
Gaming and Learning Approaches for Multi-user
Computation Offloading

(Invited Paper)

Sowndarya Sundar and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto, Ontario, Canada
{ssundar, liang}@ece.utoronto.ca

Abstract—We consider both offline and online com-
putational offloading of tasks from multiple users to a
cloud or nearby cloud at the edge. We model the offline
problem as an N -player finite game where each user
has access to information from other users, and we use
an optimization approach to find a mixed-strategy Nash
equilibrium solution. We also consider a practical online
version wherein tasks arrive over time and a user does
not require information from other users. We suggest a
solution to this online problem by adopting a payoff-based
reinforcement learning algorithm, which converges to a
pure-strategy solution. Through simulation, we observe
that the trends of the Nash equilibrium obtained from the
offline technique and the pure-strategy point obtained from
the online solution are similar. While the offline algorithm
obtains a better solution on average, the online algorithm
is much faster, particularly for larger systems.

I. INTRODUCTION

Mobile cloud computing enables the computational
offloading, or migration, of tasks from an application
on a mobile device to a remote cloud or a nearby
cloudlet. A mobile application can be partitioned into
a number of tasks, and offloading decisions can be
made to reduce the overall completion time [1]–[3].
However, most of the existing works only address the
single-user offloading scenario or assume a centralized
decision-making mechanism that schedules the tasks for
all users [4]–[10]. Such centralized schemes require the
communication of information from all devices to the
decision maker and may not be in the best interests of
all users.

In this work, we consider multiple mobile users, each
of whom requires multiple tasks to be executed. These
users may offload their tasks to a nearby shared cloud-
at-the-edge or execute the tasks locally on their own
device. The processors at the cloud have varying speeds.
Each user aims to identify task scheduling decisions
with an objective of minimizing their own completion

time, which is a combination of processing time and
communication time. This lends itself to a game theoretic
model.

We first consider the offline version of this problem
wherein each user has knowledge of its set of tasks in
advance. Furthermore, it is aware of the task information
of other users. We can then model this problem as an N -
player finite game, and we propose to identify a mixed-
strategy Nash equilibrium for this game by utilizing an
optimization problem formulation modified from [11].

However, in a practical setting, each user might not
have access to the task and decision information of the
other users. Furthermore, tasks may arrive at a user
dynamically over time. Thus each user is required to
make decisions by observing its own completion time
and learning over time to identify the best strategy.
We model this online model as a repeated game, and,
we propose a payoff-based reinforcement learning (RL)
algorithm based on the Erev-Roth model. This algorithm
converges to a pure-strategy equilibrium point but does
not guarantee a Nash equilibrium. Through simulation,
we observe the convergence of the online RL algorithm.
We also compare and contrast the online and offline
solutions against each other in order to study their
relative advantages and disadvantages.

The rest of the paper is organized as follows. In
Section II, we present the related work. Section III
describes the system model and the problem formula-
tion. In Section IV, we present the proposed solution
approaches. Section V presents the simulation results,
and we conclude the paper in Section VI.

II. RELATED WORK

There are few existing works that look to tackle the
multi-user computational offloading problem using game
theory. In [12], the problem of multi-user offloading
with one wireless access point and one cloud server

is modeled as a decentralized computational offloading
game, and it is proved that the game always admits a
Nash equilibrium solution. But the authors only consider
the case where each user has a single task to execute.

In [13], a three tier model consisting of mobile de-
vices, one resource-constrained cloudlet and one remote
cloud is considered. The authors formulate a generalized
Nash equilibrium problem, and a distributed algorithm is
proposed to compute an equilibrium strategy. However,
the cloudlet resource is assumed to be a single entity
where any number of tasks can be executed simultane-
ously with the processing times of all tasks involved
being affected by the load. While this simplifies the
model to a congestion game, it penalizes a user whose
task is already being executed at the cloudlet when other
tasks arrive. A similar model with a computing access
point at the mobile edge and a remote cloud server is
considered in [14], where an ordinal potential game is
used to find a Nash equilibrium solution for the offline
problem.

Our model allows for processors at the cloud to have
varying speeds. Additionally, the processors at the cloud
are finite in nature and can run just one task at a time,
with any task arriving later to be added to a queue.
The mobile devices are considered to be finite-capacity
devices. More importantly, we also explore an online
version of this problem where users have access to only
their own task information. To the best of our knowledge,
the computational offloading problem for such a game-
theoretic model has not been studied in the literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Tasks and Cloud Model

We consider a system with N mobile device users who
are represented by players in our game theoretic model.
Each mobile user i ∈ {1, . . . N} wishes to complete a set
of tasks (potentially belonging to a mobile application).
The processing time for each task j ∈ Ji, where Ji is
the set of tasks corresponding to user i, is tj on its local
processor. Each task is released or becomes available
for processing at time sj . Furthermore, each task has
a communication time cj associated with it if this task
were to be processed at the cloud. This communication
time can be calculated as cj = dj

τ where dj is the input
data required for task execution and τ is the transmission
rate of the channel.

The system also includes a finite-capacity cloudlet or
edge-cloud, which may be located on a base station near
to the users. We shall use the term “cloud” to refer to this
computing service provider from here on for simplicity.

Each processor on the cloud is assumed to have unary
capacity, i.e., it can execute only one task at a time. It
can be noted that devices that have non-unary capacity,
or multi-core, may be represented by combining multiple
unary capacity processors. However, the processors at
the cloud can run at different speeds. Each user can
execute its tasks either locally on its own mobile device
processor or remotely at one of the cloud processors.
The “speed-up” factor for each cloud processor r is αir,
which indicates the amount of speed-up user i’s tasks
can achieve while utilizing the cloud processor r instead
of running on the processor locally at the mobile device.
Thus, the speed-up factors for the local processors can be
considered to be one. Let Ri denote the set of processors
to which user i can offload its tasks, C be set of cloud
processors, and R be the set of all processors (local and
cloud).

B. Offline Model: N-Player Finite Game

In the offline version, each user has knowledge of
its set of tasks in advance, including their processing
times and release times. Furthermore, it is aware of the
task information of other users in addition to their set
of strategies, i.e. possible offloading decisions. Given
the strategies of the other players, each player i wishes
to identify its best response strategy that minimizes its
completion time, Ti. This can be represented by an
optimization problem where the decision variables xjrp
are defined as follows:

xjrp :=

{
1 if task j is on processor r at position p,
0 if otherwise,

∀ j ∈ {1, . . . P}, r ∈ R, and p ∈ {1, . . . P}, where
P =

∑N
i=1 |Ji|.

The position index p indicates the position in the
queue of each task on the processor where it is executed.
The position of each task is required because it deter-
mines the completion time of the task and consequently
affects the maximum completion time for its associated
user. Let auxiliary variables Cj represent the completion
time of offloaded task j. The optimization formulation
is as follows:

min
{xjrp}

Ti (1)

s.t.
∑
p

∑
r∈Ri

xjrp = 1, ∀i ∈ {1 . . . N}, j ∈ Ji, (2)

N∑
i=1

∑
j∈Ji

xjrp ≤ 1, ∀r ∈ R, p ∈ P, (3)

Cj − Ck + (2− xjrp − xkr(p−1))I ≥ αirtj ,
∀i ∈ {1 . . . N}, j ∈ Ji, k ∈ P, p ∈ P, r ∈ R,

(4)

Cj ≥ tj
∑
p

∑
r∈Ri

αirxjrp + sj + cj
∑
p

∑
r∈C

xjrp,

∀i ∈ {1 . . . N}, j ∈ Ji,
(5)

Ti ≥ Cj , ∀j ∈ Ji, (6)

xjrp ∈ {0, 1}, ∀j ∈ P, r ∈ R, p ∈ P. (7)

The objective function (1) deals with the minimiza-
tion of the completion time for user i. Constraint (2)
ensures each task is only processed once at a particular
position on a particular processor, and (3) is the resource
constraint on each processor. Constraint (4) uses a large
integer I to create a precedence constraint depending
on the value of xjrp. Constraint (5) sets the completion
times for each task to be at least the sum of its processing
time, release time, and communication time. Constraint
(6) ensures that the completion time for each user is
equal to the completion time of its last executed task.
Constraint (7) ensures that the decision variables are
binary.

Thus, this problem can be modelled as an N -player
finite game where the mobile users are the players of
the game, and all of them have access to a shared finite-
capacity cloudlet resource. The completion time for a
task from a particular user depends on the other users’
strategies, since this affects the load at the processors at
the cloud. This game can be denoted by G(N ,∆i, Ti),
where the more generic mixed-strategy representation of
∆i is considered since the N -player finite game is only
guaranteed to give us a mixed-strategy equilibrium by
the Nash Equilibrium Theorem [15].

C. Online Model: Repeated Game

In the offline model above, each user requires informa-
tion from the other users in order to solve its optimization
problem. A more practical assumption would be an
online model where each user does not require task
information from the other users. Furthermore, in many
applications, the tasks arrive one at a time, and a user
needs to identify a strategy for the task that has arrived.

A repeated game is one consisting of a number of
repetitions of some base game. If the tasks arriving
at a particular user can be assumed to have identical
processing times or have some sense of stationarity, then
such an online model can be viewed as a repeated game,
where during each round a single task arrives at each
user, i.e., the base game corresponds to scheduling of

a single task by each user. In application to practical
scenarios, we may say that the user learns each time the
same type of task is required to be executed. Thus, a
user makes decisions by observing and learning from its
own historical performance.

IV. SOLUTION APPROACHES

In the following section, we propose methods to
identify solutions for both the offline and online versions
of the problem.

A. Optimization-Based Offline Solution

The offline problem is modelled as an N -player finite
game, and each player i has mi = |Ri||Ji| possi-
ble strategies to choose from. Across all the players
we have a total of

∏N
i |Ri||Ji| possible pure-strategy

combinations. We define Σ = (σ1, σ2 . . . σN), where
σi = (σi0, σi1 . . . σi(mi−1)) refers to mixed strategy of
user i and σij is the mixed-strategy probability assigned
to pure strategy sij . Let the cost (completion time) for
user i for mixed strategy profile Σ be ai(Σ). Let Oi be
the expected completion time for player i. Modifying
from the approach suggested in [11], we can find a
mixed-strategy Nash equilibrium using the following op-
timization. The details are omitted due to page limitation.

min
Σ

N∑
i=1

(ai(Σ)−Oi) (8)

s. t.
mi∑
j=1

σij = 1 ∀i ∈ 1 . . . N (9)

Oi − ai(sij , σ−i) ≤ 0 ∀j ∈ 1 . . .mi,

∀i ∈ 1 . . . N
(10)

σij ≥ 0 ∀j ∈ 1 . . .mi, i ∈ 1 . . . N (11)

The optimal value of σ ensures that the objective is
minimized and Nash equilibrium is found by obeying
constraint (10). In [11], a similar non-linear optimization
problem is solved using a sequential quadratic program-
ming based quasi Newton method, and we adopt this
method to identify a solution to problem (8).

B. Reinforcement-Learning Based Online Solution

The online solution is found through an iterative
algorithm based on the Erev-Roth model. For each user
i, a score is assigned to each of its strategies in every
iteration. We define zki = (zki0, z

k
i1 . . . z

k
i(|Ri|−1)) as the

strategy scores and eki = (eki0, e
k
i1 . . . e

k
i(|Ri|−1)) as the

pure strategy unit vector for user i at iteration k, where
the 0th strategy corresponds to local execution. Our
algorithm has the following major steps:

1) Set initial values zkij = ti
αij

for every strategy j.
2) If ti ≥ Ci:

Assign z(k+1)
i = zki + (ti − Ci)eki .

3) If ti < Ci:
• Reset eki = 0.
• Set eki0 = 1.
• Assign z(k+1)

i = zki + (Ci − ti)eki .

4) Mixed strategy σi
(k+1) = z(k+1)

i

Z
(k+1)
i

, where Z(k+1)
i =∑mi

j=1 z
(k+1)
ij .

The payoff in our model is the amount of time a user
saves by offloading a task rather than running it on the
local device. The strategy that maximises this value will
also minimize the completion time of the task. Hence,
if ti ≥ Ci, we add this obtained payoff to the score
of the strategy z

(k+1)
i , and if not, we add the loss to

the local processor to indicate that the processing at
the local device is a better strategy. The corresponding
mixed strategy probability σ

(k+1)
i increases if the score

z
(k+1)
ij for strategy j increases. Thus, this strategy is more

likely to be picked in the future and consequently, after
a number of iterations, we can expect the probability of
a particular strategy to converge to 1 for identical tasks
arriving at a user. Additionally, we also introduce a cut-
off parameter µ such that when σkij for some strategy j
is less than µ, we set σkij to zero. This helps reduce the
number of iterations and result in faster convergence.
The algorithm stops when the users have attained a
pure-strategy equilibrium value. While this algorithm
cannot assure a Nash equilibrium, its ability to converge
to a solution by using minimal information provides
potentially beneficial trade-off to the offline scheme.

V. SIMULATION RESULTS

We run MATLAB simulation to assess the perfor-
mance of the two proposed algorithms. We consider a
three-processor cloud with speed-up factors αi1 = 0.5,
αi2 = 0.2, and αi3 = 0.8 for every user i. We consider
the arrival of one task at a time at each user, and the
processing times of the tasks are generated randomly
from a uniform distribution in (10, 100) ms, the release
times are uniform in (0, 20) ms and the input data are
uniform in (10, 100) KB. The data rate is set to 5 MBps.

Figure 1 depicts the variation in task completion time
over multiple iterations in a network consisting of 3
users. We can see that the online RL algorithm solution
converges to a particular pure strategy within a few
hundred iterations. Figure 2 depicts the corresponding
change in probability for choosing the equilibrium pure

0 100 200 300 400 500 600
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Iterations

C
om

pl
et

io
n

T
im

e
(s

)

RL Algorithm: User 1
RL Algorithm: User 2
RL Algorithm: User 3

Fig. 1: Convergence of the task completion time for the
online algorithm.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

P
ro

ba
bi

lit
y

of
 c

on
ve

rg
en

t s
tr

at
eg

y

RL Algorithm: User 1
RL Algorithm: User 2
RL Algorithm: User 3

Fig. 2: Convergence of the online algorithm.

strategy as the number of iterations increases. We see
that the probability of the equilibrium strategy increases
and converges to 1. The probabilities of other strategies
converge towards zero.

Figure 3 compares the task completion time value
obtained from the Nash equilibrium offline solution and
that obtained from the converged RL solution for the
online problem. We consider the same simulation setup
as that for Figures 1 and 2, but we vary the number
of users in the system from 2 to 6. We run multiple
randomized realizations and take the average among
them to plot each point in the graph. We compare the
task completion times for two specific users and on
average across all users. We can see that the trajectory
followed by both the online and offline completion times
are similar, while the offline completion time is lower on
average. This is understandable as each user has access
to all of the information about the other users in the
offline system, whereas in the online system, each user
only learns by observing its own completion time.

Table I depicts the run-times of the offline and on-

2 3 4 5 6
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of users

C
om

pl
et

io
n

T
im

e
(s

)

Offline:Average
Online:Average
Offline:User 1
Online:User 1
Offline:User 2
Online:User 2

Fig. 3: Converged task completion time vs. the number
of users, for User 1, User 2, and the average over all
users.

TABLE I: Run-time (in seconds)

N Offline Online

2 0.0561 1.4664

3 0.1663 2.1657

4 2.6503 1.1439

5 21.5912 1.1463

6 333.2687 4.7291

line algorithms for the same simulation scenario. The
online algorithm scales well with the increase in the
number of users, but the offline optimization can be time-
consuming, particularly for larger systems.

VI. CONCLUSION

We have considered both offline and online versions
of the multi-user computational offloading problem. We
have modelled the offline problem as an N-player finite
game and suggested using an optimization problem to
find a mixed-strategy Nash equilibrium. We have mod-
elled the online problem as a payoff-based RL algorithm
in order to consider a practical scenario where a user
does not have access to information from the other users
and tasks arrive dynamically over time.

While the online algorithm requires no external infor-
mation and converges to a pure strategy solution, it does
not guarantee a Nash equilibrium solution. On the other
hand, the offline solution guarantees a mixed-strategy
Nash equilibrium and can account for non-identical
tasks, but each user requires information about all its
own tasks in advance in addition to task information from
all other users. Through simulation, we observe that the
trends of the mixed-strategy Nash equilibrium obtained
from the offline solution and the pure-strategy equilib-
rium point obtained from the online solution are similar.

The offline algorithm gives smaller task completion
times on average, but the online algorithm is much faster.
One may choose between the two proposed solution
techniques based on application and requirements.

REFERENCES

[1] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing,” in Proc. IEEE INFOCOM Workshop on Computer
Communications, pp. 352–357, 2014.

[2] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to
offload: an efficient code partition algorithm for mobile cloud
computing,” in Proc. IEEE International Conference on Cloud
Networking (CloudNet), pp. 80–86, 2012.

[3] M.-A. Hassan Abdel-Jabbar, I. Kacem, and S. Martin, “Unre-
lated parallel machines with precedence constraints: application
to cloud computing,” in Proc. IEEE International Conference
on Cloud Networking (CloudNet), pp. 438–442, 2014.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smartphones
last longer with code offload,” in Proc. ACM International
Conference on Mobile Systems, Applications, and Services
(MobiSys), pp. 49–62, 2010.

[5] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computa-
tional offloading in mobile device clouds,” in Proc. IEEE Con-
ference on Cloud Computing Technology and Science (Cloud-
Com), pp. 331–338, 2013.

[6] A. Mtibaa, K. A. Harras, K. Habak, M. Ammar, and E. W.
Zegura, “Towards mobile opportunistic computing,” in Proc.
IEEE International Conference on Cloud Computing, pp. 1111–
1114, 2015.

[7] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb,
“Simplifying cyber foraging for mobile devices,” in Proc. ACM
International Conference on Mobile Systems, Applications, and
Services (MobiSys), pp. 272–285, 2007.

[8] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto
clouds: Leveraging mobile devices to provide cloud service at
the edge,” in Proc. IEEE International Conference on Cloud
Computing, pp. 9–16, 2015.

[9] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,”
in Proc. IEEE INFOCOM, pp. 190–194, 2013.

[10] B. Y.-H. Kao and B. Krishnamachari, “Optimizing mobile
computational offloading with delay constraints,” in Proc.
IEEE Global Communication Conference (Globecom), pp. 8–
12, 2014.

[11] B. Chatterjee, “An optimization formulation to compute nash
equilibrium in finite games,” in Proc. IEEE International Con-
ference on Methods and Models in Computer Science, pp. 1–5,
2009.

[12] X. Chen, “Decentralized computation offloading game for mo-
bile cloud computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 4, pp. 974–983, 2015.

[13] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei,
V. Grassi, F. L. Presti, and V. Piccialli, “A game-theoretic ap-
proach to computation offloading in mobile cloud computing,”
Mathematical Programming, vol. 157, no. 2, pp. 421–449, 2016.

[14] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud
offloading game with computing access point,” in Proc. IEEE
International Conference on Cloud Networking (CloudNet), pp.
64–69, 2016.

[15] J. F. Nash et al., “Equilibrium points in n-person games,” in
Proc. Nat. Acad. Sci. USA, vol. 36, no. 1, pp. 48–49, 1950.

