
1

Interference Minimization in Cooperative Relay
Beamforming with Multiple Communicating Pairs
Ali Ramezani-Kebrya,Student Member, IEEE, Ben Liang,Senior Member, IEEE, Min Dong, Senior Member,

IEEE, Gary Boudreau,Senior Member, IEEE, and Ronald Casselman

Abstract—We consider a cellular network where each cell con-
tains multiple source-destination pairs communicating through
multiple amplify-and-forward relays using orthogonal channels.
We propose an optimal relay beamforming design that minimizes
the maximum interference at the neighboring cells subject to per-
relay power limits and minimum received signal-to-noise ratio
(SNR) requirements. Even though the problem is non-convex,we
show that it has zero Lagrange duality gap, and we convert itsd-
ual problem to a semi-definite programming problem. Depending
on the values of the optimal dual variables, we study three cases
to obtain the optimal beam vectors accordingly. This results in
an iterative algorithm that provides a semi-closed-form optimal
solution. We extend our algorithm to the problem of maximizing
the minimum SNR subject to some pre-determined maximum
interference constraints at neighboring cells, by the solution to
the min-max interference problem along with a bisection search.
The solution to this max-min SNR problem gives insight into
the worst-case signal-to-interference-and-noise ratio (SINR) given
some maximum interference target. The performance of the
proposed algorithm is studied numerically, both for when the
knowledge of interference channel is perfect and for when itis
imperfect due to either limited feedback or channel estimation
error.

Index Terms—Relay beamforming, multiple users, interference
minimization, multi-channel system.

I. I NTRODUCTION

Next-generation wireless networks are characterized by het-
erogeneous infrastructure consisting of base stations (BS) and
relays in cooperative communication. Furthermore, the new
Internet-of-Things paradigm will foster a large population of
diverse user equipment (UE), which may engage in complex
communication patterns that include both traditional BS-UE
transmission and UE-UE transmission,e.g., in a device-to-
device (D2D) mode. In these systems, radio interference is
a crucial yet challenging issue, due to the many randomly
located transmitters and receivers. Interference management in
cellular networks is a challenging problem, and the difficulty
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will only be exacerbated in future systems that utilize a large
number of small cells, relays, and D2D nodes. One approach
for interference management is to control the maximum inter-
cell interference (ICI) as a worst-performance guarantee.

We consider a cellular network where multiple source-
destination (S-D) pairs communicating through the assistance
of multiple amplify-and-forward (AF) relays within a cell.
These S-D pairs are generally defined. For example, they may
represent D2D communication between UEs, or the multiple
communication links between one BS and multiple UEs in
the cell. Using a multi-channel system, such as orthogonal
frequency division multiple access (OFDMA) as in LTE-
Advanced [2], [3], each communicating pair is assigned an
orthogonal subchannel to avoid intra-cell interference. The re-
lays assist each S-D pair’s transmission by forming cooperative
relay beamforming over the pair’s assigned subchannel.

Although free of intra-cell interference due to orthogonal
subchannel allocation, these communicating pairs still cause
ICI to neighboring cells, which needs to be carefully controlled
to provide satisfactory performance guarantee. In this work, we
aim at designing optimal relay beamforming for multiple S-D
pairs within each cell to minimize the maximum interference
caused at the neighboring cells, while satisfying the minimum
signal-to-noise ratio (SNR) requirements and per-relay power
constraints. This formulation is suitable for certain types of ap-
plications or traffic patterns where some fixed rate is expected,
e.g., VoIP. We also intend to find a pre-determined maximum
interference threshold in each neighboring cell under which the
worst-case signal-to-interference-and-noise ratio (SINR) at the
destinations of the desired cell is maximized.

The design of relay beamforming in order to minimize
ICI is challenging. Most ICI mitigation techniques for relay
networks in the literature focus on the scheduling problem,
i.e., resource block allocation [4]–[8]. These techniques could
not precisely control the amount of interference at the neigh-
boring cells. To the best of our knowledge, the problem of
minimizing the maximum interference at neighboring cells
by relay beamforming has not been studied in the literature.
Furthermore, most of the existing results in beamforming
consider only a total power constraint across the antennas,
which increases analytical tractability. However, in practical
scenarios, we often need to consider an individual power limit
for each relay [9]–[12].

In the following, we first summarize the main results of
this work and then explain their relation to prior work in the
literature.
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A. Summary of Contributions

We first formulate the relay beamforming problem in order
to minimize the maximum interference in multiple neighboring
cells under minimum SNR requirements and per-relay power
constraints. Although the problem is non-convex, we show
that it has zero duality gap and hence can be solved in the
Lagrange dual domain. We then transform the dual problem
into a semi-definite programming (SDP) problem with a much
fewer number of variables and constraints compared with
the original optimization problem and as such can be solved
efficiently using interior-point methods.

Depending on the values of the optimal dual variables,
we identify three cases to obtain the optimal beam vectors
accordingly. These cases represent whether the minimum SNR
requirement and per-relay power constraint are met with equal-
ity, and whether at optimality the interference at a destination
in a neighboring cell is the maximum among destinations in all
neighboring cells. The first case corresponds to the infeasibility
of the min-max interference problem. For the other two cases,
we propose an iterative algorithm to obtain optimal relay beam
vectors with a semi-closed-form structure.

We also consider the problem of maximizing the minimum
received SNR subject to maximum interference at each neigh-
boring cell and per-relay power constraints. We show that the
max-min SNR is the inverse problem of minimizing the maxi-
mum interference subject to a pre-determined SNR constraint.
We propose an algorithm to solve the max-min SNR problem
iteratively using the solution to the problem of maximum
interference minimization and bisection search. Furthermore,
by limiting the interference from each neighboring cell, we
propose a solution to the problem of maximizing the worst-
case received SINR. To this end, we solve the max-min SNR
problem under an appropriate maximum interference target.

In order to gain insight into designing this system in prac-
tice, we study the received worst-case SINR versus the maxi-
mum interference target numerically. Interestingly, a maximum
worst-case SINR is identified for different system setups.
Using the obtained optimal relay beamforming solution, we
investigate the effect of the number of relays, S-D pairs, and
neighboring cells on the maximum interference and worst-
case SINR. We further study the performance of the proposed
algorithm when the knowledge of interference CSI is imperfect
due to either limited feedback or channel estimation error.

B. Relation to Prior Work

For single-channel systems, joint encoding and decoding
across the base stations has been proposed to mitigate the
ICI [13], [14]. In [15], joint optimization of source power
allocation and relay beamforming to maximize the minimum
SINR has been studied for a single-carrier FDMA system.
Further base station cooperation or coordination, in the form of
“virtual” or “network” multiple-input-multiple-output (MIMO)
systems, have been extensively studied in the literature [16]–
[18]. These base station coordination techniques demand a
huge amount of back-haul communication to share the data
streams among the cells. In this work, we do not consider
data sharing between the base stations or relays.

For multi-channel systems, such as those based on OFD-
MA, ICI coordination techniques have been studied in [19]–
[29]. The proposed approaches in the literature include pow-
er control, network MIMO, opportunistic spectrum access,
adaptive frequency reuse factor, sphere decoding, and dirty
paper decoding. The problem formulation in this paper is
different from all of those available in the literature. In order
to mitigate ICI, we consider relay beamforming, which leads
to a uniquely complicated optimization problem. Relay co-
operative communication in interference limited environments
has been considered under various criteria such as capacity,
throughput, area spectral efficiency, and received SINR [30]–
[34]. However, the objectives of these works do not include
ICI reduction.

ICI mitigation techniques for relay networks in multi-
channel systems have been studied in [4]–[8], which focus
on scheduling and resource management. The authors of [4]
have proposed a radio resource management strategy for relay-
user association, resource allocation, and power control,along
with four scheduling methods for power allocation in the ICI
environment. In [5], the performance of different relay strate-
gies, one-way, two-way, and shared relays, has been studied
in interference-limited cellular systems. Assuming Gaussian
signaling, the achievable rate for each strategy is derived.
In [6], a joint subcarrier allocation, scheduling, and power
control scheme has been proposed for ICI-limited networks.
For relay-aided cellular OFDMA-based systems, the authors
of [7] have proposed an interference coordination heuristic
scheme consisting of two phases, each performing a resource
allocation algorithm. In [8], a game theoretic framework called
interference coordination game has been developed to mitigate
interference in OFDMA-based relay networks, and a low
complexity algorithm is proposed to reach its equilibrium in
a distributed way.

The above works are the most related to our work. However,
none of them considers relay beamforming, which leads to
a complex optimization problem as shown in this paper.
Furthermore, none of these works aims to directly minimize
ICI, which could be significant if the interference channel is
strong. Finally, it is important to find the maximum worst-
case received SINR in a multi-channel system with multiple
S-D pairs, especially for delay-sensitive applications requiring
guaranteed worst bit-rate. This paper is the first to addressthe
min-max interference and max-min SINR problems with relay
beamforming.

For a single S-D pair and a single multi-antenna relay, the
problem of relay beamforming to minimize per-antenna power
has been considered in [10]. In this paper, we consider multiple
single-antenna relays in a multi-channel system, with multiple
S-D pairs. Furthermore, in this paper, the power used across
subchannels has a sum limit and interference minimization
is the objective. In [35], we have studied the problem of
relay beamforming to minimize per-relay power usage in a
multi-user peer-to-peer network. Different from [35], in this
paper we consider interference to multiple neighboring cells
in a cellular system under relay power constraints. The new
formulation and constraints add more difficulty to solving the
problem. Although both problems use the dual method and
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involve dual variable case discussions, the case discussions
involved in finding the optimal solutions in this paper are
much more complicated and challenging than those in [35]. In
addition, as shown through simulation in this paper, the min-
max interference approach significantly outperforms the per-
relay power approach in terms of the maximum interference
to neighboring cells.

C. Organization and Notation

The rest of this paper is organized as follows: In Section II,
the system model is described and the min-max interference
problem is formulated. The min-max interference problem is
solved in Section III. In Section IV, we study the problems of
maximizing the minimum received SNR and SINR subject to
some fixed maximum interference threshold at the neighboring
cells. Numerical results are presented in Section V, and
conclusions are drawn in Section VI.

Notation: We useA
∆
= B to denote thatA by definition

is equivalent toB. We use‖ · ‖ to denote the Euclidean
norm of a vector.⊙ stands for the element wise multiplication.
We use(·)T , (·)H , and (·)† to denote transpose, Hermitian,
and matrix pseudo-inverse, respectively. The conjugate is
represented by(·)∗. The notationdiag(a) denotes a diagonal
matrix consisting of the elements of a vectora. We useE[·]
to denote the expectation andtr(B) to represent the trace of
B. I denotes anN × N identity matrix. We useY � Z to
indicate thatY − Z is a positive semi-definite matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider a cellular system where
each cell containsM S-D pairs,N relays, andb neighboring
cells, and all nodes are equipped with a single antenna. A
multichannel communication system (e.g., OFDMA) consist-
ing of M orthogonal subchannels is used in each cell. Each
source transmits data to its destination through the relays
using a specific subchannel, and each subchannel is assigned
to one S-D pair, so that the S-D pairs within the same cell
do not interfere with each other. In this work, we study the
interference caused by the relays in one cell (desired cell) to
the destinations in its neighboring cells.

We consider the half-duplex AF protocol for relaying,
where the direct path is ignored. Assume that S-D pairm
communicates throughN relays over subchannelm. The S-
D communication is established in two phases. In phase one,
each source transmits its signal to all the relays. In the desired
cell, the received signal at relayi over subchannelm is given
by

zm,i =
√

Pmhm,ism + nr,m,i (1)

where sm is the transmitted symbol with unit power,i.e.,
E[|sm|2] = 1, Pm is the transmission power, andnr,m,i

denotes the additive white Gaussian noise (AWGN) at relay
i on subchannelm with zero mean and varianceσ2

r , which
is i.i.d. across subchannels and relays. The vector of received
signals at all relays over subchannelm is given by

zm =
√

Pmhmsm + nr,m (2)
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Fig. 1. The system model for multiple communication pairs. The solid and
dashed lines show the desired and interference channels, respectively.

where hm
∆
= [hm,1, · · · , hm,N ]T and nr,m

∆
=

[nr,m,1, · · · , nr,m,N ]T are the first-hop channel vector
and the relay noise vector for S-D pairm, respectively.

In phase two, each relayi multiplies the received signal over
subchannelm by a complex coefficientwm,i and forwards it
to destinationm, for 1 ≤ m ≤ M .1 The received signal at
destinationm from all relays over subchannelm is given by

rm = gT
mWmzm + nd,m (3)

=
√

PmgT
mWmhmsm + gT

mWmnr,m + nd,m (4)

where gm
∆
= [gm,1, · · · , gm,N ]T is the second-hop channel

vector for S-D pairm, with gm,i denoting the channel co-
efficient over subchannelm from relay i to destinationm,
Wm

∆
= diag(wm), with wm

∆
= [wm,1, · · · , wm,N ]T denoting

the relay beam vector for S-D pairm, andnd,m is the AWGN
at destinationm with zero mean and varianceσ2

d.
The power usage of relayi is expressed as

Pi =

M
∑

m=1

E[|wm,izm,i|2] =
M
∑

m=1

wH
mRmDiwm (5)

whereRm
∆
= diag([Ry,m]1,1, · · · , [Ry,m]N,N), with Ry,m

∆
=

PmhmhH
m + σ2

rI, for m = 1, · · · ,M , and Di denotes the
N × N diagonal matrix with 1 in thei-th diagonal and zero
otherwise. We assume that the total power available at each
relay,Pr, can be allocated across different subchannels.

The received signal power at destinationm is given by

PS,m = Pm[gT
mWmhmhH

mWH
mg∗

m] = PmwH
mFmwm (6)

1Note that multiple transmissions in a cooperative relay system may not
be synchronized at a destination. An asynchronous transmission scheme is
proposed in [36], [37].
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where Fm
∆
= (fmfHm )∗, with fm = gm ⊙ hm

∆
=

[hm,1gm,1, · · · , hm,Ngm,N ]T . The total noise power at des-
tination m, including both the receiver noise and the relay
amplified noise, is obtained as

PN,m = E[nH
r,mWH

mg∗
mgT

mWmnr,m] + σ2
d

= wH
mGmwm + σ2

d (7)

whereGm
∆
= σ2

r diag((gmgH
m)∗). Hence, the SNR at destina-

tion m is given by

SNRm =
PmwH

mFmwm

wH
mGmwm + σ2

d

. (8)

Each relay causes interference to theM destinations in each
of neighboring cells. Let̃gm,j denote the interference channel
vector over subchannelm from theN relays of the desired
cell to destinationm in neighboring cellj. The received
interference at destinationm in neighboring cellj is given
by

r̃m,j = g̃T
m,jWm(

√

Pmhmsm + nr,m). (9)

The received interference power at destinationm in neigh-
boring cellj, including both the forwarded signal and the relay
amplified noise, is given by

Im,j = PmwH
mF̃m,jwm +wH

mG̃m,jwm (10)

whereF̃m,j
∆
= (f̃m,j f̃

H
m,j)

∗, f̃m,j
∆
= g̃m,j ⊙ hm, andG̃m,j

∆
=

σ2
r diag((g̃m,j g̃

H
m,j)

∗) for j = 1, · · · , b.
We assume the perfect knowledge of CSI,i.e.,

{hm,gm, g̃m,j}Mm=1, in designing the relay beam vectors,
where a central controller in each cell may collect all intra-
and inter-cell CSI for computing relay beam weights. In
Section V-D, we further study the case where the interference
CSI is imperfect through simulation.

B. Problem Formulation

Our focus is on designing the relay beam weights of
the desired cell to minimize the maximum interference at
the neighboring cells under per-relay power constraint and
the received SNR requirement at each destination. This is
expressed as the following optimization problem:

P0: min
{wm}

max
m∈M,j∈B

Im,j

subject to

M
∑

m=1

wH
mRmDiwm ≤ Pr , i ∈ N , (11a)

PmwH
mFmwm

wH
mGmwm + σ2

d

≥ γm, m ∈ M (11b)

whereIm,j is as defined in (10),M ∆
= {1, · · · ,M}, N ∆

=

{1, · · · , N}, and B ∆
= {1, · · · , b}. To remove the inner

maximization in P0, we note that the min-max optimization
problem P0 is equivalent to the following:

P1: min
{wm},Imax

Imax

subject to wH
mB̃m,jwm ≤ Imax, m ∈ M, j ∈ B, (12a)

(11a), and (11b)

whereImax = maxm∈M,j∈B Im,j and B̃m,j
∆
= PmF̃m,j +

G̃m,j.
Note that, in this work, we consider the interference mini-

mization problem under per-relay total power constraint. For
a fixed source transmit power, we can show that considering
the direct ICI link from sources to destinations in neighboring
cells does not change our analysis.2 To see this, note that the
total received interference at destinationm in neighboring cell
j contains interference from both relays and sources, given by

Ĩm,j = Im,j + Pm|h̃m,j|2

whereh̃m,j denotes the direct channel from sourcem to des-
tinationm in neighboring cellj. Assume|h̃m,j |2 is known in
the desired cell. Given the fact thatPm|h̃m,j|2 does not depend
on wm, we can treat it as a constant term when designing
the beam vectors. To include the inference coming from the
sources, we can replace the left-hand side of constraint (12a)
with wH

mB̃m,jwm + Pm|h̃m,j |2. Then, a similar procedure
as in our proposed algorithm can be followed to obtain the
optimal beam vectors.

III. M INIMIZING MAXIMUM INTERFERENCE

The solution of P1 is provided in this section. Since the SNR
constraint (11b) is not convex w.r.t.wm, P1 is non-convex.
In order to solve this problem, we first provide a necessary
condition for its feasibility. Then we show that P1 can be
reformulated as a second-order-conic programming (SOCP)
problem, and more importantly, the SOCP’s conic dual and
Lagrange dual are equivalent, so that P1 has zero Lagrange
duality gap. In order to obtain the optimal dual variables,
an SDP-based algorithm is proposed with polynomial worst-
case complexity. We then propose an iterative algorithm to
obtain the optimal beam vectors{wm} with a semi-closed-
form structure. Through complexity analysis, we show that
our proposed algorithm is computationally more efficient in
finding an optimal solution than directly solving the SOCP
problem.3

A. Necessary Condition for Feasibility

We first introduce necessary condition for feasibility follow-
ing the similar arguments in [35], which can be used to stop
execution of the proposed algorithm if there existsm ∈ M
such that SNR constraint (11b) cannot be satisfied.

A necessary condition for the feasibility of the min-max
interference problem P1 is

min
m∈M

Pm

γm
fHmG†

mfm > 1. (13)

2If the source transmission powerp
∆
= [P1, · · · , PM ]T is also an

optimization variable, we have a joint optimization problem with {p,w}
as variables. This joint optimization problem becomes muchmore difficult
to solve, as it is jointly non-convex. Whether it can be solved needs to be
carefully investigated and is an open problem left for future research.

3We can show that solving SOCP directly increases complexityas compared
with the proposed algorithm for the typical scenario of large number of relays
and S-D pairs. In addition to complexity reduction, one can gain insights on
the optimal solution structure using our proposed algorithm. However, the
SOCP-based method does not provide any insight on the structure of the
solution forwo.
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Note that not satisfying (13) means that regardless of the
values of{wm} there always existsm ∈ M such that SNR
constraint (13) cannot be satisfied, and thus P1 is infeasible.
On the other hand, even if (13) holds, that does not guarantee
that P1 is feasible. In that case, we will see later that Case 1
in Section III-C1 will identify the infeasibility of P1.

B. The Lagrange Dual Approach

In the following, we show that, despite P1 being non-
convex, it has zero duality gap and can be solved in the
Lagrange dual domain.

Proposition 1: Strong duality holds for the min-max inter-
ference problem P1.

Proof: We first show that P1 can be reformulated as an
SOCP problem. It is known that the SOCP has zeroconic
duality gap [38]. Then we show that the Lagrange dual of P1
andconic dual of the SOCP are equivalent. For further details,
see Appendix A.

Using Proposition 1, we can obtain the optimum so-
lution of P1 through the Lagrange dual approach. Let
µ

∆
= [µ1, · · · ,µM ]T with µm

∆
= [µm,1, · · · , µm,b]

T , λ
∆
=

[λ1, · · · , λN ]T , andα
∆
= [α1, · · · , αM ]T denote the Lagrange

multipliers associated with the interference constraint (12a),
per relay power constraint (11a), and SNR constraint (11b),
respectively. The Lagrangian of P1 is given by

L({wm}, Imax,λ,µ,α) =

M
∑

m=1

wH
m

(

Km − αmPm

γm
fmfHm

)

wm

+

M
∑

m=1

αmσ2
d + Imax(1−

M
∑

m=1

b
∑

j=1

µm,j)− Pr(

N
∑

i=1

λi) (14)

where

Km
∆
= RmDλ +

b
∑

j=1

µm,jB̃m,j + αmGm (15)

andDλ
∆
= diag(λ1, · · · , λN ).

The dual problem of P1 is obtained by

D0: max
λ,µ,α

min
{wm},Imax

L({wm}, Imax,λ,µ,α)

subject to λ � 0,µ � 0,α � 0. (16a)

Furthermore, the dual problem D0 can be reformulated as
the following problem:

D1: max
λ,µ,α

M
∑

m=1

αmσ2
d − Pr(

N
∑

i=1

λi)

subject to Km � αmPm

γm
fmfHm , m ∈ M, (17a)

M
∑

m=1

b
∑

j=1

µm,j ≤ 1, (17b)

and (16a).

The equivalence of D0 and D1 can be shown by showing
that constraints (17a) and (17b) are satisfied at optimality
of D0. Suppose one of the constraints (17a) or (17b) is not

satisfied. Then there is some{wm, Imax} such that the inner
minimization of D0 leads toL({wm}, Imax,λ,µ,α) = −∞,
but clearly this cannot be the optimal objective of the dual
problem. Hence, the optimal solution of D0 satisfies con-
straints (17a) and (17b). In this case, after the inner minimiza-
tion of the Lagrangian in D0, we have the objective of D1.
Thus, both D0 and D1 lead to the same optimal{λo,µo,αo}.

To solve the dual problem D1 we show that it can be
reformulated as an SDP problem to determine the optimal
{αo,λo,µo}.

Proposition 2: The dual problem D1 can be expressed as

D2: min
x

aTx

subject to

M(b+1)+N
∑

i=1

xiΨm,i � 0, m ∈ M, (18a)

x � 0, bTx ≤ 1 (18b)

where xi is the i-th entry of the vector x
∆
=

[αT ,λT ,µT ]T , a
∆
= [−σ2

d1
T
M×1, Pr1

T
N×1,0

T
Mb×1]

T ,

b
∆
= [0T

(M+N)×1,1
T
Mb×1]

T , Ψm,m = Pm

γm
fmfHm − Gm,

Ψm,M+i = −RmDi for i ∈ N , Ψm,M+N+(m−1)b+j =

−B̃m,j for m ∈ M, j ∈ B, and all otherΨ are zeros.
Proof: It is not difficult to show that D1 is equivalent

to D2, and (16a) and (17b) are equivalent to (18b). Then,
substituting (15) into (17a) and after some manipulation, (18a)
is obtained.

Note that standard interior point-based solvers,e.g., CVX,
could be used to solve D2 efficiently [38]. Then, depending
on the values of the optimal dual variables{αo,λo,µo}, we
identify three cases to obtain the optimal beam vectors{wo

m}.
We first investigate a useful property of the constraint (17a)
in the following lemma.

Lemma 1: If either µo
m,j > 0 for some{m, j} or λo ≻ 0,

thenαo
m > 0, i.e., the Lagrange dual variable associated with

the SNR requirement at destinationm is strictly positive.
Proof: See Appendix B.

Recall thatµo
m,j, λ

o, andαo
m are the optimal dual variables

corresponding to the interference constraint (12a), per-relay
power constraint (11a), and SNR constraint (11b), respectively.
Due to Proposition 1, the Karush-Kuhn-Tucker (KKT) condi-
tions for P1 are satisfied. Hence, the complementary slackness
condition holds. According to Lemma 1, if the interference
constraint over subchannelm is active at optimality,i.e.,
attained with equality, or the per-relay power constraint is
active for each relay, then the SNR constraint for S-D pair
m is also active at optimality.

C. The Optimal Beam Vector {wo
m}

Using Lemma 1, we classify the optimal dual variables
{λo,µo,αo} into three cases to obtain{wm}.

1) Case 1: µo = 0. In this case, we show that the min-
max interference problem P1 is infeasible. Suppose the per-
relay power constraint (11a) and minimum SNR requirement
(11b) could be satisfied for every S-D pairm and relayi,
i.e., the original problem P1 is feasible. Since the objec-
tive of P1 clearly is sensitive to changes in the RHS of
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(12a), µo = 0 implies that (12a) is inactive for allm and
j. Then the optimal objectiveIo

max is strictly greater than

Î ∆
= maxm∈M,j∈B wo

m
HB̃m,jw

o
m at optimality. However,

Io
max can be replaced bŷI resulting in a smaller objective

while satisfying all the constraints which is a contradiction.
In this case, the only possible conclusion is that the min-max
interference problem P1 is infeasible. Hence, if P1 is feasible,
there should be at least one{m, j} such that (12a) is active
at optimality,i.e., µo

m,j > 0.
2) Case 2: µo

m 6= 0 for all m or λo ≻ 0.4 According to
Lemma 1, we haveαo ≻ 0 in D1, i.e., if Ko

m −αo
mGm ≻ 0,

thenαo
m > 0 for all m ∈ M, and the solution is given by the

following proposition.
Proposition 3: Supposeαo ≻ 0. The optimum beam vector

wo
m of the min-max interference problem P1 form ∈ M is

given by

wo
m = ζmKo

m
†
fm (19)

where

ζm
∆
= σd

[Pm

γm
|fHmKo

m
†
fm|2 − fHmKo

m
†
GmKo

m
†
fm

]

−1

2

, (20)

andKo
m is obtained by substituting the optimum dual variables

{λo,µo
m, αo

m} into (15).
Proof: See Appendix C.

The following corollary provides the structure for the opti-
mal value of P1 as a function of the optimal dual variables.

Corollary 1: The maximum received interference of P1 is
given by

Io
max =

M
∑

m=1

αo
mσ2

d − Pr(
N
∑

i=1

λo
i )

= σ2
d

M
∑

m=1

γm

PmfHmKo
m

−1fm
− Pr(

N
∑

i=1

λo
i ). (21)

Proof: The first equality follows from Proposition 1 due
to the zero duality gap. According to the proof in Appendix C,
αo

mPm

γm
fHmKo

m
−1fm = 1 in Case 2 form ∈ M. Substituting

αo
m into the objective of D1, the second equality in (21) is

derived.
3) Case 3: µo 6= 0, µo

m = 0 for somem, andλo ⊁ 0.
Using Lemma 1, we haveαo

m = 0 for some m. In the
following, we first consider the case where only one entry in
αo is strictly positive. In other words, only one S-D pair meets
the SNR requirement with equality. Later, we will generalize
the solution to the case where multiple entries inαo are
positive. Denotẽm such thatαo

m̃ > 0 andαo
m = 0 for m 6= m̃.

Following the proof in Appendix C, we can show that
αo

m̃Pm̃

γm̃
fHm̃Ko

m̃
−1fm̃ = 1. Then the optimal beam vectorswo

m̃

can be obtained using the solution in (19) asαo
m̃ > 0.

However, we cannot obtain the optimal beam vectorwo
m

for m 6= m̃ in a similar way. Next, we formulate a new
optimization problem and obtainwo

m for m 6= m̃.
DenoteMm̃

∆
= M \ {m̃}. Using the fact thatαo

m = 0
for m ∈ Mm̃ and Proposition 1, we see that the optimal
objective of P1 isIo

max = αo
m̃σ2

d − Pr(
∑N

i=1 λ
o
i ). Further

4Note that for Cases 2 and 3, it is implicitly assumedµ
o 6= 0.

definePm̃,i
∆
= wm̃

HRm̃Diwm̃ as the power usage at relayi
over subchannel̃m. Then, obtaining the optimal beam vectors
{wm,m ∈ Mm̃} is equivalent to solving the following
feasibility problem:

P2: find {wm,m ∈ Mm̃}
subject to wH

mB̃m,jwm ≤ Io
max, m ∈ M, j ∈ B, (22a)

Pm̃,i +
∑

Mm̃

wH
mRmDiwm ≤ Pr , i ∈ N , (22b)

PmwH
mFmwm

wH
mGmwm + σ2

d

≥ γm, m ∈ Mm̃. (22c)

Note that the solution to P2 is not unique. This is because
the SNR constraint (22c) may not be active at optimality for
m ∈ Mm̃ since αo

m = 0. However, we can always scale
wm such that (22c) meets with equality form ∈ Mm̃ while
satisfying the max interference constraint (22a) and per-relay
power constraint (22b). In what follows, we provide the details
of using this approach to find a solution to P2.

Since the optimal beam vectorwm̃ is already obtained,
we can reducePm̃,i from the maximum per-relay power
targetPr to find the maximum available power that can be
used over other subchannels. This motivates the following
interference minimization problem by excluding S-D pairm̃
from consideration and limiting the power usage on each relay
based on the new maximum power target,i.e.,

P3: min
{wm,m∈Mm̃},Ĩ

Ĩ

subject to wH
mB̃m,jwm ≤ Ĩ, m ∈ Mm̃, j ∈ B, (23a)

∑

m∈Mm̃

wH
mRmDiwm ≤ Pr − Pm̃,i, i ∈ N , (23b)

and (22c).

Similar to Proposition 1, we can show that zero duality gap
holds for P3. We can reformulate the Lagrange dual problem
of P3 into an SDP as follows:

D3: min
x

cTx

subject to

M(b+1)+N
∑

i=1

xiΨm,i � 0, m ∈ Mm̃, (24a)

x � 0, dTx ≤ 1 (24b)

where x is as defined in D2;c is defined similarly to
a in D2 except that the entriesam̃, a(M+1):(M+N), and
a(M+N+(m̃−1)b+1):(M+N+m̃b) are zero,[Pr−Pm̃,1, · · · , Pr−
Pm̃,N ]T , and zero, respectively; andd is defined similarly to
b in D2 except that the entriesb(M+N+(m̃−1)b+1):(M+N+m̃b)

are zero. Thus, the essence of the proposed algorithm is to
eliminate the terms associated with S-D pairm̃ in both the
objective and the constraints of D3 such that the per-relay
maximum power targets are updated.

In order to obtain{wo
m,m ∈ Mm̃}, the above procedure

is repeated to update the values of{αo
m,m ∈ Mm̃} through

solving D3. If αo
m > 0 for all m ∈ Mm̃, then we can obtain

{wo
m,m ∈ Mm̃} similar to Case 2. Otherwise, the steps to

find the solution in Case 3 are repeated. As an example, after
solving SDP problem D3, suppose Case 3 happens,i.e., αm′ >
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Algorithm 1 Minimizing the maximum interference
1: Check the feasibility condition (13).
2: Solve the SDP problem D2 finding the optimal dual

variables{αo,µo,λo}.
3: ObtainPα = {m | αo

m > 0}.
4: SetΠ = Pα.
5: while Pα 6= M do
6: ComputeKo

m (15) and findwo
m (19) for all m ∈ Π.

7: Update available power at each relay,c andd.
8: Solve D3 findingΠ = {l ∈ M \ Pα|αo

l > 0}.
9: UpdatePα = Pα

⋃

Π.
10: end while
11: ComputeKo

m (15) and findwo
m (19) for all m ∈ Π

0 for somem′ ∈ Mm̃ (the SNR constraint (22c) is active for
S-D pairm′). Following the proof in Appendix C, we can find
wo

m′ with a similar structure as in (19) through substituting
the optimal dual variables given by D3 into (15). As long as
P1 is feasible, this procedure can be repeated untilwo

m for all
m are found.

So far, we have assumed only one entry inαo is strictly
positive in the solution to the dual problem D1. We can extend
our algorithm to the general case where the number of positive
entries inαo is arbitrary. DefinePα

∆
= {m | αo

m > 0}. Using
Proposition 3, we can obtain the optimal beam vectorwo

m for
m ∈ Pα with a similar expression as in (19). To obtainwo

m

for m ∈ M \ Pα, we can solve a feasibility problem similar
to P2. We can show zero duality gap holds and formulate the
dual problem into an SDP similar to D3 through updatingc,
d, andΨm,i according toPα.

D. Summary of Algorithm

The steps proposed to solve the min-max interference prob-
lem P1 are summarized in Algorithm 1.5

We can further obtain a necessary and sufficient condition
for the feasibility of P1 since both Cases 2 and 3 lead to a
solution with the semi-closed-form structure in (19). Notethat
for ζm in (20) to be real, the expression in RHS of (20) should
be strictly positive. Furthermore, substituting (19) into(11a),
the per-relay power usage should not exceed the maximum
targetPr. As a result, the necessary and sufficient conditions
for feasibility of P1 is as follows.

Corollary 2: P1 is feasible if and only if there existsα � 0,
λ � 0, µ � 0 with

∑

m∈M

∑

j∈B µm,j ≤ 1 such that

min
m∈M

Pm

γm
|fHmK†

mfm|2 − fHmK†
mGmK†

mfm > 0, (25)

max
i∈N

∑

m∈M

ζ2mfHmK†
mRmDiK

†
mfm ≤ Pr. (26)

E. Complexity Analysis

To determine the complexity of our proposed algorithm,
note that P0 has been converted to an SDP D2 withM(b +
1) + N variables andM linear matrix inequality constraints

5Algorithm 1 requires at mostM − 1 iterations to complete.

of size N . Typically there are only a few neighboring cells
with dominant interference, sob is a small number. The SDP
can be solved efficiently using interior-point methods. Based
on the complexity analysis for the standard SDP form in [39,
Section 5], the computation complexity per iteration to solve
the SDP D2 isO

(

(M +N)2MN2
)

. The number of iterations
to solve an SDP is typically between 5 to 50 regardless of
problem size [39, Section 5]. Thus, the complexity to solve
the SDP isO

(

(M +N)2MN2
)

.
The overall computation complexity to solve P0 depends

on the values of the optimal dual variables. As shown in
Section III-C, if Case 2 happens, only one SDP problem D2 is
solved,i.e., the complexity is given byO

(

(M +N)2MN2
)

.
If Case 3 happens, at mostM SDP problems formulated as
D3 are solved,i.e., the worst-case complexity is given by
O
(

(M + N)2M2N2
)

. In both cases, the algorithm has a
polynomial worst-case complexity w.r.t. the number of relays
and S-D pairs. Note that the above analysis is based on worst-
case complexity estimates. In practice, the complexity is much
lower than the worst-case estimate [39, Section 5].

As shown in Appendix B, we can also reformulate P1
into an SOCP problem (A.2) given in Appendix B. It has
MN +1 variables andM(b+1)+N constraints. This SOCP
can be directly solved using interior-point methods with the
complexity per iteration ofO

(

(M +N)M3N3
)

. The number
of iterations to solve an SOCP does not depend on the problem
size [40]. Thus, the complexity of the SOCP compared with
the worst-case complexity of our proposed algorithm (i.e., the
maximum number of iterations in Case 3 of Section III-C)
is increased by a factor ofO (MN/(M +N)). We note that
MN is typically much larger thanM + N . Therefore, our
proposed algorithm to obtain the optimal solution offers much
lower complexity than the SOCP method.

IV. SNR AND SINR MAXIMIZATION

We can used the method presented in Section III to max-
imize the minimum received SNR or SINR subject to per-
relay power constraint and a maximum interference limit at
the neighboring cells.

A. Maximizing the Minimum SNR

In the following, we first formulate the max-min SNR prob-
lem and show that this problem and P1 are inverse problems.
Then using the bisection search, an iterative algorithm is
proposed to solve the max-min SNR problem.

Typically the relays have the same front-end amplifiers
and the destinations have the same minimum SNR require-
ments and received interference threshold. In the following,
we assume identical per-relay power budget, minimum SNR
requirements for destinations in the desired cell, and max-
imum interference limit for destinations in the neighboring
cells. Extension to the case of non-uniform power, SNR, and
interference requirement can follow a similar approach.

The problem of maximizing the minimum SNR under a pre-
determined maximum interference threshold,I0, is formally
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stated as follows:

P4: max
{wm},γ

γ

subject to wH
mB̃m,jwm ≤ I0, m ∈ M, j ∈ B, (27a)

SNRm ≥ γ, m ∈ M, (27b)

and (11a)

where I0 denotes a pre-determined maximum interference
threshold.

The min-max interference problem P1 with a common SNR
targetγ0 is given by

P5: min
{wm},I

I

subject to wH
mB̃m,jwm ≤ I, m ∈ M, j ∈ B, (28a)

SNRm ≥ γ0, m ∈ M, (28b)

and (11a).

We denote the optimal objective of P4 and P5 asγo(I0)
and Io(γ0) to focus on their dependencies onI0 and γ0,
respectively. We first study the optimal maximum SNRγo(I0)
as a function ofI0 following the similar arguments in [35].

The optimal objectiveγo(I0) is continuous and strictly
monotonically increasing function ofI0; for given I0 any
γ < γo(I0) is achievable.

Hence, for anyγ0, the minimum interferenceI0 is obtained
whenγo(I0) = γ0, i.e., Io

(

γo(I0)
)

= I0. This indicates that
P4 and P5 are inverse problems,i.e.,

Io
(

γo(I0)
)

= I0, γo
(

Io(γ0)
)

= γ0.

The solution for P4 can be obtained by iteratively solving the
min-max interference problem P5 with bisection search on the
max interference thresholdI. The stopping criterion is when
I → I0.

In Algorithm 2, we provide the steps to solve P4 using P5
and bisection.6

B. Maximizing the Worst-Case Received SINR

Since the performance measures for cellular networks,e.g.,
data rate or bit-error-rate (BER), are direct functions of the
received SINR, our ultimate goal is to maximize the worst-case
SINR at the destinations. For many practical scenarios, we
make local decisions in each cell. Without jointly optimizing
all cells, each cell optimizes its own resources in a distributed
way based on some messages passed between cells over the
backhaul.

The received SINR at destinationm in the desired cell
is given by SINRm =

PS,m

Im+PN,m
= SNRm

Im/PN,m+1 , where
Im denotes the total interference at destinationm. It can
be determined by solving the max-min SNR problem P4,
if we constrain the interference from each neighboring cell
to be below a given valueI0 such thatIm ≤ bI0, for
all m ∈ M. Thus, we propose solving P4 under different
values ofI0. Then, an optimalI0 value can be chosen to

6The values ofγ0,min andγ0,max can be set based on the typical range of
SNRs in a particular application. For simplicity, we can always setγ0,min = 0
andγ0,max = maxm PmfHmGH

mfm.

Algorithm 2 Maximizing the minimum SNR
1: Set convergence thresholdδ > 0.
2: Find γ0,min such thatIo(γ0,min) < I0.
3: Find γ0,max such thatIo(γ0,max) > I0.
4: Setγ0 =

γ0,min+γ0,max

2 .
5: Solve P5 underγ0
6: if Io(γ0) > I0 then
7: Setγ0,max = γ0 andI = 0.
8: else
9: Setγ0,min = γ0 andI = Io(γ0).

10: end if
11: while I < I0 − δ do
12: (4)–(10).
13: end while
14: Returnγ0.

maximize the worst-case SINR among all destinations in a
cell, given byminm SINRm. Intuitively, whenI0 is too low,
SINR at the destination is noise dominant. Also, lowI0
limits the relay power, and the received signal power at the
intended user is low as well, resulting in low SINR. AsI0
increases, SINR increases due to power (and beamforming)
gain. As I0 continues increasing, the interference becomes
dominant over the gain received by relay beamforming, and
SINR decreases. TheI0 values that maximize the worst-case
SINR are illustrated in Section V.

V. SIMULATION RESULTS

In this section, we applied the proposed min-max interfer-
ence algorithm in various simulation settings. We are mainly
interested in how the maximum interference and the worst-
case SINR behave under different system parameter values,
i.e., different number of relays, S-D pairs, and neighboring
cells. We setσ2

r = σ2
d = 1, Pm = P0 for m ∈ M with

P0/σ
2
r = 10 dB, andPr/σ

2
d = 20 dB. The minimum SNR

target is set toγm = γ0 = 5 dB for m ∈ M. The first and
second hop channelshm and {gm, g̃m,j} are assumed i.i.d.
zero-mean Gaussian with variance1. This model essentially
captures the worst-case interference scenario, where the dis-
tance from relays to cell-edge users at the neighboring cells
is similar to that between the relays and destinations, causing
strong interference. We further study the effect of imperfect
interference CSI in Section V-D, and consider the scenario of
random user locations in Section V-E.

A. Effect of the Number of Relays

To study the behavior of maximum interference as the
number of relaysN increases, we plot the CDF ofImax in
the objective of P1, normalized against noise varianceσ2

d,
with M = 2 and b = 1 in Fig. 2. Also shown in Fig. 2
is the maximum interference under an alternate optimization
problem where the objective is to minimize the maximum
transmission power over all relays while meeting the minimum
SNR requirements [35]. This min-max relay power problem
may be viewed as a simpler alternative to reduce interference,
which is created by the relays. The number of relays are
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Fig. 3. Average received noise power versus average normalizedImax for
M = 2 and b = 4.

chosen asN = 2i for i ∈ {0, · · · , 5}. We see that as
N increases, the interference CDF curves are shifted to the
left for both optimization approaches. Note that the min-max
interference approach significantly outperforms the per-relay
power approach for eachN , and the performance gap increases
asN increases.

The average received noise power (7) versus average nor-
malizedImax with N = 2, 4, 8, M = 2, andb = 4 is shown
in Fig. 3. It can be seen that noise power increases asN
increases. Note that received noise is the total amplified noise
and AWGN at the destination. The amplified noise decreases
to zero asN increases, and the overall noise converges to the
destination noise,i.e., 0 dB. This happens as the beam vector
norm ‖wm‖ decreases asN increases due the power (and
beamforming) gain achieved by relay beamforming.

To evaluate the performance of the max-min SNR problem
P4, in Fig. 4, the average received worst-case SINR,i.e.,
minm SINRm versus average normalizedImax is represented
with b = 2, M = 8, andN = 2i for i ∈ {1, · · · , 4}. To plot
each curve, the minimum SNR requirementγ0 is set to−10 dB
to 24 dB. For eachγ0, 500 realizations are generated, and then
Imax andminm SINRm are computed for each realization. As
discussed at the end of Section IV-B, we see thatminm SINRm

first increases and then decreases as a function ofImax. Hence,
we can numerically identify the maximumminm SINRm for
eachN .

In Fig. 5, the trueminm SINRm is compared with the SINR
lower bound withN = 2, 4, 8 andb = 1. For each realization,
an SINR lower bound is obtained by substitutingImax at the
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Fig. 4. Averageminm SINRm versus average normalizedImax for M = 8
andb = 2.
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Fig. 5. Comparing the trueminm SINRm with the SINR lower bound versus
average normalizedImax for M = 2 andb = 1.

denominator of SINR instead of the true received interference.
The curves for true SINR and lower bound are very close
for eachN . Hence,Imax can be used to gain insight into
minm SINRm. If Imax is set andγ0 is obtained accordingly,
then it reflects the receivedminm SINRm.

B. Effect of the Number of S-D pairs

In Fig. 6, the averageminm SINRm versus average nor-
malized Imax is shown for N = 4, and M = 2i for
i ∈ {1, · · · , 4}, and b = 2. For each curve, a maximum
minm SINRm is observed. We see thatminm SINRm decreas-
es asM increases because the number of SNR constraints in
each cell increases. Hence, the relays increase transmission
power in each cell and generate more interference at the
neighboring cells.

C. Effect of the Number of Neighboring Cells

In Fig. 7, the averageminm SINRm versus average normal-
ized Imax is shown forN = 4, M = 8, andb ∈ {1, 2, 4, 6}.
A maximumminm SINRm for each curve is identified. For
fixed averageImax, increasingb leads to degradation on
minm SINRm. As b increases, the number of interference
sources corresponding to each subchannel increases. The to-
tal received interference increases and hence,minm SINRm

decreases asb increases.
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Fig. 7. Averageminm SINRm versus average normalizedImax for N = 4
andM = 8.

D. Effect of Imperfect CSI

So far, true interference CSI is assumed to be known
perfectly at the relays. In practice, obtaining such interference
CSI may not be possible. In order to observe how robust the
proposed algorithm is w.r.t. imperfect CSI, we consider the
following scenarios with two types of imperfect CSI: limited
number of CSI feedback bits and channel estimation error.

In Scenario 1, the receiver knows the interference CSI
perfectly. However, the feedback bits to the relays are limited.
We consider equiprobable quantization of channel values. Let
B denote the number of available feedback bits. Every real and
imaginary part of a channel is quantized with equal probability
according to the CSI distribution, which is complex Gaussian.

In Scenario 2, the channels are estimated at the receiver
with error and the estimated channel is fed back to the relays.
In order to model the channel estimation error, let us define
ĥ = h + αh̃, whereh is the true channel,̂h is the estimated
channel used for optimization,̃h ∼ CN (0, 1), and the weight
α is set to adjust the variance of error w.r.t. the variance of
true CSI.

In Fig. 8, the CDF of normalizedImax under true inter-
ference CSI is compared with that of the imperfect CSI in
Scenario 1 with6 feedback bits (3 bits for each real and
imaginary parts). It can be seen the interference in this limited
feedback scenario is very close to the true CSI case even when
the number of relays is large (e.g., N = 8). As expected,
the performance gap between the limited feedback scenario
and true CSI case increases asN increases. In addition,
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Fig. 8. Empirical CDF of normalizedImax under limited feedback (Scenario
1) with M = 2 andb = 1.
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Fig. 9. Empirical CDF of normalizedImax under Gaussian channel
estimation error (Scenario 2) withM = 2 andb = 1.

the min-max interference approach under limited feedback
still substantially outperforms the min-max per-relay power
approach.

Fig. 9 shows the CDF of normalizedImax under imperfect
CSI in Scenario 2 with the channel estimation error being
α = 0.01. The interference in this case is close to that of
true CSI. In addition, we see that the performance degradation
increases asN increases. Again, the min-max interference
approach under imperfect CSI in Scenario 2 outperforms the
min-max per-relay approach.

The averageminm SINRm versus average normalizedImax

compared with that of the imperfect CSI in Scenario 1 with
4 feedback bits is shown in Fig. 10 forN = {2, 4, 8},
M = 2, and b = 4. The performance degradation due to
limited feedback increases asN increases. Note thatImax

corresponding to the maximumminm SINRm decreases asN
increases, reflecting higher diversity gain attained with more
relays through achieving smallerImax.

E. Performance under Random Relay and User Locations

Previous simulation setup has captured the worse-case inter-
ference scenario, by assuming i.i.d. channel distributionfor all
relays and users. If some relays and destinations are far away
from the cell edge, or users in neighboring cells are away from
the cell edge, the ICI caused to these neighboring users is low
and less critical.

We now study the pattern of the maximum interference
in a scenario with random user and relay locations. We
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Fig. 10. Averageminm SINRm under limited feedback (Scenario 1) with
M = 2 and b = 4.
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Fig. 11. CDF of normalizedImax whenM = 2 and b = 1.

set the distance between each source and relay, relay and
destination in the desired cell, and relay and destination in
the neighboring cells byκR, whereR is the cell radius and
κ is a random variable with uniform distribution in the range
[0.5 1], [0.5 1], and [1 1.5], respectively. The channel over
each link is generated as zero-mean Gaussian with variance
using the distance-based pathloss. We assume the path loss
exponent is 3.

Similar to Fig. 2, we plot the CDF of normalizedImax

with M = 2, b = 1, and increasingN in Fig. 11, where we
comparedImax under our solution for P1 with that under the
per-relay power objective. As expected, based on the above
discussion, comparing Fig. 11 with Fig. 2, we observe that
the interference CDF is shifted to the left, indicating a smaller
Imax as the the users are randomly located. However, the
general trend remains the same.

Similar to Fig. 4, we also plot the averageminm SINRm

versus average normalizedImax with b = 2, M = 8, and
increasingN in Fig. 12, where we evaluate the performance
of the max-min SNR problem P4. As expected, we see that
minm SINRm first increases and then decreases as a function
of Imax. Comparing Fig. 12 with Fig. 4, we observe that the
average received worst-case SINR increases. It verifies that
the Imax decreases for random user locations, but again the
general trend remains the same.

VI. CONCLUSIONS

In this paper, we have considered a multi-relay cellular
network, where each cell has multiple S-D pairs communi-
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Fig. 12. Averageminm SINRm versus average normalizedImax for M = 8
andb = 2.

cating in orthogonal channels with assistance from the relays.
In order to manage ICI, we have formulated the min-max
interference problem under per-relay power constraints and
minimum SNR requirements. We have shown that the strong
duality property holds for this non-convex problem. Solving
the Lagrange dual problem, three cases have been identified
based on the optimal dual variables. We then propose an
iterative algorithm to obtain the optimal beam vectors in semi-
closed-form expressions. Numerical results have shown10
dB reduction in the maximum interference with4 relays for
the min-max interference approach over the per-relay power
approach, while the performance degradation when only6 CSI
feedback bits are used is within3 dB. We have also solved
the max-min SNR problem, under maximum interference and
per-relay power constraints, using bisection search. Under
different problem setups, we have evaluated the maximum
interference and the corresponding worst-case received SINR.
A maximum worst-case SINR has been observed as we vary
the maximum interference target, which provides insight into
designing relay beamforming in a multi-cell network.

APPENDIX A
PROOF OFPROPOSITION1

Proof: The interference constraint (12a) and per-relay
power constraint (11a) are convex w.r.t.w

∆
= [wT

1 , · · · ,wT
M ]T .

However, the minimum received SNR constraint (11b) is non-
convex. Reformulating the SNR constraint (11b) in a conic
form, we have

√

Pm|wH
mfm| ≥ √

γm

∥

∥

∥

∥

[

G
1/2
m wm

σd

]∥

∥

∥

∥

, m ∈ M. (A.1)

Note thatwm can have any arbitrary phase,i.e., it is obtained
uniquely up to a phase shift. The phase could be adjusted such
that wH

mfm becomes real-valued form ∈ M. The min-max
interference problem P1 can be recast as

min
w1,··· ,wM ,Imax

Imax (A.2)

subject to (A.1), (11a), and (12a).

The primal-dual optimality conditions for the problems with
constraints in the form of (A.1) are provided in [41, Propo-
sition 3]. Following a similar proof, it can be shown that
(A.2) has zero duality gap with its Lagrangian dual. To prove
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Proposition 1, we are left to show that the Lagrangian of P1 is
the same as the Lagrangian of (A.2) by using a similar proof
as in [9, Proposition 1].

The Lagrangian of P1 is given by

L = Imax +

M
∑

m=1

b
∑

j=1

µm,j

(

wH
mB̃m,jwm − Imax

)

(A.3)

+

N
∑

i=1

λi

(

M
∑

m=1

wH
mRmDiwm − Pr

)

+

M
∑

m=1

αm

(

σ2
d +wH

mGmwm − Pm

γm
|wH

mfm|2
)

.

The Lagrangian of (A.2) is obtained by

L̂ = Imax +

M
∑

m=1

b
∑

j=1

µ̂m,j

(

wH
mB̃m,jwm − Imax

)

(A.4)

+
N
∑

i=1

λ̂i

(

M
∑

m=1

wH
mRmDiwm − Pr

)

+

M
∑

m=1

α̂m

(

∥

∥

∥

∥

[

G
1/2
m wm

σd

]∥

∥

∥

∥

−
√

Pm

γm
|wH

mfm|
)

.

Denotingum
∆
=

∥

∥

∥

∥

[

G
1/2
m wm

σd

]
∥

∥

∥

∥

+
√

Pm

γm
|wH

mfm| ≥ σd and con-

verting the last term of the Lagrangian (A.4), it is equivalent
to

L̂ = Imax +
M
∑

m=1

b
∑

j=1

µ̂m,j

(

wH
mB̃m,jwm − Imax

)

(A.5)

+

N
∑

i=1

λ̂i

(

M
∑

m=1

wH
mRmDiwm − Pr

)

+

M
∑

m=1

α̂m

um

(

σ2
d +wH

mGmwm − Pm

γm
|wH

mfm|2
)

.

Sinceum ≥ σd, by changing the variablesαm = α̂m

um
, there

existsαm ≥ 0 for any α̂m ≥ 0 andm ∈ M such that (A.3)
and (A.4) become exactly the same. As a result, the strong
Lagrange duality holds for the non-convex problem P1.

APPENDIX B
PROOF OFLEMMA 1

Proof: Substituting (15) into (17a), the constraint (17a)
is equivalent to

RmDλ +
b
∑

j=1

µm,jB̃m,j + αm

(

Gm − Pm

γm
fmfHm

)

� 0.

(B.1)

Using contradiction, we show thatGm − αmPm

γm
fmfHm is an

indefinite matrix. Suppose thatGm � Pm

γm
fmfHm . SinceGm is

a positive-definite matrix, we havePmfHmG−1
m fm ≤ γm ( [9,

Lemma 1]). This contradicts the necessary condition for the
feasibility of P1 as shown in Section III-A. If eitherµo

m,j > 0
for some{m, j} or λo ≻ 0, there existsαo

m > 0 such that

(17a) is satisfied. Note that the objective of the dual problem
increases asαm increases. Ifµo

m = 0 and there existsλo
i = 0

for somei, thenαo
m can be zero.

APPENDIX C
PROOF OFPROPOSITION3

Proof: Suppose the necessary condition in Lemma 1 is
satisfied for allm ∈ M, i.e., αo ≻ 0. Then we haveKo

m ≻
0 for all m ∈ M. Using [9, Lemma 1] and rewriting the
expression of the matrix inequality (17a), the dual problem
D1 can be expressed as

max
λ,µ

max
α

M
∑

m=1

αmσ2
d − Pr(

N
∑

i=1

λi) (C.1)

subject to
αmPm

γm
fHmK−1

m fm ≤ 1, m ∈ M (C.2)

(17b), and (16a).

Since the optimal beam vector solution of the SIMO beam-
forming problem is known, in the following, we establish
the duality between (C.1) and SIMO beamforming problem
similar to [9]. Considering the dual problem (C.1) and the
optimization problem

max
λ,µ

min
α

M
∑

m=1

αmσ2
d − Pr(

N
∑

i=1

λi) (C.3)

subject to
αmPm

γm
fHmK−1

m fm ≥ 1, m ∈ M (C.4)

(17b), and (16a),

we have the inner maximization in (C.1) becomes minimiza-
tion in (C.3) and the SNR inequality is reversed. Substituting
(15) into LHS of (C.2), we define

Φm(αm) =
Pm

γm
fHm

( 1

αm
(RmDλ +

∑

j∈B

µm,jB̃m,j) +Gm

)−1

fm

(C.5)

which is a monotonically increasing function ofαm. Hence,
both (C.2) and (C.4) are met with equality at optimality
for a given{λo,µo,αo} satisfying Lemma 1. Furthermore,
problems (C.1) and (C.3) have the same solutionαo satisfying
Φm(αo

m) = 1 for m ∈ M. This implies that the optimization
problems (C.1) and (C.3) are equivalent.

Consider the following optimization problem

max
λ,µ

min
wm,α

M
∑

m=1

αmσ2
d − Pr(

N
∑

i=1

λi) (C.6)

subject to
αmPm|wH

mfm|2

‖K
1

2

mwm‖2
≥ γm, m ∈ M (C.7)

(17b), and (16a).

The inner minimization of problem (C.6) is the re-
ceive SIMO beamforming for power minimization problem
where M receivers each are equipped withN antennas.
The transmit power and noise covariance matrix for re-
ceiver m are

∑M
m=1 αmσ2

d − Pr(
∑N

i=1 λi) and K̄m
∆
=
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∑
M
m=1

αmσ2

d−Pr(
∑

N
i=1

λi)

αmPm
Km, respectively. The solution of the

SIMO beamforming problem,i.e., the inner minimization of
problem (C.6), is given byw̄o

m = K̄−1
m fm. Substituting

w̄o
m = αmPm∑

M
m=1

αmσ2

d
−Pr(

∑
N
i=1

λi)
K−1

m fm into problem (C.6),
we have problem (C.3). Note that the optimalw̄o

m can be
scaled by any non-zero coefficientξ such thatξw̄o

m is also an
optimal solution. Hence, the dual problem D1 is equivalent to
the SIMO beamforming problem (C.6), and we can use the
solution of (C.6) to obtainwo

m in the min-max interference
problem P1.

Since P1 has zero duality gap as shown in Proposition 1 and
w̄o is unique up to a scale factor, the optimal beam vector
wo

m is given by wo
m = ζmKo

mfm. In order to obtainζm,
note that the SNR constraint (11b) is met with equality based
on the slackness condition. Substitutingwo

m into the equation
Pmw

H
mFmwm

wH
mGmwm+σ2

d

= γm and after some manipulations, (20) is
obtained and the proof is complete.
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