First, we focus on one

D2D pair sharing the uplink resource assigned to one CU. We

aim at jointly optimizing the power control at the CU and

D2D transmitters, under optimal BS receive beamforming, to

maximize the sum rate of the D2D and CU while satisfying

minimum SINR requirements and obeying worst-case ICI to

multiple neighboring cells. The formulated joint optimization

problem is non-convex. We propose a two-step approach to

find a solution:

• We determine the admissibility of the D2D pair under the

power, SINR, and ICI constraints, through a feasibility

test. The optimal beam vector for the CU is provided,

as well as the necessary and sufficient condition for the

D2D admissibility.

• Assuming the D2D pair is admissible, we propose an

approximate power control algorithm to maximize the

sum rate. We obtain the power solution of the CU and

D2D in closed form, by analyzing the feasible solution

region of the problem and the characteristics of the

solution in the feasible region. We show that, depending

on the severity of the ICI that D2D and CU each may

cause to the neighboring cell, the shape of the feasible

solution region can be categorized into five cases, each of

which may further include several scenarios depending on

the minimum SINR requirements. With a total of sixteen

unique scenarios, we derive the joint power solution in

closed form for each scenario. The proposed algorithm

is optimal when ICI to a single neighboring cell is

considered. For ICI to multiple neighboring cells, we

provide an upper bound on the performance loss by the

proposed algorithm and conditions for its optimality.

Next, we extend our consideration to the scenario of multi-

ple CUs and D2D pairs, and formulate the joint power control

and CU-D2D matching problem. The joint optimization prob-

lem is a mixed integer programming problem that is difficult

to solve. Instead, as a suboptimal approach, we show how our

provided solution for one CU and one D2D pair can be utilized

to find a solution by breaking down the joint optimization

problem into a joint power optimization problem and a CU-

D2D matching problem.

Simulation shows that substantial performance gain is

achieved by the proposed power control algorithm over two

alternative approaches for a single CU and D2D pair. Further-

more, for multiple CUs and D2D pairs, simulation shows that

our proposed approach provides close to optimal performance.

A. Related Work

To limit the intra-cell interference due to resource sharing

by CUs and D2Ds, different approaches have been proposed

to meet minimum QoS requirements. As one of the earliest

works, [8] has proposed a simple power control scheme for

the D2D pair to constrain the SINR degradation of the CU,

with limited interference coordination available between D2D

and CU. In [13], the interference link condition between D2D

and CU is obtained through the D2D pairs’ received power

measurement during uplink transmission, and an interference-

aware resource allocation scheme for D2D pairs has been

proposed. To limit the interference at the D2D receiver, [7] has

proposed an interference limited cell area, where a D2D pair

and multiple CUs cannot coexist for channel reuse. For uplink

resource sharing, [14] has proposed to scale the power of a

D2D transmitter according to the pathloss between the D2D

transmitter and the BS to satisfy the CU SINR requirement.

Without ICI consideration, the sum rate maximization of

D2D and CU under their respective minimum QoS require-

ments has been studied in the literature. In [16], optimal time-

frequency resource allocation and power control for sum rate

maximization of a D2D pair and a CU has been studied, under

rate limitation due to modulation and coding, and the CU’s

minimum QoS requirement. For a single-antenna system, opti-

mal power allocation for sum rate maximization of a D2D pair

and a CU has been obtained in [17]. In contrast, we consider

a multi-antenna BS and ICI constraints when optimizing the

CU and D2D powers, which is more general and technically

more challenging. With only the statistics of the interfering

link from a CU to a D2D pair being available at the BS,

[18] have proposed a probabilistic access control for the D2D

pair to maximize the expected sum rate for uplink resource

sharing. A low complexity D2D-CU association scheme has

been proposed in [19] to maximize the sum rate of D2D pairs

and CUs under power and QoS constraints.

The gaming approach has also been considered for D2D

resource sharing [22], [23]. The problem of joint association

and power control for D2D pairs has been studied in [22]

using a pricing-based game theoretical approach to satisfy the

SINR requirements of D2D pairs and CUs. A nontransferable

coalition formation game has been considered in [23] to solve

the energy-efficient resource sharing problem for mobile D2D

multimedia communication.

To the best of our knowledge, neither ICI to neighboring

cells nor BS receive beamforming has been considered in

the literature studying the joint power optimization of CU

and D2D for sum rate maximization under their respective

minimum SINR requirements.

B. Organization and Notations

The rest of this paper is organized as follows. In Section II,

the system model is described and the sum rate maximization

problem is formulated. In Section III, a closed-form expression

of the optimal beam vector is derived, and the necessary

and sufficient condition for admissibility of the D2D pair is

obtained. The power control solution at the CU and D2D

transmitter is obtained through the study of five cases of

ICI conditions in Section IV. In Section V, we extend our

consideration to multiple CUs and D2D pairs, and present our

approach for the joint power control and CU-D2D matching

problem by utilizing the previous solution. Numerical results

are presented in Section VI, and conclusions are drawn in

Section VII.
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Fig. 1: D2D communication in uplink cellular communication.

Notation: We use ‖ · ‖ to denote the Euclidean norm of a

vector. I stands for an N ×N identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We study the underlaying D2D communication in a cellular

system, where D2D devices reuse the spectrum resource

already assigned to the CUs for their uplink communication.

We assume orthogonal spectrum resource allocation among

the CUs within a cell. Thus, these CUs do not interfere with

each other. When a D2D pair communicates using the channel

assigned to a CU, the D2D pair and the CU cause intra-cell

interference to each other. We first focus on a single CU and

a single D2D pair attempting to reuse the CU’s channel as

shown in Fig. 1. We assume that all users are equipped with a

single antenna and the BS is equipped with N antennas. The

BS centrally coordinates the transmission from the CU and

the D2D pair. In Section V, we extend our consideration to

the scenario of multiple CUs and D2D pairs.

Let PD and PC denote the transmit power of the D2D

pair and the CU, respectively. The SINR at the D2D receiver,

denoted by γD, is given by

γD =
PD|hD|2

σ2
D + PC |gC |2

(1)

where hD ∈ C is the channel between the D2D pair, gC ∈ C is

the interference channel between the CU and the D2D receiver,

and σ2
D is the noise variance at the D2D receiver. The uplink

received SINR at the BS from the CU is given by

γC =
PC |w

HhC |
2

σ2 + PD|wHgD|2
(2)

where hC ∈ CN×1 is the channel between the CU and the

BS, gD ∈ C
N×1 is the interference channel between the D2D

transmitter and the BS, w is the receive beam vector at the BS

with unit norm, i.e., ‖w‖2 = 1, and σ2 is the noise variance

at the BS.1

Both D2D and CU transmissions cause ICI in a neighboring

cell. In this work, we focus on ICI for uplink transmission at

neighboring BSs. However, our approach can also be applied

to considering ICI in the downlink transmission scenario. Let

b denote the number of neighboring cells. Let fC,i ∈ CN×1

1The noise term in SINR expressions, i.e., σ2 and σ2
D

, can be treated as
the receiver noise plus inter-cell interference power.

and fD,i ∈ CN×1 denote the ICI channels from the CU and

the D2D transmitter to neighboring BS i, respectively, for

i = 1, · · · , b. Since the beam vector at neighboring BS i is

typically unknown to the CU and D2D pair, we consider the

worst-case ICI, denoted by PI,i, given by

PI,i = PC‖fC,i‖
2 + PD‖fD,i‖

2. (3)

Note that PI is an upper bound of the actual ICI, because for

a neighboring BS with the beam vector w̃, the received signal

is |w̃H f | ≤ ‖f‖.

We assume perfect knowledge of the communication chan-

nels and intra-cell interfering channels, i.e., hC , hD, gc, and

gD.2 For the ICI channels, note that only channel power

gains are needed to obtain PI,i. They can be measured at

neighboring BSs and shared with the BS of the desired cell

through the backhaul.

B. Problem Formulation

Let Pmax
C and Pmax

D denote the maximum transmit power at

the CU and D2D transmitters, respectively. Our goal is to max-

imize the sum rate of the D2D pair and the CU by optimizing

the transmit powers {PD, PC} and the receive beam vector

w, while satisfying the worst-case ICI and minimum SINR

requirements under per-node power constraints. The problem

is formulated as follows:

P1: max
PD ,PC ,w

log(1 + γC) + log(1 + γD)

subject to γC ≥ γ̃C , (4)

γD ≥ γ̃D, (5)

PC ≤ Pmax
C , PD ≤ Pmax

D , (6)

PI,i ≤ Ĩ, i = 1, · · · , b (7)

where γ̃C and γ̃D are the minimum SINR requirements of the

CU and D2D pair, respectively, and Ĩ is the worst-case ICI

threshold in neighboring cells.

The optimization problem P1 is non-convex, due to the

non-convex objective function. Solving P1 requires two steps.

First, we need to determine whether the D2D pair can be

admitted to reuse the CU’s channel. Second, if the D2D pair

can be admitted, we optimize the powers and beam vector to

maximize the sum rate in P1. The first problem can be cast as

a feasibility test as shown in the next section. For the second

problem, we will derive the optimal power solution {P o
D, P o

C}
when b = 1. For b > 1, we will propose an approximate power

control algorithm by applying the results obtained for b = 1.

III. ADMISSIBILITY OF D2D

Given the power constraints, SINR requirements, and ICI

threshold, the admissibility of the D2D pair can be determined

by evaluating the feasibility of the problem in P1 given by

Find {PD, PC ,w} (8)

subject to (4), (5), (6), (7).

2Note that the additional signaling overhead due to D2D communication is
mainly on the feedback of channels {hD, gC} to the BS. These two channels
are typically necessary for establishing D2D communication.
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A necessary condition for P1 being feasible is that CU SINR

constraint (4) under the optimal w should be met for some

{PD, PC}. For any given {PC , PD}, we obtain the optimal

beam vector wo that maximizes γC . This is a receive beam-

forming problem given by

max
w:‖w2‖=1

PCw
HHCw

wHΛDw
(9)

where HC
∆
= hCh

H
C and ΛD

∆
= σ2I + PDgDgH

D . The

maximization problem (9) is a generalized eigenvalue problem,

and the optimal beam vector is given by

wo =
Λ−1

D hC

‖Λ−1
D hC‖

. (10)

The SINR of the CU in (2) under the optimal wo is given by

max
w

γC = PCh
H
CΛ−1

D hC (11)

which is a function of {PD, PC}.

From the definition of ΛD, and applying the matrix in-

version lemma [24], we derive Λ−1
D as Λ−1

D = 1
σ2

(

I −

PDgDgH
D

σ2+PD‖gD‖2

)

. Substituting the expression of Λ−1
D into (11)

and after some algebraic manipulation, the SINR constraint

(4) under the optimal beamforming can be re-expressed as

PC‖hC‖
2

σ2

(

1−
ρ2

1 + σ2

PD‖gD‖2

)

≥ γ̃C (12)

where ρ
∆
=

|hH
C gD|

‖hC‖‖gD‖ is the correlation coefficient of the

channels hC and gD, and |ρ| ≤ 1.

For P1 to be feasible, there should exist at least one power

solution pair {PD, PC} such that constraints (5)-(7) and (12)

hold. For notation simplicity, in the following, we denote x
∆
=

PD and y
∆
= PC . We now study the SINR constraints (5) and

(12) and state the following lemma.

Lemma 1: For γD = γ̃D and γC = γ̃C , the power solution

{xI , yI} is unique and is given by

xI =
ξ

2(1−K1)
, yI =

ξ

2(1−K1)βK3
−

σ2
D

K3
(13)

where α
∆
= σ2γ̃C

‖hC‖2 , β
∆
= γ̃D

|hD|2 , K1
∆
= ρ2, K2

∆
= σ2

‖gD‖2 , K3
∆
=

|gC |
2, K4

∆
= β(αK3 + σ2

D(1 − K1)) − K2, K5
∆
= 4(1 −

K1)βK2(αK3 + σ2
D), and

ξ = β
(

αK3 + σ2
D(1−K1)

)

−K2 +
√

K2
4 +K5.

Proof: See Appendix A.

By Lemma 1 and combining constraints (6) and (7), the

necessary and sufficient condition for the D2D pair to be

admissible is given as follows.

Necessary and sufficient condition: The D2D pair is admis-

sible if {xI , yI} in (13) satisfies

0 < xI ≤ Pmax
D , (14)

0 < yI ≤ Pmax
C , (15)

c1,iyI + c2,ixI ≤ 1, i = 1, · · · , b (16)

where c1,i
∆
=

‖fC,i‖
2

Ĩ
, and c2,i

∆
=

‖fD,i‖
2

Ĩ
.

Note that {xI , yI} is the minimum power level required

to satisfy the minimum SINR requirements. Thus, for any

feasible {x, y}, we have x ≥ xI and y ≥ yI . Constraints

(14) and (15) ensure the maximum power at the D2D and

CU are enough to meet their respective SINR requirements.

Constraint (16) ensures the ICI constraints can be satisfied.

IV. POWER CONTROL FOR D2D AND CU

Assuming the D2D pair is admissible, we now solve the sum

rate maximization problem P1. With the optimal wo given in

(10), we need to solve P1 with respect to {PD, PC}. Due

to the non-convex objective, finding an optimal solution is

challenging. Instead, we propose the following approximation

to obtain the power solution.

Note that the ICI constraints in (7) can be equivalently

written as

c1,ix+ c2,iy ≤ 1, i = 1, · · · , b. (17)

We replace these ICI constraints with a single ICI constraint

and ensure that it satisfies the ICI requirements in all neighbor-

ing cells. We denote this constraint by c1y + c2x ≤ 1, where

c1 and c2 are determined as follows.

Define c1,max , maxi c1,i, c2,max , maxi c2,i, x̃ ,

mini
1−c1,iP

max

C

c2,i
, and ỹ , mini

1−c2,iP
max

D

c1,i
. Note that if there

exists i such that c1,iP
max
C ≥ 1, then from (17), y ≤ 1

maxi c1,i
,

and we have c1 = c1,max. Otherwise, if c1,iP
max
C < 1 for

all i, then the intersection of c1y + c2x = 1 and y = Pmax
C

is given by (x̃, Pmax
C ). Similarly, if there exists j such that

c2,jP
max
D ≥ 1, then c2 = c2,max. Otherwise, the intersection

of c1y+ c2x = 1 and x = Pmax
D is given by (Pmax

D , ỹ). Based

on this, we determine c1 and c2 in four possible cases:3

1) If ∃ i, j, such that c1,iP
max
C ≥ 1 and c2,jP

max
D ≥ 1:

c1 = c1,max and c2 = c2,max.

2) If ∃ i, such that c1,iP
max
C ≥ 1, and ∀j, c2,jP

max
D < 1:

c1 = c1,max and c2 =
1−c1,maxỹ

Pmax

D

.

3) If ∀i, c1,iP
max
C < 1, and ∃ j, such that c2,jP

max
D ≥ 1:

c1 =
1−c2,maxx̃

Pmax

C

and c2 = c2,max.

4) If ∀i, j, c1,iP
max
C < 1 and c2,jP

max
D < 1: c1 =

Pmax

D −x̃
Pmax

D
Pmax

C
−x̃ỹ and c2 =

Pmax

C −ỹ
Pmax

D
Pmax

C
−x̃ỹ .

Note that when b = 1, the approximation becomes accurate

to represent the ICI constraint. Substituting the expression of

γC under the optimal wo at the left hand side of (12) in P1, and

approximating multiple ICI constraints in (17) with a single

ICI constraint, we modify P1 into the following problem

P2: max
(x,y)

logR(x, y) (18)

subject to y
(

1−
K1x

K2 + x

)

l ≥ γ̃C , (19)

ax

σ2
D +K3y

≥ γ̃D, (20)

y ≤ Pmax
C , x ≤ Pmax

D , (21)

c1y + c2x ≤ 1 (22)

3Note that other values of c1 and c2 may also be chosen; however, our
method strives to create a new feasible region that is close to the original
one, so that the loss due to approximation is small.
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where

R(x, y)
∆
=

(

1 +
ax

σ2
D +K3y

)(

1 + y
(

1−
K1x

K2 + x

)

l

)

,

(23)

with a
∆
= |hD|2 and l

∆
= ‖hC‖

2/σ2.

Let Axy denote the feasible solution region of the problem

P2. Note that by modifying P1 to P2, we shrink the original

feasible region of P1 to Axy . This is done by replacing

the feasible region boundaries formed by the intersections of

the multiple ICI constraints in (17) with a single boundary

described by (22). The following lemma gives the locations

of the optimal power pair in Axy .

Lemma 2: The optimal power solution pair (xo, yo) is at

the vertical, horizontal, or tilted boundary of Axy , given by

x = Pmax
D , y = Pmax

C , or c1y + c2x = 1, respectively.

Proof: See Appendix B.

Note that, depending on the system parameter setting, the

shape of the feasible region Axy varies. The boundaries of Axy

may or may not include the tilted boundary segment c1y +
c2x = 1. In the following, we consider both cases and obtain

the optimal solution to P2 for each case.

If the boundaries of Axy do not include c1y + c2x = 1,

the optimal solution satisfies (22) with strict inequality. By

Lemma 2, it follows that at least one of xo and yo equals

its maximum value (Pmax
D or Pmax

C ), and the optimal (xo, yo)
is at either the vertical or horizontal boundary line of Axy.

In this case, the optimal power pair is given in the following

proposition.

Proposition 1: If the boundaries of the feasible region Axy

do not include c1y + c2x = 1, then the optimal power pair

(xo, yo) for P2 is at one end point of the vertical or horizontal

boundary line segment of Axy .

Proof: See Appendix C.

If the boundaries of Axy include c1y + c2x = 1, then

at optimality, (xo, yo) is on the horizontal, vertical, or tilted

boundary line of Axy. The following proposition provides the

solution to P2 in this case.

Proposition 2: If the boundaries of the feasible region Axy

include c1y + c2x = 1, then the optimal power pair (xo, yo)
is given in one of the two cases: 1) An end point of the

horizontal, vertical, or tilted boundary line segment of Axy;

or 2) an interior point of tilted boundary line segment of Axy,

whose x-coordinate is one of the roots of the following quartic

equation

e4x
4 + e3x

3 + e2x
2 + e1x+ e0 = 0 (24)

where {ei}
4
i=0 are given as in (D.1)–(D.5) in Appendix D.

The optimal CU power is yo = (1 − c2x
o)/c1.

Proof: See Appendix D.

Note that the roots of a quartic equation have closed-form

expressions. Furthermore, we do not need to compute all the

roots of (24), since not all of them are in Axy . In the following,

we classify different scenarios leading to different types of the

boundaries for Axy . We obtain simple inequalities to check

the conditions under which each scenario applies. For each

scenario, we discuss the corresponding optimal power solution

(xo, yo).
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Fig. 2: Moderate ICI from CU and D2D.

A. Moderate ICI from CU and D2D

We first consider the case where the boundary line c1y +
c2x = 1 intersects both the horizontal and vertical boundary

lines. This means that c1P
max
C + c2P

max
D ≥ 1, and the x-

intercept and y-intercept of c1y + c2x = 1 are greater than

Pmax
D and Pmax

C , respectively. These result in the following

conditions

1− c2P
max
D

c1
≤ Pmax

C ≤
1

c1
, (25)

1− c1P
max
C

c2
≤ Pmax

D ≤
1

c2
. (26)

Note that given the definitions of c1 and c2, conditions

(25) and (26) mean that the ICI caused by the CU or D2D

transmitter alone, at each maximum power, is less than the ICI

threshold, while combined the ICI caused by both of them is

greater than the ICI threshold. In other words, both the CU

and the D2D transmitter cause relatively moderate ICI to the

neighboring cell.

In this case, depending on SINR requirements (19) and (20),

there are several different shapes of the feasible region Axy , as

shown in Figs. 2a–2f, where Axy is the shaded area. The curve



6

I

F

G

y

x
max

D
P

C

Q

(a) Scenario 7

I
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Q

(b) Scenario 8

I D

H

y

x
max

D
P

Q

C

(c) Scenario 9

I

A E

y

max
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x

B
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I

A B

F

y

max

CP

xT
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I

F

G

y

max
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x

B

T

(f) Scenario 12

Fig. 3: (a)-(c) Strong ICI from CU and moderate ICI from

D2D; (d)-(f) Moderate ICI from CU and strong ICI from D2D.

and line passing through point I correspond to constraints (19)

and (20) with equality. The feasible region Axy’s in Figs.

2a–2f correspond to six scenarios, depending on whether the

line and curve passing through point I intersect the vertical,

horizontal, or tilted boundary. In the following, we derive the

optimal power control solution in each of these six scenarios.

1) Scenario 1: The feasible solution region Axy is depicted

in Fig. 2a as the shaded area. Points A, B, C, E, and I are the

intersections of two lines (or a line and curve). Both curve

I-E and line I-A intersect with the horizontal boundary line

y = Pmax
C . In this scenario, we have xE ≤ xB. It occurs under

the following condition:

K2

(

K1

1− γ̃C

lPmax

C

− 1

)−1

≤
1− c1P

max
C

c2
. (27)

By Lemma 2 and Proposition 1, the optimal power pair

(xo, yo) can be one of points A and E. Therefore, the set

I

F

G

y

xT

Q

(a) Scenario 13

I

A E

y

x

max

CP

max

D
P

(b) Scenario 14

I

A

D

y

x

max

CP

max

D
P

M

(c) Scenario 15

I D

H

y

max

CP

x
max

D
P

(d) Scenario 16

Fig. 4: (a) Strong ICI from CU and D2D; (b)-(d) Weak ICI.

of candidate power pairs is given by

P(A.1) =
{(

β(σ2
D +K3P

max
C ), Pmax

C

)

,
(

K2

( K1

1− γ̃C

lPmax

C

− 1
)−1

, Pmax
C

)}

. (28)

2) Scenario 2: As shown in Fig. 2b, in this scenario, the

curve I-F and line I-A intersect the tilted boundary line and

horizontal boundary line, respectively. Note that xF is the x-

coordinate of point F, which is the intersection of the curve

I-F and the tilted boundary line B-F. We can find xF by

setting constraints (19) and (22) with equality. This results

in a quadratic equation given by

c2(1−K1)x
2 − θx+K2(αc1 − 1) = 0 (29)

where θ
∆
= 1−K1−c2K2−αc1. The uniqueness of the feasible

solution of (29) is stated in the following lemma.

Lemma 3: For Axy as shown in Fig. 2b, the feasible

solution of the quadratic equation (29) is unique and is given

by

xF =
θ +

√

θ2 − 4c2(1−K1)K2(αc1 − 1)

2c2(1 −K1)
. (30)

Proof: See Appendix E.

Note that in Scenario 2, we have xA ≤ xB ≤ xF ≤ Pmax
D .

The conditions for this scenario to happen are as follows:

β(σ2
D +K3P

max
C ) ≤

1− c1P
max
C

c2
, (31)

1− c1P
max
C

c2
≤ xF ≤ Pmax

D . (32)

By Proposition 2, the candidate pairs for (xo, yo) are points

A, B, F, and any interior point of line B-F. For the last case
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to happen, xo should be within the range
1−c1P

max

C

c2
< xo <

xF , which means the roots of (24) should satisfy this range

constraint. Let S2 be the set of roots that meet the above range

constraint. The corresponding set of points on the interior of

line B-F is given by A2
∆
=
{(

x, (1 − c2x)/c1
)

: x ∈ S2

}

.

Now, we have the set of candidate pairs for (xo, yo) as

P(A.2) =
{(

β(σ2
D +K3P

max
C ), Pmax

C

)

,
(

xF, (1− c2xF)/c1

)

,
(

(1− c1P
max
C )/c2, P

max
C

)

,A2

}

(33)

where the first three pairs are the coordinates for points A, F,

and B, respectively.
3) Scenario 3: As illustrated in Fig. 2c, in this scenario,

the curve I-D and line I-A intersect the horizontal and vertical

boundary lines, respectively. The entire tilted boundary B-C is

in the feasible region. In this scenario, we have xA ≤ xB and

yD ≤ yC. The conditions for this scenario to occur are given

by

α

(

1−
K1

1 +K2/Pmax
D

)−1

≤
1− c2P

max
D

c1
, (34)

and (31).

By Proposition 2, (xo, yo) could be either points A, B, C, D, or

if (xo, yo) lies on the interior of line B-C, xo should be within

the range xB < xo < xC , i.e.,
1−c1P

max

C

c2
< xo < Pmax

D .

Let S3 denote the set of roots (24) satisfying the above range

constraint. By Proposition 2, the set of candidate pairs on the

interior of line B-C is given by A3
∆
=
{(

xo, (1− c2x
o)/c1

)

:
x ∈ S3

}

.

Thus, in Scenario 3, the set of candidate pairs is given by

P(A.3)=
{(

β(σ2
D +K3P

max
C ), Pmax

C

)

,
(

(1− c1P
max
C )/c2, P

max
C

)

,
(

Pmax
D , (1− c2P

max
D )/c1

)

,
(

Pmax
D , α

(

1−
K1

1 +K2/Pmax
D

)−1)

,A3

}

(35)

where the first four pairs are the coordinates of points A, B,

C, and D, respectively.
4) Scenario 4: As shown in Fig. 2d, in this scenario, both

curve I-F and line I-G intersect the tilted boundary line B-C.

The condition for this scenario to happen is as follows:

1− c1P
max
C

c2
≤ xG ≤ xF ≤ Pmax

D (36)

where xG can be obtained by setting constraints (20) and (22)

with equality, given by

xG =
σ2
Dβ + βK3/c1
1 + βK3c2/c1

. (37)

By Proposition 2, to find the optimal power pair, we need

to consider points G and F. The set of candidate power pairs

on the interior of line G-F is given by A4
∆
=
{(

xo, (1 −
c2x

o)/c1
)

: x ∈ S4

}

where S4 denotes the set of roots (24)

which meet xG < xo < xF.

Thus, the set of candidate pairs is given as follows:

P(A.4) =
{(

xG, (1 − c2xG)/c1

)

,
(

xF, (1− c2xF)/c1

)

,A4

}

.

(38)

TABLE I: Moderate ICI from CU and D2D (under conditions

(25) and (26))

Condition Set of candidates for the optimal powers

(27) Po
= P(A.1) in (28)

(31) and (32) Po
= P(A.2) in (33)

(31) and (34) Po
= P(A.3) in (35)

(36) Po
= P(A.4) in (38)

(34) and (39) Po
= P(A.5) in (40)

(41) Po
= P(A.6) in (42)

5) Scenario 5: As shown in Fig. 2e, in this scenario,

line I-G intersects tilted boundary line G-C, while curve I-

D intersects the vertical boundary line x = Pmax
D . In this

scenario, we have xB ≤ xG ≤ Pmax
D and yD ≤ yC. The

conditions under which this scenario happens are given by

1− c1P
max
C

c2
≤ xG ≤ Pmax

D , (39)

and (34).

Based on Proposition 2, (xo, yo) could be either points G, C,

D, or if (xo, yo) is on the interior of line G-C, xo should be

within the range xG < xo < Pmax
D .

Let S5 denote the set of roots of (24) within the above range

of xo. The set of candidate points on the interior of line G-C

is A5
∆
=
{(

xo, (1− c2x
o)/c1

)

: x ∈ S5

}

.

Hence, the set of candidate pairs for (xo, yo) in this scenario

is given by

P(A.5) =
{(

xG,
1− c2xG

c1

)

,
(

Pmax
D , (1− c2P

max
D )/c1

)

,
(

Pmax
D , α

(

1−
K1

1 +K2/Pmax
D

)−1
)

,A5

}

. (40)

6) Scenario 6: As depicted in Fig. 2f, this scenario happens

when both curve I-D and line I-H intersect the vertical

boundary line x = Pmax
D . In this scenario, we have yH ≤ yC.

The condition for this scenario to happen is given by

Pmax
D − βσ2

D

βK3
≤

1− c2P
max
D

c1
. (41)

In this scenario, the boundaries of Axy do not include

the tilted boundary line. By Proposition 1, it is sufficient

to consider only points H and D to find the optimal power

solution. The set of candidates for the optimal powers is thus

given by

P(A.6) =
{(

Pmax
D , α

(

1−
K1

1 +K2/Pmax
D

)−1)

,

(

Pmax
D ,

Pmax
D − βσ2

D

βK3

)}

. (42)

We summarize in Table I the candidate solution sets for the

above six scenarios for the case where conditions (25) and

(26) hold.

B. Strong ICI from CU and Moderate ICI from D2D

Consider the case in which the tilted line c1y+c2x = 1 only

intersects the vertical line x = Pmax
D , but does not intersect the

horizontal line y = Pmax
C . This means that the x-intercept and
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y-intercept of c1y + c2x = 1 are greater than Pmax
D and less

than Pmax
C , respectively. The resulting conditions are given by

1

c1
≤ Pmax

C , (43)

and (26).

Note that the condition (43) means the ICI caused by the CU

under its maximum power is greater than the ICI threshold.

Along with (26), these conditions correspond to the case where

the ICI caused by the CU is strong, while the ICI caused by

the D2D transmitter is moderate.

In this case, by SINR requirements (19) and (20), the nec-

essary and sufficient condition to set up D2D communication

is given by (14) and (16). The feasible region Axy can have

three different shapes as shown in Figs. 3a–3c, depending on

whether the line and curve passing through point I intersect

the vertical or tilted boundary line. Accordingly, we derive

the optimal power control solution in these three scenarios as

follows.

1) Scenario 7: As shown in Fig. 3a, in this scenario, both

curve I-F and line I-G intersect the tilted boundary line. The

condition under which this scenario happens is given by

0 ≤ xG ≤ xF ≤ Pmax
D (44)

where xF and xG are given in (30) and (37), respectively.

Let P(B.1) denote the set of candidate pairs in this scenario.

Note that the feasible region Axy has the same shape as that

in Scenario 4 in Fig. 2d. Thus, these two scenarios have the

same set of candidate pairs, i.e., P(B.1) = P(A.4).

2) Scenario 8: As depicted in Fig. 3b, in this scenario,

line I-G and curve I-D intersect the tilted boundary line G-C

and vertical boundary line, respectively. This scenario occurs

when xG ≤ xC and yD ≤ yC, which results in the following

conditions:

0 ≤ xG ≤ Pmax
D , (45)

and (34).

From Fig. 3b, we see that the shape of Axy is the same as

that of Scenario 5 in Fig. 2e. Thus, these two scenarios have

the same set of candidate pairs. Let P(B.2) denote the set of

candidate power pairs in Scenario 8. We have P(B.2) = P(A.5).

3) Scenario 9: As illustrated in Fig. 3c, this scenario

happens when both curve I-D and line I-H intersect the

vertical boundary line. By similar discussion as the above,

the condition for this scenario to happen is the same as that

in Scenario 6 in Fig. 2f, which is given by (41). As a result,

the set of candidate pairs, denoted by P(B.3), is the same as

that in Scenario 6, i.e., P(B.3) = P(A.6).

The candidate solution sets for these three scenarios for the

case with conditions (26) and (43) are summarized in Table

II.

C. Moderate ICI from CU and Strong ICI from D2D

Now consider the case in which line c1y + c2x = 1 only

intersects the horizontal line y = Pmax
C , but does not intersect

the vertical line x = Pmax
D . Similar to the discussion in

Section IV-B, this means that the x-intercept and y-intercept

TABLE II: Strong ICI from CU and Moderate ICI from D2D

(under conditions (26) and (43))

Condition Set of candidates for the optimal powers

(44) Po
= P(B.1)

= P(A.4)

(34) and (45) Po
= P(B.2)

= P(A.5)

(41) Po
= P(B.3)

= P(A.6)

of c1y + c2x = 1 are greater than Pmax
C and less than Pmax

D ,

respectively, which are equivalent to the following conditions:

1

c2
≤ Pmax

D , (46)

and (25).

These conditions correspond to the case where the ICI

caused by the CU is moderate, while the ICI caused by the

D2D transmitter is strong. Similar to the previous cases, de-

pending on the SINR requirements (19) and (20), the feasible

region of Axy can have three different shapes as shown in

Figs. 3d–3f. The optimal power pair for each of these three

scenarios are discussed below.

1) Scenario 10: The feasible region is shown in Fig. 3d.

In this scenario, both curve I-E and line I-A intersect the

horizontal boundary line. The shape of the feasible region Axy

is the same as that of Scenario 1, with the condition to occur

given by (27). Thus, the set of candidate pairs, denoted by

P(C.1), is given by P(C.1) = P(A.1).

2) Scenario 11: As shown in Fig. 3e, this scenario happens

when curve I-F and line I-A intersect the tilted boundary

line B-F and horizontal boundary line, respectively. In this

scenario, we have xA ≤ xB ≤ xF ≤ xT, which results in the

following conditions:

1− c1P
max
C

c2
≤ xF ≤

1

c1
, (47)

and (31).

Similarly, the shape of Axy is the same as that of Scenario 2

in Fig. 2b. As a result, the set of candidate pairs, denoted by

P(C.1), is given by P(C.1) = P(A.2).

3) Scenario 12: As depicted in Fig. 3f, in this scenario,

both curve I-F and line I-G intersect the tilted boundary line.

With a similar approach, we can derive the condition for this

scenario to happen as follows:

1− c1P
max
C

c2
≤ xG ≤ xF ≤

1

c2
. (48)

Again, Axy in this scenario has the same shape as that in

Scenario 4, and thus, the set of candidate pairs, denoted by

P(C.3), is given by P(C.3) = P(A.4).

The candidate solution sets for these three scenarios for the

case with conditions (25) and (46) are summarized in Table

III.

D. Strong ICI from CU and D2D

When the tilted line c1y+ c2x = 1 does not intersect either

the vertical or horizontal line, we have the feasible region

Axy as shown in Fig. 4a. In this case the x-intercept and y-

intercept of c1y + c2x = 1 are less than Pmax
D and Pmax

C ,
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TABLE III: Moderate ICI from CU and Strong ICI from D2D

(under conditions (25) and (46))

Condition Set of candidates for the optimal powers

(27) Po
= P(C.1)

= P(A.1)

(31) and (47) Po
= P(C.2)

= P(A.2)

(48) Po
= P(C.3)

= P(A.4)

respectively, which are equivalent to conditions (43) and (46).

In this scenario, the necessary and sufficient condition to have

an admissible D2D pair is reduced to (16).

Denote this case by Scenario 13. In this scenario, we have

0 ≤ xG ≤ xF ≤
1

c2
. (49)

Since Axy in both this scenario and Scenario 4 have the same

shape, the set of candidate pairs, denoted by P(D.1), is given

by P(D.1) = P(A.4).

E. Weak ICI

In all above cases, the line c1y + c2x = 1 intersects at

least one of the horizontal and vertical boundary lines (i.e.,

y = Pmax
D and x = Pmax

C ).

Now we consider the case where there is no intersection

between c1y+c2x = 1 and either of the horizontal and vertical

boundary lines. This case happens when

c1P
max
C + c2P

max
D < 1. (50)

Note that condition (50) occurs when both the CU and the

D2D transmitter cause weak ICI to the neighboring cell, e.g.,

they both are located near the center of the cell.

Shown in Figs. 4b–4d, there are three possible shapes for

the feasible region Axy in this case, depending the SINR

requirements (19) and (20). The optimal power pairs for these

three scenarios are discussed as follows.

1) Scenario 14: As shown in Fig. 4b, this scenario happens

when curve I-E and line I-A intersect the horizontal boundary

line. The condition for this scenario to happen is xE ≤ Pmax
D ,

i.e.,

K2

(

K1

1− γ̃C

lPmax

C

− 1

)−1

≤ Pmax
D . (51)

Since the shape of Axy is the same as that in Scenario 1, the

set of candidates for the optimal powers, denoted by P(E.1),

is given by P(E.1) = P(A.1).

2) Scenario 15: As illustrated in Fig. 4c, in this scenario,

line I-A and curve I-D intersect the horizontal and vertical

boundary lines, respectively. In this scenario, we have xA ≤
Pmax
D and yD ≤ Pmax

C . Solving for xA and yD, we have the

following conditions:

β(σ2
D +K3P

max
C ) ≤ Pmax

D , (52)

α

(

1−
K1

1 +K2/Pmax
D

)−1

≤ Pmax
C . (53)

TABLE IV: Weak ICI (under condition (50))

Condition Set of candidates for the optimal powers

(51) Po
= P(E.1)

= P(A.1)

(52) and (53) Po
= P(E.2) in (54)

(55) Po
= P(E.3)

= P(A.6)

Algorithm 1 Approximate power control algorithm

Input: α, β, a, l, K1, K2, K3, {c1,i, c2,i}
b
i=1, γ̃C , γ̃D, Pmax

C , Pmax
D

Output: P o
D , P o

C , and w
o

1: Check the feasibility condition (14)–(16).
2: Determine c1, c2, a1, a2, b1, b2, xF, and xG.
3: if (25) and (26) hold then
4: Compute candidate solution set in Table I.
5: else if (26) and (43) hold then
6: Compute candidate solution set in Table II.
7: else if (25) and (46) hold then
8: Compute candidate solution set in Table III.
9: else if (43) and (46) hold then

10: Compute candidate solution set Po
= P(D.1) in Section IV-D.

11: else if (50) holds then
12: Compute candidate solution set in Table IV.
13: end if
14: Enumerate among candidate solution set Po to find the optimum

solution.
15: Obtain the optimum beam vector (10) using P o

C and P o
D .

By Proposition 1, (xo, yo) could be at either of points A, D,

or M, and the set of candidate pairs is given by

P(E.2) =
{(

β(σ2
D +K3P

max
C ), Pmax

C

)

,
(

Pmax
D , Pmax

C

)

,
(

Pmax
D , α

(

1−
K1

1 +K2/Pmax
D

)−1)}

. (54)

3) Scenario 16: The feasible region is shown in Fig. 4d.

This scenario happens when both line I-H and curve I-D

intersect the vertical boundary line. The condition for this

scenario to occur is yH ≤ Pmax
C , i.e.,

Pmax
D − βσ2

D

βK3
≤ Pmax

C . (55)

Since the shape of Axy is the same as that in Scenario

6, the set of candidate pairs, denoted by P(E.3), is given by

P(E.3) = P(A.6).

The candidate solution sets for these three scenarios for the

case with condition (50) are represented in Table IV.

Finally, we summarize the steps to solve the optimization

problem P1 in Algorithm 1. We note that the optimal solution

in any scenario can be obtained in closed form.

F. Performance Bound Analysis

Note that Algorithm 1 is very efficient in obtaining the

power solution pair {P o
D, P o

C}, as the candidate pairs are all

given in closed-form. However, it only provides the optimal

solution for b = 1. For b > 1, since Axy is a subset of the

original feasible region of P1, Algorithm 1 is suboptimal. In

the following, we provide an upper bound on the performance

loss of the proposed algorithm and provide the conditions for

its optimality.

Let Ao
xy denote the original feasible region of P1, and

we have Axy ⊆ Ao
xy . An example for b = 2 is shown in
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Fig. 5: Approximating the true feasible region.

Fig. 5, where Axy and Ao
xy are given by A1 and A1

⋃

A2,

respectively. Let points U1 and U2 denote the intersections of

the boundary of Ao
xy with the line and curve corresponding

to minimum SINR requirements (20) and (19), respectively. It

follows that xU1
≤ xU2

and yU2
≤ yU1

. Similarly, let points

L1 and L2 denote the intersections of the boundary of Axy

with the same line and curve, and we have xL1
≤ xL2

and

yL2
≤ yL1

. We denote the set of all corner points of Axy by

L, e.g., L = {L1, L2, L3} in Fig. 5. Note that |L| ≤ 4. We

define a new point U3 =
(

max(xU1
, xU2

),max(yU1
, yU2

)
)

(as shown in Fig. 5 for b = 2). For simplicity, we use RZ to

denote logR(xZ , yZ) in (18) for point Z in Axy . Also, let

RA1 and Ropt denote the sum rate achieved by Algorithm 1

and the maximum sum rate under an optimal solution of P1,

respectively. We have the following results on the performance

of Algorithm 1.

Proposition 3: For b = 1, Ropt = RA1 . For b > 1, the

performance loss of Algorithm 1 is bounded by

Ropt −RA1 ≤ max{RU1
, RU2

, RU3
} −max

l∈L
{Rl}. (56)

Furthermore, Ropt = RA1 if one of the following conditions

holds:

1) ICI constraints in (17) results in a single tilted boundary

line for Ao
xy .

2) xL1
= xL2

or equivalently xU1
= xU2

.

3) yL1
= yL2

or equivalently yU1
= yU2

.

Proof: See Appendix F.

Note that in Proposition 3, Condition 1) means Axy = Ao
xy.

For Conditions 2) or 3), the line and curve associated with

(20) and (19) both intersect either the vertical or horizontal

boundary of Ao
xy .

V. EXTENSION TO MULTIPLE CUS AND D2D PAIRS

So far, we have provided a power control solution for one

CU and one D2D pair. We now extend our consideration

to the scenario of multiple CUs and D2D pairs. Consider

a multichannel communication system (e.g., OFDMA) with

NC orthogonal subchannels in each cell. We assume a fully

loaded network with NC CUs, and there are ND D2D pairs

with ND ≤ NC . Without loss of generality, we assume

CU j uses subchannel j for j ∈ C
∆
= {1, · · · , NC}. Each

D2D pair reuses at most one subchannel, and the subchan-

nel of each CU can be reused by at most one D2D pair.

Define indicator xk,j ∈ {0, 1} such that xk,j = 1 if D2D

pair k reuses CU j’s subchannel and xk,j = 0 other-

wise. Let P
∆
= [PD,1, · · · , PD,ND

, PC,1, · · · , PC,NC
]T , x

∆
=

[x1,1, · · · , x1,NC
, · · · , xND ,NC

]T , and w
∆
= [wT

1 , · · · ,w
T
NC

]T .

The objective is to maximize the overall sum rate of all

D2D pairs and CUs by optimizing the transmit power vector

P, the indicator vector x, and the receive beam vector w, while

satisfying the worst-case ICI and minimum SINR requirements

under per-node power constraints. The formulated problem is

given by4

P3: max
P,w,x

∑

k∈D

∑

j∈C

log(1 + γC,j) + xk,j log(1 + γD,k)

subject to
PC,j |w

H
j hC,j |

2

σ2 + xk,jPD,k|wH
j gD,k|2

≥ γ̃C , ∀j ∈ C

PD,k|hD,k|
2

σ2
D,k + xk,jPC,j |gj,k|2

≥ γ̃D, ∀k ∈ D

PC,j ≤ Pmax
C , PD,k ≤ Pmax

D , ∀j ∈ C, k ∈ D

PI,i,j ≤ Ĩ, ∀j ∈ C, i = 1, · · · , b
∑

k∈D

xk,j ≤ 1,
∑

j∈C

xk,j ≤ 1, ∀j ∈ C, k ∈ D

xk,j ∈ {0, 1}, ∀j ∈ C, k ∈ D

where D denotes the set of admissible D2D pairs. D2D pair

k is admissible if it can reuse at least one subchannel from C.

Note that problem P3 is a mixed integer programming

problem and is challenging to solve. Instead, we consider a

suboptimal approach by utilizing our proposed Algorithm 1

as follows:

1) Determine the admissibility of any D2D pair k to reuse

CU j’s subchannel, for k = 1, · · · , ND, j = 1, · · · , NC .

2) For all k and j, if D2D pair k is admissible to use CU j’s

subchannel, we jointly optimize their transmit powers to

maximize their sum rate, which is given by problem P1

with the solution provided by Algorithm 1.

3) We solve the CU-D2D matching problem to optimally

assign each admissible D2D pair to a CU. In particular,

we define a bipartite graph between CUs and D2D pairs.

Each edge between a D2D pair and a CU indicates that

the pairing of the D2D pair and the CU is feasible. The

weight of the edge is given by the sum rate or rate gain

of the D2D pair and the CU, under the approximate

power control solution provided by Algorithm 1. This

CU-D2D matching problem is an assignment problem,

whose optimal solution can be achieved by using the

well-known Hungarian algorithm [26].

4For overall system optimization to maximize the sum rate, one would
need to jointly optimize the subchannel assignment for multiple CUs and
D2D pairs, and power allocation for them. This problem is known in the
literature to be NP-hard [25]. In addition, re-allocating resources to all CUs
and D2D pairs whenever a new D2D pair join or leave the system will increase
the signaling overhead significantly. Instead, our problem formulation aims for
practical design, where the addition of a D2D pair does not disturb the existing
subchannel assignments for CUs.
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Fig. 6: The sum rate and rate gain versus Pmax/σ2 (dD/d0 =
0.2).

Remark 1: Note that the suboptimality of the above ap-

proach lies only in the approximation of multiple ICI con-

straints by a single ICI constraint. It follows that this approach

is optimal for P3 if one of the conditions in Proposition 3 is

satisfied.

We can further reduce the complexity of the CU-D2D

assignment problem in Step 3 above by proposing two subop-

timal CU-D2D matching schemes. Instead of the reward (rate

or gain), we define the cost on an edge between D2D pair k
and CU j in the bipartite graph as follows:

• The intra-cell interference channel gain between CU j
and D2D receiver k, i.e., |gj,k| (termed Suboptimal CU-

D2D matching A).

• The weight of D2D transmit power in the ICI constraint

(22), i.e., c2 for D2D pair k on subchannel j (termed

Suboptimal CU-D2D matching B).

We will show through simulation that our proposed ap-

proach provides performance very close to that of the jointly

optimal solution for P3.

VI. NUMERICAL RESULTS

In our simulation, we consider that the cell of interest

contains one CU and one D2D pair. Assume that the BS

is located at coordinates (0, 0), and that the CU, the D2D

transmitter, and the D2D receiver are located at (0, 0.5d0),
(0,−0.75d0 − dD/2), and (0,−0.75d0 + dD/2), respectively.
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Fig. 7: The sum rate and rate gain versus Pmax/σ2 (N = 4).

Unless otherwise mentioned, we consider one neighboring cell

with its BS located at (2d0, 0). Let dC , dgC , and dgD denote

the distances between the CU and the BS, the CU and the D2D

receiver, and the D2D transmitter and the BS, respectively,

and let dfC and dfD denote the distance between the CU

and the neighboring BS, and the D2D transmitter and the

neighboring BS, respectively. We set dC = 0.5d0, dgC =
1.25d0 − dD/2, dgD = 0.75d0 + dD/2, dfC = 2.0616d0,

and dfD =
√

22 + (0.75 + 0.5dD/d0)2d0. For all the links,

we assume the path loss exponent is set to 4. The channel

coefficients are assumed to be Gaussian with zero-mean and

variance (d/d0)
−4. We set σ2 = σ2

D = 1, γ̃C = γ̃D = 3 dB,

Pmax
C = Pmax

D = Pmax, and Ĩ = NI0 where I0 is the ICI

threshold reference, such that Ĩ is a function of the number

of antennas at the BS. We set I0/σ
2 = 3 dB. We use 5000

channel realizations to evaluate the average performance.

We evaluate the rate gain obtained by adding D2D com-

munication. It is the difference of the maximum sum rate of

P1 provided by Algorithm 1 and that when there is no D2D

pair in the cell. Furthermore, for performance comparison,

we consider two baseline algorithms: 1) boost-and-limit (BL)

heuristic, where the unique power solution (xI , yI) in (13) is

boosted proportionally with a common factor ζmax such that

either the maximum power constraint (21) or the ICI limit

(22) is met with equality, i.e., further boosting the powers

would violate at least one constraint. This BL algorithm is
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Fig. 8: The sum rate and rate gain versus d̃/d0 (N =
4, Pmax/σ2 = 10 dB).

also promising in a practical point of view. Note that the

scheduling BS can easily compute (xI , yI) and then boost

the power of the CU and D2D pair until either the maximum

power is achieved or a neighboring cell alerts regarding the

ICI level. This can be achieved by simple binary feedback

through the backhaul. Hence, there is no need for any ICI

channel exchange among the cells, which reduces signaling

overhead substantially. 2) CU-priority heuristic, aiming at

maximizing SINR γC of the CU. It selects the maximum

feasible CU power with the minimum feasible D2D power,

satisfying constraints (19)–(22). Note that in this CU-priority

heuristic, we prioritize the CU in terms of choosing a specific

end point of the feasible region.

A. Single Neighboring Cell

We first evaluate how the performance changes with the

maximum transmit power. The sum rate and rate gain versus

the normalized maximum power, Pmax/σ2, under Algorithm

1, the BL heuristic, and the CU-priority heuristic, are shown

in Figs. 6a and 6b, respectively, for N = 2, 4, 8. In Fig. 6a,

for the increment of the sum rate and rate gain over Pmax/σ2

under Algorithm 1, we observe two regimes: i) Regime 1,

where the sum rate is an increasing function of Pmax. In this

regime, the ICI is relatively weak, which is similar to the case

in Section IV-E. In this case, as shown in Scenarios 14–16, the
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Fig. 9: The sum rate and rate gain versus I0/σ
2 (dD/d0 =

0.2, Pmax/σ2 = 20 dB).

feasible region is not affected by the ICI constraint, and the

candidates for the optimal power pair in Table IV are directly

functions of Pmax. As a result, the sum rate increases linearly

with Pmax in this regime. ii) Regime 2, where the sum rate

converges. In this regime, the ICI is relatively strong, which is

similar to the case in Section IV-D. In this case, as shown in

Scenario 13, the feasible region is not changed by Pmax, and

the candidates for the optimal power pair are functions of Ĩ.

Hence, the sum rate is controlled by the fixed ICI threshold.

We observe in Fig. 6b that the rate gain is increasing in Regime

1 and decreasing in Regime 2. To see why this happens, notice

that, the ICI in the D2D mode is caused by both the CU and

the D2D transmitter, while in the non-D2D mode, it is caused

by the CU only. Hence, in non-D2D mode, the CU can use

a higher power for transmission, and the corresponding rate

gain by the D2D mode is reduced. Furthermore, comparing

these three algorithms, we see that the optimal solution by the

proposed algorithm provides significant sum rate improvement

over the BL and CU-priority heuristics in both regimes for all

values of N . Note that the BL heuristic outperforms the CU-

priority heuristic.

In order to study the effect of the D2D distance on the

performance, the sum rate and rate gain versus Pmax/σ2

for dD/d0 = 0.1 and 0.2 are shown in Figs. 7a and 7b,

respectively. We set N = 4. Note that for the proposed
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Fig. 10: The sum rate and rate gain versus Pmax/σ2 (N =
4, dD/d0 = 0.1, b = 6).

algorithm, the sum rate and rate gain improve significantly

as dD/d0 decreases. However, the performance of the CU-

priority heuristic is not sensitive to dD/d0. This is due to

the objective of the sum rate of both the D2D and CU in

Algorithm 1, resulting in significant rate improvement when

the D2D channel is very strong, i.e., the D2D distance is small.

Let d̃ denote the D2D-BS distance, which is defined as

the distance between the middle point of the D2D pair and

the BS. The D2D transmitter and receiver are placed at

(0,−d̃ − dD/2) and (0,−d̃ + dD/2), respectively. Then we

have dgC = 0.5d0 + d̃ − dD/2, dgD = d̃ + dD/2 and

dfD =
√

22 + (dgD/d0)2d0. Figs. 8a and 8b show the sum

rate and rate gain versus d̃/d0, respectively. We set N = 4,

Pmax/σ2 = 10 dB, and dD/d0 = 0.1 and 0.2. Increasing

d̃ increases the distance between the CU and the D2D pair,

resulting in reduced intra-cell interference at the BS and at

the D2D receiver. Furthermore, the distance between the D2D

transmitter and the neighboring BS increases, which leads to

ICI reduction. As expected, both the sum rate and rate gain

improve as d̃/d0 increases. Furthermore, we observe from Fig.

8b that the gap of the rate gain between the optimal solution

by Algorithm 1 and the CU-priority heuristic is significant;

and it increases as the D2D-BS distance increases.

We now study the effect of the ICI threshold reference I0
on the performance. The sum rate and the rate gain versus

I0/σ
2 are shown in Figs. 9a and 9b, respectively, for dD/d0 =

0.2 and Pmax/σ2 = 20 dB. We observe that both the sum

rate and rate gain improve when I0 increases. For small I0
values, the sum rate is an increasing function of I0/σ

2 since

the ICI is relatively strong (the case in Section IV-D), and the

candidates for the optimal power pair are functions of I0/σ
2.

As I0 increases, the ICI constraint becomes inactive as the

case in Section IV-E and the sum rate converges due to the

fixed Pmax.

B. Multiple Neighboring Cells and Multiple Users

We now consider multiple neighboring cells and study the

performance of Algorithm 1. Besides multiple neighboring

cells, we further consider multiple CUs and D2D pairs in

the cell of interest as discussed in Section V. We set the

number of neighboring cells as b = 6. We consider 3 CUs

and 3 D2D pairs that are randomly dropped in the cell of

interest. We compare the following schemes: 1) optimal power

control and optimal CU-D2D matching, where the optimal

power control is obtained by exhaustive search; 2) proposed

approach in Section V, i.e., the approximate power control

(Algorithm 1) and optimal CU-D2D matching; 3) BL heuristic

power control and optimal CU-D2D matching; 4) CU-priority

heuristic power control and optimal CU-D2D matching; 5)

approximate power control and suboptimal CU-D2D matching

A given in Section V; 6) approximate power control and

suboptimal CU-D2D matching B given in Section V.

In Figs. 10a and 10b, the sum rate and rate gain versus

Pmax/σ2 under different power control methods and matching

schemes are shown. We set N = 4 and dD/d0 = 0.1. We

observe that the performance of our proposed approach is

close to that of the optimal power control with optimal CU-

D2D matching. In particular, in the region where the sum

rate is an increasing function of Pmax, the performance by

both power control schemes overlap. This demonstrates the

merit of our proposed approximate power control algorithm

to provide a simple closed-form solution. In addition, it can

be seen that the approximate power control algorithm with any

of the three CU-D2D matching schemes outperforms the BL

and CU-priority heuristics with optimal CU-D2D matching.

Furthermore, for the approximate power control algorithm, the

gap between optimal CU-D2D matching and suboptimal CU-

D2D matching A is small. This is because when CU-D2D

matching A is used to define the bipartite graph, the intra-

cell interference a CU causes to the matched D2D receiver is

small. This results in a high D2D rate.

Note that unlike the optimal CU-D2D matching solution,

where the optimal powers for pairing each D2D pair and a CU

are needed to determine the best matching, for the suboptimal

CU-D2D matching A scheme, only the channel power of the

intra-cell interference channel needs to be known at the BS.

As a result, the computational complexity of suboptimum CU-

D2D matching A is drastically reduced.

VII. CONCLUSION

In this paper, we have studied power control to maximize

the sum rate of a CU and a D2D pair, subject to minimum
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SINR requirements, power constraints, and worst-case ICI

constraints to neighboring cells. With optimal BS receive

beamforming for uplink transmission, we have proposed an

efficient approximate power control algorithm to obtain the

powers of the CU and D2D transmitters in closed form.

Depending on the ICI conditions from the CU and the D2D

pair, we have divided the problem into five cases, each

including several different scenarios due to minimum SINR

requirements. The proposed algorithm is optimal when the

ICI to a single neighboring cell is considered. For multiple

neighboring cells, we have given a performance bound on our

proposed algorithm, and further provided conditions for which

our approximation becomes optimal.

We have further considered the general scenario of multiple

CUs and D2D pairs, and have shown how our previously

proposed solution can be utilized to find a solution to the

joint power control and CU-D2D matching problem. Simu-

lation demonstrates that substantial performance gain can be

achieved by our proposed power control algorithm over two

alternative approaches. It also shows our proposed approach

provides close to optimal performance for the scenario of

multiple CUs and D2D pairs, despite its low complexity.

Finally, we note that studying the sum rate maximization

problem in a scenario with imperfect CSI is an interesting

topic for future work.

APPENDIX A

PROOF OF LEMMA 1

Proof: Considering (12) with equality, we rewrite it as

y = η(x)
∆
= α

(

1−
K1

1 +K2/x

)−1

(A.1)

where α
∆
= σ2γ̃C

‖hC‖2 , K1
∆
= ρ2, and K2

∆
= σ2

‖gD‖2 . Taking the

first and second derivatives, we have

dη(x)

dx
=

αK1K2

(x+K2)2

(

1−
K1

1 +K2/x

)−2

> 0,

d2η(x)

dx2
=

2αK1K2(K1 − 1)

(x+K2)3

(

1−
K1

1 +K2/x

)−3

≤ 0,

since K1 ≤ 1 and K2 > 0, i.e., η(x) is a concave strictly

increasing function. Note that constraint (5) is characterized

by a line on the power plane, i.e., x
σ2

D
+K3y

= β.

Solving the intersection of this line and the curve (A.1), we

obtain (13).

APPENDIX B

PROOF OF LEMMA 2

Proof: Given any power pair (x, y) in the interior of Axy,

there exists ζ > 1, such that (ζx, ζy) ∈ Axy . In the following,

we show that R(ζx, ζy) > R(x, y). Substituting (ζx, ζy) into

(23), we have

R(ζx, ζy) =
(

1 +
ax

σ2
D/ζ +K3y

)

(

1 + Φ(ζ)
)

(B.1)

where Φ(ζ)
∆
= ζy

(

1− K1x
K2/ζ+x

)

l.

It is straightforward to show that 1 + ax
σ2

D
/ζ+K3y

> 1 +
ax

σ2

D
+K3y

for ζ > 1. In order to complete the proof, it is

sufficient to show that Φ(ζ) is an increasing function of ζ
for a given (x, y). Taking the first derivative, we have

dΦ(ζ)

dζ
= ly

xK2(1−K1) + ϕ

ζ(x +K2/ζ)2
> 0 (B.2)

where ϕ
∆
= ζx2(1 −K1) +K2/ζ

(

K2/ζ + x(1 −K1)
)

since

K1 ≤ 1 and ϕ > 0. Therefore, we have R(ζx, ζy) > R(x, y),
i.e., the optimal solution pair (xo, yo) is not in the interior of

Axy .

APPENDIX C

PROOF OF PROPOSITION 1

Proof: Substituting y = Pmax
C and x = Pmax

D into (23),

we define h(x)
∆
= R(x, Pmax

C ) and g(y)
∆
= R(Pmax

D , y). To

show that the maximum of g(y) for ã ≤ y ≤ b̃ is obtained

when yo is at either ã or b̃, it is sufficient to show that

g(y) is a strictly monotonic function, or g(y) is a strictly

convex function. In the following, we show that g(y) is such

a function. In both cases, since P2 is a maximization problem,

yo is an end point of the domain determined by Axy . A similar

proof is also provided for h(x).

The function g(y) can be written as g(y) = (1+ α1

α2+y )(1+

α3y) where α1
∆
= aPmax

D /K3, α2
∆
= σ2

D/K3, and α3
∆
= l
(

1−

K1P
max

D

K2+Pmax

D

)

.

Taking the first derivative of g(y), we have

dg(y)

dy
=

α3y
2 + 2α2α3y + µ

(α2 + y)2
(C.1)

where µ
∆
= α3α

2
2 + α1(α2α3 − 1). Since α2 > 0, α3 > 0,

and y ≥ 0, either
dg(y)
dy > 0, i.e., g(y) is a strictly increasing

function or
dg(y)
dy = 0 may have a valid solution only if µ < 0.

Supposing µ < 0 and taking the second derivative, we have
d2g(y)
dy2 = 2α1(1−α2α3)

(α2+y)3 > 0, since µ < 0 implies α1(1 −

α2α3) > 0. In other words, g(y) is a convex function.

Similarly, h(x) can be written as h(x) = (1 + β1x)
(

1 +

β2(1 −
K1

K2/x+1)
)

where β1
∆
= a

σ2

D
+K3Pmax

C

and β2
∆
= lPmax

C .

Taking the first derivative of h(x), we have
dh(x)
dx = ĥ(x)+ω

(x+K2)2

where ĥ(x)
∆
= β1

(

1 + β2(1 − K1)
)

x2 + 2β1K2

(

1 + β2(1 −

K1)
)

x and ω
∆
= β1K

2
2 + β1β2K

2
2 − β2K1K2. Since K1 ≤ 1,

K2 > 0, β1 > 0, β2 > 0, and x ≥ 0, either h(x) is a strictly in-

creasing function or
dh(x)
dx = 0 may have a valid solution only

if ω < 0. Supposing ω < 0 and taking the second derivative

of h(x), we have
d2h(x)
dx2 =

2β1K2

(

1+β2(1−K1)
)

K2−2ω

(x+K2)3
> 0,

i.e., h(x) is a convex function.

APPENDIX D

PROOF OF PROPOSITION 2

Proof: By Proposition 1, if xo = Pmax
D or yo = Pmax

C ,

then (xo, yo) is an end point of the vertical or horizontal

boundary line segment of Axy, respectively. If ICI constraint
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(22) is active at optimality, the optimal power is the solution

of the following optimization problem:

max
(x,y)

(

1 +
ax

σ2
D +K3y

)(

1 + y
(

1−
K1x

K2 + x

)

l
)

subject to c1y + c2x = 1.

Substituting y = (1 − c2x)/c1 into the objective function

above, we have maxx R̃(x), where R̃(x)
∆
=
(

1+ ax
a1−K4x

)(

1+

(b1 − b2x)(1 −
K1x
K2+x )

)

. Since R̃(x) is continuous and has a

first-order derivative, the optimum xo is either the x-coordinate

of an end point of the tilted line segment of Axy or obtained by

solving dR̃(x)/ dx = 0, which results in the quartic equation

e4x
4 + e3x

3 + e2x
2 + e1x+ e0 = 0 where

e0
∆
= aa1K

2
2(b1 + 1)− a21b1K1K2 − a21b2K

2
2 (D.1)

e1
∆
= −2aa1b2K

2
2 + aa1K2(b1 + 1)− 2aa1K1K2b1

+ aa1b1K2 + 2a21b2K2(K1 − 1) + 2a1a2b2K
2
2

+ aa1K2 + 2a1a2b1K1K2 (D.2)

e2
∆
= aa1b2K2(3K1 − 4) + aa1

(

1 + b1(1−K1)
)

+ a2b1K1K2(a− a2)− 4a1a2b2K2(K1 − 1)

+ a2b2K
2
2(a− a2)− a21b2(1−K1) (D.3)

e3
∆
= −2aa1b2(1−K1) + 2a1a2b2(1−K1)

− 2a2b2K2(K1 − 1)(a− a2) (D.4)

e4
∆
= a2(a− a2)b2(1−K1), (D.5)

with a1
∆
= σ2

D +K3/c1, a2
∆
= K3c2/c1, b1

∆
= l/c1, and b2

∆
=

lc2/c1.

APPENDIX E

PROOF OF LEMMA 3

Proof: We show that the alternative solution of the

quadratic equation is not feasible, i.e.,

x̂F
∆
=

θ −
√

θ2 − 4c2(1−K1)K2(αc1 − 1)

2c2(1 −K1)
< 0. (E.1)

In order to reject x̂F, it is sufficient to show that αc1 < 1.

Substituting Pmax
C into (12) and considering ρ2 ≤ 1, we have

Pmax
C ‖hC‖

2

σ2
> γ̃C . (E.2)

Rearranging the inequality (E.2), we have αc1<c1P
max
C <1,

where the first and second inequality hold due to the def-

inition of α and condition of moderate ICI from CU (25),

respectively.

APPENDIX F

PROOF OF PROPOSITION 3

Proof: Defining RL
∆
= maxl∈L{Rl}, we have

RA1 ≥ RL. (F.1)

A new feasible region Axy = Ao
xy

⋃

A3 is formed by

replacing the corner of Ao
xy with a rectangular one including

U3. Since Ao
xy ⊆ Axy , we have

Ropt ≤ RU = max{RU1
, RU2

, RU3
} (F.2)

where the right-hand side of (F.2) is the optimal sum rate

within Axy by Proposition 1. Combining (F.1) and (F.2), we

have the upper bound on the sum-rate loss of of Algorithm 1

given by (56).

Based on Condition 1), we have Axy = Ao
xy , and thus the

solution of Algorithm 1 is optimal. For Conditions 2), it means

the line and curve associated with (20) and (19), respectively,

both intersect the vertical boundary of Ao
xy , i.e., L1 = U1 and

L2 = U2. In this case, by definition of U3, we have U3 = U1.

By (F.1) and (F.2), we have max{RU1
, RU2

} ≤ RA1 ≤ Ropt ≤
max{RU1

, RU2
}. Thus, RA1 = Ropt. For Condition 3), the

line and curve both intersect the horizontal boundary of Ao
xy

with L1 = U1 and L2 = U2. Following a similar argument,

we have U3 = U2, and RA1 = Ropt.
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