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ABSTRACT
Middleboxes are widely deployed in today’s networks. They ap-
ply a variety of complex network functions to transform, filter, and
optimize incoming traffic based on the payload of packets. These
functions require the support of multiple types of resources, such as
CPU and link bandwidth, for processing incoming packets. Hence,
a multi-resource packet scheduling algorithm is needed to allow
flows to share these resources fairly and efficiently. However, un-
like traditional fair queueing where bandwidth is the only concern,
we show in this paper that fairness and efficiency are conflicting
objectives that cannot be achieved simultaneously in the presence
of multiple resources. Ideally, a scheduling algorithm should al-
low network operators to flexibly specify their fairness and effi-
ciency requirements, so as to meet the Quality of Service demands
while keeping the system at a high utilization level. Yet, existing
multi-resource scheduling algorithms focus on fairness only, and
may lead to poor resource utilization. In this paper, we propose
a new scheduling algorithm to achieve a flexible tradeoff between
fairness and efficiency for packet processing, consuming both CPU
and link bandwidth. Experimental results based on both real-world
implementation and trace-driven simulation suggest that trading off
a modest level of fairness can potentially improve the efficiency to
the point where the system capacity is almost saturated.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking

General Terms
Scheduling Theory
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1. INTRODUCTION
Queueing algorithms determine the order in which packets in

various independent flows are processed, and serve as a fundamen-
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tal mechanism for allocating resources in a network appliance. Tra-
ditional queueing algorithms [1, 9, 21, 28] make scheduling deci-
sions in network switches that simply forward packets to their next
hops, and link bandwidth is the only resource being allocated.

In modern network appliances, e.g., middleboxes [25, 27], link
bandwidth is no longer the only resource shared by flows. In addi-
tion to packet forwarding, middleboxes perform a variety of critical
network functions that require deep packet inspection based on the
payload of packets, such as IP security encryption, WAN optimiza-
tion, and intrusion detection. Performing these complex network
functions requires the support of multiple types of resources, and
may bottleneck on either CPU or link bandwidth [10, 13]. For ex-
ample, flows that require basic forwarding may congest the link
bandwidth [13], while those that require IP security encryption
need more CPU processing time [10]. A queueing algorithm specif-
ically designed for multiple resources is therefore needed for shar-
ing these resources fairly and efficiently.

Fairness offers predictable service isolation among flows. It en-
sures that the service a flow receives (i.e., number of packets pro-
cessed per second) in an n-flow system is at least 1/n of that it
achieves when the flow monopolizes all resources, independent of
the behavior of other rogue flows. The notion of Dominant Re-
source Fairness (DRF) [14, 22] embodies this isolation property,
with which each flow receives approximately the same processing
time on its dominant resource, defined as the one that requires the
most packet processing time [13].

Efficiency serves as another important metric measuring the re-
source utilization achieved by a queueing algorithm. High resource
utilization naturally translates into high traffic throughput. This is
of particular importance to enterprise networks, given the surging
volume of traffic passing through middleboxes [27, 35].

Both fairness and efficiency can be achieved at the same time
in traditional single-resource fair queueing, where bandwidth is the
only concern. As long as the schedule is work conserving [38],
bandwidth utilization is 100% given a non-empty system. That
leaves fairness as an independent objective to optimize.

However, in the presence of multiple resources, fairness is of-
ten a conflicting objective against efficiency. To see this, consider
two schedules shown in Fig. 1 with two flows whose packets need
CPU processing before transmission. Packets that finishes CPU
processing are placed into a buffer in front of the output link. Each
packet in Flow 1 has a processing time vector 〈2, 3〉, meaning that
it requires 2 time units for CPU processing and 3 time units for
transmission; each packet in Flow 2 has a processing time vec-
tor 〈9, 1〉. The dominant resource of Flow 1 is link bandwidth,
as it takes more time to transmit a packet than processing it us-
ing CPU; similarly, the dominant resource of Flow 2 is CPU. To
achieve DRF, the transmission time Flow 1 receives should be ap-
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(b) A packet schedule that is efficient but violates DRF.

Figure 1: An example showing the tradeoff between fairness and
efficiency for multi-resource packet scheduling. Packets that fin-
ishes CPU processing are placed into a buffer in front of the output
link. Flow 1 sends packets p1, p2, ..., each having a processing
time vector 〈2, 3〉; Flow 2 sends packets q1, q2, ..., each having
a processing time vector 〈9, 1〉. Schedule (a) achieves DRF but is
inefficient; Schedule (b) is efficient but unfair.

proximately equal to the CPU processing time Flow 2 receives. In
this sense, Flow 1 should schedule three packets whenever Flow 2
schedules one, so that each flow receives 9 time units to process its
dominant resource, as shown in Fig. 1a. This schedule, though fair,
leads to poor bandwidth utilization—the link is idle for 1/3 of the
time. On the other hand, Fig. 1b shows a schedule that achieves
100% CPU and bandwidth utilization by serving eight packets of
Flow 1 and one packet of Flow 2 alternately. The schedule, though
efficient, violates DRF. While Flow 1 receives 24/25 of the link
bandwidth, Flow 2 receives only 9/25 of the CPU time.

The fairness-efficiency tradeoff shown in the example above gen-
erally exists for multi-resource packet scheduling, but it has re-
ceived little attention before. Existing multi-resource queueing al-
gorithms focus solely on fairness [13, 31, 34]. However, for appli-
cations having a loose fairness requirement, trading off a modest
degree of fairness for higher efficiency and higher throughput is
well justified. In general, depending on the underlying applica-
tions, a network operator may weigh fairness and efficiency differ-
ently. Ideally, a multi-resource queueing algorithm should allow
network operators to flexibly specify their tradeoff preference and
implement the specified tradeoff by determining the “right” packet
scheduling order.

However, designing such a queueing algorithm is non-trivial. It
remains to be seen how efficiency can be quantitatively defined.
Further, it remains open how the tradeoff requirement should be ap-
propriately specified. But most importantly, given a specific trade-
off requirement, how can the scheduling decision be correctly made
to implement it?

This paper represents the first attempt to address these challenges.
We clarify the efficiency measure as the schedule makespan, which
is the completion time of the last flow. We show that achieving a
flexible tradeoff between fairness and efficiency is generally NP-
hard. We hence limit our discussion to a typical scenario where
CPU and link bandwidth are the two types of resources required for
packet processing, which is usually the case in middleboxes. We
show that the fairness-efficiency tradeoff can be strictly enforced
by a GPS-like (Generalized Processor Sharing [9,21]) fluid model,
where packets are served in arbitrarily small increments on both
resources. To implement the idealized fluid in the real world, we

design a packet-by-packet tracking algorithm, using an approach
similar to the virtual time implementation of Weighted Fair Queue-
ing (WFQ) [9, 16, 21]. We have prototyped our tradeoff algorithm
in the Click modular router [19]. Both our prototype implementa-
tion and trace-driven simulation show that a 15% ∼ 20% fairness
tradeoff is sufficient to achieve the optimal efficiency, leading to a
nearly 20% improvement in bandwidth throughput with a signifi-
cantly higher resource utilization.

2. FAIRNESS AND EFFICIENCY
Before discussing the tradeoff between fairness and efficiency,

we shall first clarify how the notion of fairness is to be defined, and
how efficiency is to be measured quantitatively. We model packet
processing as going through a resource pipeline, where the first
resource is consumed to process the packet first, followed by the
second, and so on. A packet is not available for the downstream
resource until the processing on the upstream resource finishes.
For example, a packet cannot be transmitted (which consumes link
bandwidth) before it has been processed by CPU.

2.1 Dominant Resource Fairness
Fairness is one of the primary design objectives for a queueing

algorithm. A fair schedule offers service isolation among flows by
allowing each flow to receive the throughput at least at the level
when every resource is evenly allocated. The notion of Domi-
nant Resource Fairness (DRF) embodies this isolation property by
achieving the max-min fairness on the dominant resources of pack-
ets in their respective flows [13]. The dominant resource of a packet
is defined as the one that requires the maximum packet process-
ing time. In particular, let τr(p) be the time required to process
packet p on resource r. The dominant resource of packet p is
rp = arg maxr τr(p). Given a packet schedule, let Di(t1, t2) be
the time flow i receives to process the dominant resources of its
packets in a backlogged period (t1, t2). The function Di(t1, t2) is
referred to as the dominant service flow i receives in (t1, t2). A
schedule is said to strictly implement DRF if for all flows i and j,
and for any period (t1, t2) they backlog, we have

Di(t1, t2) = Dj(t1, t2). (1)

In other words, a strict DRF schedule allows each flow to receive
the same dominant service in any backlogged period.

However, because packets are scheduled as separate entities and
are transmitted in sequence, strictly implementing DRF at all times
may not be possible in practice. For this reason, a practical fair
schedule only requires flows to receive approximately the same
dominant services over time [13, 31, 34], as shown in the previous
example of Fig. 1a.

2.2 The Efficiency Measure
In addition to fairness, efficiency is another important concern

for a multi-resource scheduling algorithm, but has received no sig-
nificant attention before. Even the definition of efficiency needs
clarification.

Perhaps the most widely adopted efficiency measure is system
throughput, whose conventional definition is the rate of comple-
tions [17], computed as the processed workload divided by the
elapsed time (e.g., bits per second). While this performance metric
is well defined for single-resource systems, extending its definition
to multiple types of resources leads to a throughput vector, where
each component is the throughput of one type of resource (e.g.,
10 CPU instruction completions per second and 5 bits transmitted
through the output link per second), and different throughput vec-
tors may not be comparable.



Another possible efficiency measure is resource utilization given
non- empty system, or simply resource utilization in the remain-
der of this paper.1 However, in a middlebox, different resources
may see different levels of utilization. The question is: how should
the “system utilization” be properly defined? One possible defi-
nition is to add up the utilization rates of all resources. This def-
inition implicitly assumes exchangeable resources, say, 1% CPU
usage is equivalent to 1% bandwidth consumption, which may not
be well justified in many circumstance, especially when one type of
resource is scarce in the system and is valued more than the other.

In this paper, we measure efficiency with the schedule makespan.
Given input flows with a finite number of packets, the makespan of
a schedule is defined as the time elapsed from the arrival of the
first packet to the time when all packets finish processing on all
resources. One can also view makespan as the completion time of
the last flow. Intuitively, given a finite traffic input, the shorter the
makespan is, the faster the input traffic is processed, and the more
efficient the schedule is.2

2.3 Tradeoff between Fairness and Efficiency
With the precise measure of efficiency, we are curious to know

how much efficiency is sacrificed for fair queueing. To answer
this question, we first generalize the definition of work conserving
schedules from traditional single-resource fair queueing to multiple
resources. In particular, we say a schedule is work conserving if at
least one resource is fully utilized for packet processing when there
is a backlogged flow. In other words, a work conserving schedule
does not allow resources to be wasted in idle if they can be used to
process a backlogged packet. Existing multi-resource fair queueing
algorithms [13,31,34] use the goal of achieving work conservation
as an indication of efficiency. However, in the theorem below, we
observe that such an approach is ineffective.

Theorem 1. Letm be the number of resource types concerned.
Given any traffic input I , let Tσ(I) be the makespan of a work
conserving schedule σ, and T ∗(I) the minimum makespan of an
optimal schedule. We have

Tσ(I) ≤ mT ∗(I). (2)
PROOF. Given a traffic input I , let the work conserving sched-

ule σ consist of nb busy period. A busy period is a time interval
during which at least one type of resource is used for packet pro-
cessing. When the system is empty and a new packet arrives, a new
busy period starts. The busy period ends when the system becomes
empty again. We consider the following two cases.

Case 1: nb = 1. Let traffic input I consist ofN packets, ordered
based on their arrival times, where packet 1 arrives first. For packet
i, let τ (i)

r be its packet processing time on resource r. It is easy to
check that the following inequality holds for the optimal schedule
with the minimum makespan:

T ∗(I) ≥ max
r

N∑
i=1

τ (i)
r . (3)

1This definition is different from that of queueing theory, where
the utilization is defined as the fraction of time a device is busy
[17]. Under this definition, high utilization usually means a high
congestion level with a large queue backlog and long delays [36],
and is usually not desired.
2In general, makespan is not the only efficiency measure that one
can define. For example, we can also measure efficiency with the
average flow completion time. We choose makespan as the effi-
ciency measure in this paper because it leads to tractable analysis.
More importantly, makespan closely relates to “system utilization”
and is conceptually easy to understand. The discussion of other
possible efficiency measures is out of the scope of this paper.

On the other hand, for work conserving schedule σ, its makespan
reaches the maximum when packet processing does not overlap in
time, across all resources, i.e.,

Tσ(I) ≤
N∑
i=1

m∑
r=1

τ (i)
r (4)

This leads to the following inequalities:

Tσ(I) ≤
N∑
i=1

m∑
r=1

τ (i)
r ≤

N∑
i=1

mmax
r
τ (i)
r ≤ mT ∗(I). (5)

Case 2: nb > 1. Given traffic input I , let I(t+) be the packets
that arrive on or after time t. For schedule σ, let t0 be the time
when its second last busy period (nb − 1) ends, and t1 the time
when the last busy period (nb) starts. Because schedule σ is work
conserving, no packet arrives between t0 and t1. We have

Tσ(I) = t1 + Tσ(I(t+1 )), (6)

and

T ∗(I) = t1 + T ∗(I(t+1 )). (7)

Note that given traffic input I(t+1 ), schedule σ consists of only one
busy period. By the discussion of Case 1, we have

Tσ(I) = t1 + Tσ(I(t+1 ))

≤ t1 +mT ∗(I(t+1 ))

≤ mT ∗(I),

(8)

where the last inequality is derived from (7). ut

We make the following three observations from Theorem 1. First,
the tradeoff between fairness and efficiency is a unique challenge
facing multi-resource scheduling. When the system consists of
only one type of resource (i.e., m = 1), work conservation is suf-
ficient to achieve the minimum makespan, leaving fairness as the
only concern. For this reason, efficiency has never been a problem
for traditional single-resource fair queueing. Second, while work
conservation also provides some efficiency guarantee for multi-
resource scheduling, the more types of resources, the weaker the
guarantee. Third, even with a small number of resource types, the
efficiency loss could be quite significant. Since bandwidth through-
put is inversely proportional to the schedule makespan, Theorem 1
implies that solely relying on work conservation may incur up to
50% loss of bandwidth throughput when there are two types of re-
sources. While this is based on the worst case, as we shall see later
in §6, our experiments confirm that a throughput loss of as much as
20% is introduced by the existing fair queueing algorithms. Trad-
ing off some degree of fairness for higher efficiency is therefore
well justified, especially for applications with loose fairness re-
quirements.

2.4 Challenges
Unfortunately, striking a desired balance between fairness and

efficiency in a multi-resource system is technically non-trivial. Even
minimizing the makespan without regard to fairness—a special case
of fairness-efficiency tradeoff—is NP-hard. In particular, we note
that minimizing the makespan of a packet schedule can be mod-
eled as a multi-stage flow shop problem [6, 20, 23] studied in oper-
ations research, where the equivalent of a packet is a job, and the
equivalent of a type of resource is a machine. However, flow shop
scheduling is a notoriously hard problem, even in its offline setting
where the entire input is known beforehand. Specifically, when all
jobs (packets) are available at the very beginning, finding the mini-



mum makespan is strongly NP-hard when the number of machines
(resources) is greater than two [12].

Given the hardness results above, in this paper, we limit our dis-
cussion to two types of resources, CPU and link bandwidth, as
these are the two most concerned middlebox resources [13,25]. We
note that even with two types of resources, minimizing the sched-
ule makespan remains a hard problem. Because packets arrive dy-
namically over time, the problem resembles a 2-machine online
flow shop scheduling problem where jobs (packets) do not reveal
their information until they arrive. For this problem, only a limited
amount of negative results is known [6,20,23,26,30]. Specifically,
no online algorithm can ensure a makespan within a factor of 1.349
of the optimum in all cases [24]. We also notice that no exist-
ing work gives a concrete solution, even a heuristic algorithm, that
jointly considers both makespan and fairness.

3. FAIRNESS, EFFICIENCY, AND THEIR
TRADEOFF IN THE FLUID MODEL

The difficulty of makespan minimization is mainly introduced
by the combinatorial nature of multi-resource scheduling. One ap-
proach to circumvent this problem is to consider a fluid relaxation,
where packets are served in arbitrarily small increments on all re-
sources. For each packet, this is equivalent to processing it simul-
taneously on all resources with the same progress, and head-of-line
packets of backlogged flows can also be served in parallel, at (po-
tentially) different processing rates. Such a parallel processing fluid
model eliminates the need for discussing the scheduling orders of
flows. Instead, it allows us to focus on the resource shares allocated
to flows, hence relaxing a combinatorial optimization problem to
a simpler dynamic resource allocation problem. While in general,
optimally solving such a dynamic problem requires knowing future
packet arrivals, we show in this section that, under some practical
assumptions, a greedy algorithm gives an optimal online schedule
with the minimum makespan. We can then strike a balance between
efficiency and fairness by imposing some fairness constraints to the
fluid schedule. We shall discuss later in §4 and §5 how this fluid
schedule is implemented in practice with a packet-by-packet track-
ing algorithm at acceptable complexity.

3.1 Fluid Relaxation
In the fluid model, a flow is relaxed to a fluid where each of

its packets is served simultaneously on all resources with the same
progress. Packets of different flows are also served in parallel. The
schedule needs to decide, at each time, the resource share allocated
to each backlogged flow. In particular, let Bt be the set of flows that
are backlogged at time t. Let ati,r be the fraction (share) of resource
r allocated to flow i at time t. The fluid schedule determines, at
each time t, the resource allocation ati,r for each backlogged flow i
and each resource r.

Two constraints must be satisfied when making resource alloca-
tion decisions. First, we must ensure that no resource is allocated
more than its total availability:∑

i∈Bt

ati,r ≤ 1, r = 1, 2. (9)

The second constraint ensures that a packet is processed at a con-
sistent rate across resources. In particular, for a backlogged flow i
and its head-of-line packet at time t, let τ ti,r be its packet processing
time on resource r, and

ri = arg max
r

τ ti,r (10)

Table 1: Main notations used in the fluid model. The superscript t
is dropped when time can be clearly inferred from the context.

Notation Explanation
n maximum number of flows that are concur-

rently backlogged
α fairness knob specified by the network operator
B (or Bt) set of flows that are currently backlogged (at

time t)
di (or dti) dominant share allocated to flow i (at time t)
d̄ (or d̄t) fair dominant share (at time t), given by (16)
τi,r (or τ ti,r) packet processing time on resource r required

by the head-of-line packet of flow i (at time t)
τ̄i,r (or τ̄ ti,r) normalized τi,r (or τ̄ ti,r), defined by (12)

be its dominant resource. The processing rate that this packet re-
ceives on resource r is computed as the ratio between the resource
share allocated and the processing time required: ati,r/τ

t
i,r . To en-

sure a consistent processing rate, we have

ati,r/τ
t
i,r = ati,r′/τ

t
i,r′ , for all r and r′.

Substituting ri into r′ above, we see a linear relation between the
allocation share of resource r and that of the dominant resource:

ati,r =
τ ti,r
τ ti,ri

ati,ri = τ̄ ti,rd
t
i, (11)

where

τ̄ ti,r = τ ti,r/τ
t
i,ri (12)

is the normalized packet processing time on resource r, and

dti = ati,ri (13)

is the dominant share allocated to flow i at time t. Plugging (11)
into (9), we combine the two constraints into one feasibility con-
straint of a fluid schedule:∑

i∈Bt

τ̄ ti,rd
t
i ≤ 1, r = 1, 2. (14)

Before we discuss the tradeoff between fairness and efficiency,
we first consider two special cases, where either fairness or effi-
ciency is the only objective to optimize in the fluid model. For ease
of presentation, we drop the superscript t when time can be clearly
inferred from the context. Table 1 summarizes the main notations
used in the fluid model.

3.2 Fluid Schedule with Perfect Fairness
We first consider the fairness objective. To achieve perfect DRF,

the fluid schedule enforces strict max-min fairness on flows’ dom-
inant shares, under the feasibility constraint. Specifically, the fluid
schedule solves the following DRF allocation problem [14, 22] at
each time t:

max
di

min
i∈B

di

s.t.
∑
i∈B

τ̄i,rdi ≤ 1, r = 1, 2.
(15)

Let n be the number of backlogged flows. The optimal solution,
denoted by d̄ = (d̄1, . . . , d̄n), allocates each backlogged flow the
same dominant share, i.e.,

d̄i = d̄ = 1/max
{∑

i τ̄i,1,
∑
i τ̄i,2

}
. (16)
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Figure 2: The DRGPS fluid that implements the perfect fairness
in the example of Fig. 1. Flow 1 sends packets p1, p2, ..., and
receives 〈3/5 CPU, 1/15 bandwidth〉; Flow 2 sends packets q1, q2,
..., and receives 〈3/5 CPU, 1/15 bandwidth〉. Only 2/3 of the link
bandwidth is utilized.

In any backlogged periods, because flows are allocated the same
dominant shares, they receive the same dominant services, achiev-
ing strict DRF at all times. The resulting fluid schedule is also
known as DRGPS [32], a multi-resource generalization to the well-
known GPS [9, 21].

Any discrete fair schedule is essentially a packet-by-packet ap-
proximation to DRGPS. For instance, applying DRGPS to the ex-
ample of Fig. 1 leads to a fluid schedule shown in Fig. 2, where
the normalized packet processing times of Flow 1 and Flow 2 are
〈τ̄1,1, τ̄1,2〉 = 〈2/3, 1〉 and 〈τ̄2,1, τ̄2,2〉 = 〈1, 1/9〉, respectively.
By (16), both flows are allocated the same dominant share d̄ = 3/5.
Specifically, Flow 1 receives 〈2/5 CPU, 3/5 bandwidth〉; Flow 2
receives 〈3/5 CPU, 1/15 bandwidth〉. In total, only 2/3 of the
bandwidth is utilized, the same as the discrete fair schedule shown
in Fig. 1a.

3.3 Fluid Schedule with Optimal Efficiency
We next discuss the efficiency objective. While there are some

schedules proposed in the operations research literature that can
achieve the minimum makspan for a flow shop problem, none of
them applies in the context of packet scheduling: they either as-
sume no packet arrivals (e.g., [29]) or require full knowledge of
future information (e.g., [5]). We propose a simple greedy fluid
schedule as follows.

For a given time instant, we define the system’s instantaneous
dominant throughput as the sum of the dominant share allocated,
i.e.,

∑
i∈B di. Intuitively, by maximizing

∑
i∈B di at all times, one

would expect a high average dominant throughput
∑
i∈BDi/T ,

where T is the schedule makespan andDi is the total dominant ser-
vices (processing time) required by flow i. Given dominant work-
load

∑
i∈BDi, maximizing the average dominant throughput is

equivalent to minimizing the schedule makespan T . Following this
intuition, we propose a greedy fluid schedule that solves the fol-
lowing resource allocation problem to maximize the instantaneous
dominant throughput at every time:

max
di≥0

∑
i∈B

di

s.t.
∑
i∈B

τ̄i,rdi ≤ 1, r = 1, 2.
(17)

In case that the optimal solution, denoted d∗ = (d∗1, . . . , d
∗
n), is

not unique, the schedule chooses the one with the maximum overall
utilization:

max
d∗i

∑
r

∑
i∈B

τ̄i,rd
∗
i . (18)

In the example of Fig. 1, solving (17) allocates Flow 1 the dominant
share d∗1 = 9/25 and Flow 2 the dominant share d∗2 = 24/25. It is
easy to check that both CPU and link bandwidth are fully utilized.

Compared to those schedules proposed in the operations research
literature, the greedy schedule defined by (17) is particularly at-
tractive for packet scheduling due to the following three properties.
First, it is an online algorithm without any a priori knowledge of
future packet arrivals. Further, among all packets that are back-
logged, only the information regarding head-of-line packets is re-
quired. This suggests that the schedule only needs to maintain a
very simple per-flow state. Most importantly, the greedy schedule
is more than a simple heuristic. Below we show that under some
practical assumptions, greedily maximizing the dominant through-
put gives the minimum makespan. Our analysis requires the fol-
lowing lemma, where we show that the schedule will not waste any
resource in idle, unless all flows bottleneck on the same resource,
in which case the other resource cannot be fully utilized anyway.
The proof is given in Appendix A.

Lemma 1. The fluid schedule defined by (17) fully utilizes both
resources if there are two head-of-line packets with different dom-
inant resource, i.e., there exist two flows j and l, such that τ̄j,1 =
1 > τ̄j,2 and τ̄l,1 < τ̄l,2 = 1.

With Lemma 1, we analyze the makespan of the fluid sched-
ule defined by (17). Following [13], we say a flow is dominant-
resource monotonic if it does not change its dominant resource dur-
ing backlogged periods. To make the analysis tractable, we assume
that flows are dominant-resource monotonic. This is often true in
practice as packets in the same flow usually undergo the same pro-
cessing, and hence have the same dominant resource. The follow-
ing lemma, whose proof can be found in Appendix B, states the op-
timality of the fluid schedule in a static scenario without dynamic
packet arrivals.

Lemma 2. For dominant-resource monotonic flows, the fluid
schedule defined by (17) gives the minimum makespan if all packets
are available at the beginning.

We now extend the results of Lemma 2 to an online case where
packets dynamically arrive over time. The following theorem gives
the optimality condition of the fluid schedule. The proof can be
found in Appendix C.

Theorem 2. For dominant-resource monotonic flows, the fluid
schedule defined by (17) gives the minimum makespan among all
schedules, if after the system has two flows with different dominant
resources, whenever a new flow arrives, there exist two backlogged
flows with different dominant resources.

The optimality conditions required by Theorem 2 can be easily
met in practice. Because the number of backlogged flows is usu-
ally large, it is almost true that we can always find two flows with
different dominant resources. In fact, even in a very unfortunate
case where all flows bottleneck on the same resource, the greedy
fluid schedule does not deviate far away from the optimum: no
matter what fluid schedule is used, the bottleneck resource is al-
ways fully utilized when the system is non-empty and hence has
the same backlog, which is a dominant factor in determining the
schedule makespan.

The significance of Theorem 2 is that it connects makespan, a
measure defined in the time domain, to the instantaneous dominant
throughput, a measure defined in the space domain. More impor-
tantly, it shows that minimizing the former is, in a practical sense,
equivalent to maximizing the latter at all times, without the need to
know future packet arrivals. We shall use this intuition to strike a
balance between fairness and efficiency in the next subsection.



3.4 Tradeoff between Fairness and Efficiency
When both fairness and efficiency are considered, we express

the tradeoff between the two conflicting objectives as a constrained
optimization problem—minimizing makespan under some speci-
fied fairness requirements. Recall that when perfect fairness is en-
forced, all flows receive the same dominant share d̄ computed by
(16), i.e., di = d̄ for all i. When fairness is not a strict require-
ment, we introduce a fairness knob α ∈ [0, 1] to specify the fair-
ness degradation. In particular, an allocation d is called α-portion
fair if di ≥ αd̄ for all backlogged flow i. In other words, each
flow receives at least an α-portion of its fair dominant share d̄. A
fluid schedule is called α-portion fair if it achieves the α-portion
fair allocation at all times.

By choosing different values for α, a network operator can pre-
cisely control the fairness degradation. As two extreme cases, set-
ting α = 0 means that fairness is not considered at all; setting
α = 1 means that perfect fairness must be enforced at all times.

Given the specified fairness knob α, the fluid schedule tries to
minimize makespan under the correspondingα-portion fairness con-
straints. Since minimizing makespan is, in a practical sense, equiv-
alent to maximizing the system’s dominant throughput, we obtain a
simple tradeoff heuristic that maximizes the dominant throughput,
subject to the required α-portion fairness at every time t:

max
di

∑
i∈B

di

s.t.
∑
i∈B

τ̄i,rdi ≤ 1, r = 1, 2,

di ≥ αd̄, ∀i ∈ B,

(19)

where the fair share d̄ is given by (16). We see that the fluid sched-
ule captures both DRGPS and the greedy schedule defined by (17)
as special cases with α = 1 and 0, respectively.

Special Solution Structure. The tradeoff problem (19) has a
closed-form solution, based on which the tradeoff schedule can be
easily computed. We first allocate each flow its guaranteed portion
of dominant share αd̄. We then denote

d̃i = di − αd̄ (20)

as the bonus dominant share allocated to flow i. Substituting (20)
into (19), we equivalently rewrite (19) as a problem of determining
the bonus dominant share received by each flow:

max
d̃i≥0

∑
i∈B

d̃i + |B|αd̄

s.t.
∑
i∈B

τ̄i,rd̃i ≤ µr r = 1, 2,
(21)

where

µr = 1− αd̄
∑
i∈B

τ̄i,r, r = 1, 2, (22)

and is the remaining share of resource r after each flow receives
its guaranteed dominant share αd̄. Without loss of generality, we
sort all the backlogged flows based on the processing demands on
the two types of resources required by their head-of-line packets as
follows:

τ̄1,1/τ̄1,2 ≥ · · · ≥ τ̄n,1/τ̄n,2. (23)

The following theorem shows that at most two flows are awarded
the bonus share at a time. Its proof is given in Appendix D.

Theorem 3. There exists an optimal solution d̃∗ to (21) where
d̃∗i = 0 for all 2 ≤ i ≤ n − 1. In particular, d̃∗ is given in the
following three cases:

Case 1: µ1/µ2 < τ̄n,1/τ̄n,2. In this case, resource 1 is fully
utilized, with d̃∗n = µ1/τ̄n,1 and d̃∗i = 0 for all i < n.

Case 2: µ1/µ2 > τ̄1,1/τ̄1,2. In this case, resource 2 is fully
utilized, with d̃∗1 = µ2/τ̄1,2 and d̃∗i = 0 for all i > 1.

Case 3: τ̄n,1/τ̄n,2 ≤ µ1/µ2 ≤ τ̄1,1/τ̄1,2. In this case, both
resources are fully utilized, and we have

d̃∗i =

 (µ1τ̄n,2 − µ2τ̄n,1)/(τ̄1,1τ̄n,2 − τ̄1,2τ̄n,1), i = 1;
(µ2τ̄1,1 − µ1τ̄1,2)/(τ̄1,1τ̄n,2 − τ̄1,2τ̄n,1), i = n;
0, o.w.

Once the optimal bonus dominant share has been determined as
shown above, the optimal solution d∗ to (19), which is the dom-
inant share allocated to each flow, can be easily computed as the
sum of the bonus share and the guaranteed share:

d∗i = d̃∗i + αd̄, for all i. (24)

We give an intuitive explanation of Theorem 3 as follows. The
first two cases of Theorem 3 correspond to the scenario where after
each flow receives its guaranteed share, the remaining amounts of
the two types of resources are unbalanced and cannot be fully uti-
lized simultaneously. In this case, the schedule awards the bonus
share to the flow (either Flow 1 or Flow n) whose processing de-
mands can better utilize the remaining resources. The third case
covers the scenario where the remaining amounts of the two types
of resources are balanced, and can be fully utilized when the sys-
tem is non-empty. In this case, they are allocated to two flows
(Flow 1 and Flow n) with complementary resource demands as
their bonus shares.

Theorem 3 reveals an important structure, that at most two flows
are allocated more dominant shares than others. We refer to these
flows as the favored flows and all the others as the regular flows.
We shall show in §5 that this structure leads to an efficientO(logn)
implementation of the fluid schedule.

4. PACKET-BY-PACKET TRACKING
So far, all our discussions are based on an idealized fluid model.

In practice, however, packets are processed as separate entities. In
this section, we present a discrete tracking algorithm that imple-
ments the fluid schedule as a packet-by-packet schedule in prac-
tice. We show that the discrete schedule is asymptotically close to
the fluid schedule, in terms of both fairness and efficiency. We start
with a comparison between two typical tracking approaches.

4.1 Start-Time Tracking vs. Finish-Time
Tracking

Two common tracking algorithms may be used to implement a
fluid schedule in practice, start-time tracking and finish-time track-
ing. The former tracks the order of packet start times—among all
packets that have already started in the fluid schedule, the one that
starts the earliest is scheduled first. Finish-time tracking, on the
other hand, assigns the highest scheduling priority to the packet that
completes service the earliest in the fluid schedule. In traditional
single-resource fair queueing, FQS [16] uses the former approach
to track GPS, while WFQ [1, 9, 21] adopts the latter approach.

While both algorithms closely track the fluid schedule of fair
queueing, only start-time tracking is well defined for the tradeoff
schedule given by (19). This is due to the fact that, in the tradeoff
schedule, future traffic arrivals may lead to a different allocation of
packet processing rates and may subsequently change the packet



finish times of current packets. As a result, determining the order
of finish times requires future traffic arrival information and hence
is unrealistic.3 Start-time tracking avoids this problem as packets
are scheduled only after they start in the fluid schedule.

For this reason, we use start-time tracking to implement the fluid
schedule. We say a discrete schedule and a fluid schedule corre-
spond to each other if the former tracks the latter by the packet
start time. Specifically, we maintain the fluid schedule in the back-
ground. Whenever there is a scheduling opportunity, among all
head-of-line packets that have already started in the fluid schedule,
the one that starts the earliest is chosen. Below we show that this
discrete schedule is asymptotically close to its corresponding fluid
schedule.

4.2 Performance Analysis
To analyze the performance of start-time tracking, we introduce

the following notations. Let τmax be the maximum packet pro-
cessing time required by any packet on any resource. Let n be the
maximum number of flows that are concurrently backlogged. Let
TF be the makespan of the fluid schedule, and TD the makespan
of its corresponding discrete schedule. All proofs are given in Ap-
pendix E.

The following theorem bounds the difference between the make-
span of the fluid schedule and its corresponding discrete schedule.

Theorem 4. For the fluid schedule with α > 0 and its corre-
sponding discrete schedule, we have

TD ≤ TF + nτmax. (25)

The error bound nτmax can be intuitively explained as the total
packet processing time required by all n concurrent flows, each
sending only one packet. In practice, the number of packets a flow
sends is usually significantly larger than one. As a result, the traffic
makespan is significantly larger than the error bound, i.e., TF �
nτmax. Theorem 4 essentially indicates that in terms of makespan,
the two schedules are asymptotically close to each other.

We next analyze the fairness performance of the discrete sched-
ule by comparing the dominant services a flow receives under both
schedules. In particular, letDF

i (0, t) be the dominant services flow
i receives in (0, t) under the fluid schedule, and DD

i (0, t) the dom-
inant services flow i receives in (0, t) under the corresponding dis-
crete schedule. The following theorem shows that flows receive
approximately the same dominant services under both schedules.

Theorem 5. For the fluid schedule with α > 0 and its corre-
sponding discrete schedule, the following inequality holds for any
flow i and any time t:

DF
i (0, t)− 2(n− 1)τmax ≤ DD

i (0, t) ≤ DF
i (0, t) + τmax. (26)

In other words, the difference between the dominant services a
flow receives under the two corresponding schedules is bounded by
a constant amount, irrespective of the time t. Over the long run, the
discrete schedule achieves the same α-portion fairness as its corre-
sponding fluid schedule. To summarize, start-time tracking retains
both the efficiency and fairness properties of its corresponding fluid
schedule in the asymptotic regime.

5. AN O(logn) IMPLEMENTATION
3This is not a problem of single-resource fair queueing as different
flows are allocated the same processing rate, so that future traffic
arrivals will not affect the order of finish times of current packets.

To implement the aforementioned start-time tracking algorithm,
two modules are required: packet profiling and fluid scheduling.
The former estimates the packet processing time on both CPU and
link bandwidth; the latter maintains the fluid schedule as a refer-
ence system based on the packet profiling results. We show in this
section that packet profiling can be quickly accomplished in O(1)
time using a simple approach proposed in [13]. The main chal-
lenge comes from the complexity of maintaining the fluid sched-
ule, where direct implementation requires O(n) time. Here, n is
the number of backlogged flows. We give an O(logn) implemen-
tation based on an approach similar to virtual time. We shall show
in §6 that the implementation can be easily prototyped in the Click
modular router [19].

5.1 Packet Profiling
As pointed out by Ghodsi et al. [13], any multi-resource fair

queueing algorithm, including our fluid schedule, requires knowl-
edge of the packet processing time on each resource. Fortunately,
as shown in [13], CPU processing time can be accurately estimated
as a linear function of packet size. Specifically, for a packet of size
l, the CPU processing time is estimated as al+b, where a and b are
the coefficients depending on the type of packet processing (e.g.,
IPsec). We have validated this linear model through an upfront ex-
periment using Click [19]. For each type of packet processing, we
measure the exact CPU processing time required by packets of dif-
ferent sizes. This allows us to determine the coefficients a and b.
We fit such a linear model to the scheduler and use it to estimate
the CPU processing time required by a packet. As for the packet
transmission time, the estimation is simply the packet size divided
by the outgoing bandwidth, which is known a priori.

5.2 Direct Implementation of Fluid
Scheduling

Based on the packet profiling results, the fluid schedule is con-
structed and is maintained by the fluid scheduler. In particular, we
need to determine the next packet that starts in the fluid schedule.
This requires tracking the work progress of all n flows. Below we
give a direct implementation that will be used later in our virtual
time implementation.

For each flow i, we record d∗i , which is the dominant share the
flow receives in the fluid schedule at the current time and is com-
puted by (24). We also record Ri, the remaining dominant pro-
cessing time required by the head-of-line packet of the flow at the
current time.

For flow i, its head-of-line packet will finish in Ri/d∗i time if no
event occurs then. An event is either a packet departure or a packet
being the new head-of-line in the fluid schedule. Either of them
may change the head-of-line packet of a flow, leading to different
coefficients of the tradeoff problem (19). With d∗i and Ri, we can
accurately track the work progress of flow i in an event-driven ba-
sis. Specifically, upon the occurrence of an event, let ∆t be the
time elapsed since the last update. If ∆t < Ri/d

∗
i , meaning that

the event occurs before the head-of-line packet finishes, we update
Ri ← Ri − d∗i∆t. If ∆t = Ri/d

∗
i , meaning that the event occurs

at the time when the head-of-line packet finishes, we check if flow
i has a next packet p to process. If it does, then packet p becomes
the new head-of-line and should start in the fluid schedule. We up-
date Ri as the dominant processing time required by p. Otherwise,
we reset Ri ← 0, and flow i leaves the fluid system. We also re-
compute d∗i after Ri is updated. (Note that it is impossible to have
∆t > Ri/d

∗
i .)

However, purely relying on the approach above to track the work
progress of all n flows is highly inefficient. Whenever an event



occurs, each flow must be updated individually, which requires at
least O(n) time per event and is too expensive. We next introduce
a more efficient implementation that requires the above procedure
for at most two flows.

5.3 Virtual Time Implementation of Fluid
Scheduling

To avoid the high complexity required by the direct implemen-
tation above, we have noted, by Theorem 3, that at most two flows
are favored and are allocated more dominant shares than others.
Therefore, it suffices to maintain at most three dominant shares at a
time—two for the favored flows and one for the other regular flows.
For regular flows, we track their work progress using an approach
similar to the virtual time implementation of GPS [9, 21]. Our in-
tuition is that, by Theorem 3, all the regular flows are allocated the
same dominant share, and their scheduling resembles fair queue-
ing. For favored flows, since there are at most two of them, we
track their work progress directly, using the direct implementation
above. Our approach is detailed below.

5.3.1 Identifying Favored and Regular Flows
We first discuss how favored and regular flows can be quickly

identified upon the occurrence of an event. By Theorem 3, it suf-
fices to sort flows in order (23) and examine the three cases. Flows
that receive the bonus share (i.e., d̃∗i > 0) are favored. Note that the
entire computation requires only information regarding the head-
of-line packet of the first and the last flow in order (23) (τ̄1,r and
τ̄n,r , the normalized dominant processing time). We store all the
head-of-line packets in a double-ended priority queue maintained
by a min-max heap for fast retrieval, where the packet order is de-
fined by (23). This allows us to apply Theorem 3 and identify the
favored and regular flows in O(logn) time.

5.3.2 Tracking Favored Flows
For favored flows, because there are at most two of them, we

track their work progress using the direct implementation men-
tioned in §5.2, where we record d∗i and Ri for each favored flow
i. It is easy to see that the update complexity is dominated by the
computation of d∗i . As mentioned in the previous discussion, this
can be done in O(logn) time by Theorem 3. Also, since there are
at most two favored flows, the overall tracking complexity remains
O(logn) per event.

5.3.3 Tracking Regular Flows
For regular flows, since they receive the same dominant share,

their scheduling resembles fair queueing. We hence track their
work progress using virtual time [1, 9, 21]. Specifically, we define
virtual time V (t) as a function of real time t evolving as follows:

V (0) = 0,

V ′(t) = αd̄t, t > 0.
(27)

Here, d̄t is the fair dominant share computed by (16) at time t, and
is fixed between two consecutive events; αd̄t is the dominant share
each regular flow receives.4 Thus, V can be interpreted as increas-
ing at the marginal rate at which regular flows receive dominant
services. Each regular flow i also maintains virtual finish time Fi,
indicating the virtual time at which its head-of-line packet finishes
in the fluid schedule. The virtual finish time Fi is updated as fol-
lows when flow i has a new head-of-line packet p at time t:

Fi = V (t) + τ∗(p), (28)
4We restore the superscript t here to emphasize that the fair domi-
nant share computed by (16) may change over time.

where τ∗(p) is the dominant packet processing time required by
p. Among all the regular flows, the one with the smallest Fi has
its head-of-line packet finishing first in the fluid schedule. Unless
some event occurs in between, at time t, the next packet departure
for the regular flows would be in tN = (mini Fi−V (t))/αd̄ time.

Using virtual time defined by (27), we can accurately track the
work progress of regular flows in an event-driven basis. Specifi-
cally, upon the occurrence of an event at time t, let t0 be the time
of the last update, and ∆t = t − t0 the time elapsed since the last
update. If ∆t < tN , meaning that the event occurs before the next
packet departure of regular flows, we simply update the virtual time
following (27):

V (t) = V (t0) + αd̄∆t. (29)

If ∆t = tN , then the event occurs at the time when a packet of a
regular flow, say flow i, finishes in the fluid schedule. In addition to
updating the virtual time, we check to see if flow i has a next packet
p to process. If it does, meaning that the packet p should start in the
fluid schedule, we update its virtual finish time Fi following (28).
Otherwise, flow i departs the system. We also recompute d̄ by (16).

The tracking complexity is dominated by the computation of the
minimum virtual finish time, i.e., mini Fi. By storing Fi’s in a
priority queue maintained by a heap, we see that the tracking com-
plexity is O(logn) per event.

5.3.4 Handling Identity Switching
We note that the identity of a flow is not fixed: upon the occur-

rence of an event, a favored flow may switch to a regular flow, and
vice versa. We show that such identity switching can also be easily
handled in O(logn) time.

We first consider a favored flow i switching to a regular one at
time t, which requires the computation of the virtual finish time
Fi. Recall that we have recorded Ri, the remaining dominant pro-
cessing time required by the head-of-line packet, for flow i as it is
previously favored. By definition, the virtual finish time Fi can be
simply computed as

Fi = V (t) +Ri. (30)

Adding Fi to the heap takes at most O(logn) time.
We next consider a regular flow i switching to a favored one at

time t, which requires the computation of Ri. Recall that we have
recorded the virtual finish time Fi for flow i. By definition, the
remaining dominant processing time required by its head-of-line
packet is simply

Ri = Fi − V (t), (31)

which is a dual of (30).
We also need to remove the virtual finish time, Fi, from the heap.

To do so, we maintain an index for each regular flow, recording the
location of its virtual finish time stored in the heap. Following this
index, we can easily locate the position of Fi and delete it from
the heap, followed by some standard “trickle-down” operations to
preserve the heap property in O(logn) time.

To summarize, our approach maintains the fluid schedule by
identifying favored and regular flows, tracking their work progress,
and handling the potential identity switching. We show that any of
these operations can be accomplished inO(logn) time. As a result,
maintaining the fluid schedule takes O(logn) time per event.

5.4 Start-Time Tracking and Complexity
With the fluid schedule maintained as a reference system, the im-

plementation of start-time tracking is straightforward. Whenever a
packet starts in the fluid schedule, it is added to a FIFO queue.



Upon a scheduling opportunity, the scheduler polls the queue and
retrieves a packet to schedule. This ensures that packets are sched-
uled in order of their start times in the fluid schedule. To minimize
the update frequency, the scheduler lazily updates the fluid sched-
ule only when the FIFO queue is empty.

We now analyze the scheduling complexity of the aforemen-
tioned implementation. The scheduling decisions are made by up-
dating the fluid schedule in an event-driven basis. For each event,
the update takes O(logn) time, where n is the number of back-
logged flows. Note that there are only two types of events in the
fluid schedule, new head-of-line and packet departure. Because
a packet served in the fluid schedule triggers exactly these two
events over the entire scheduling period, schedulingN packets trig-
gers 2N updates in the fluid schedule, with the overall complex-
ity O(2N logn). On average, the scheduling decision is made in
O(2 logn) time per packet, the same order as that of DRFQ [13].

6. EVALUATION
We evaluate the tradeoff algorithm via both our prototype imple-

mentation and trace-driven simulation. We use a prototype imple-
mentation to investigate the detailed functioning of the algorithm,
in a microscopic view. We then take a macroscopic view to evaluate
the algorithm using trace-driven simulation, where flows dynami-
cally join and depart the system.

6.1 Experimental Results
We have prototyped our tradeoff algorithm as a new scheduler in

the Click modular router [19], based on the O(logn) implementa-
tion given in the previous section. The scheduler classifies packets
to flows (based on the IP prefix and port number) and identifies
the types of packet processing based on the port number specified
by a flow class table. The scheduler also exposes an interface that
allows the operator to dynamically configure the fairness knob α.
Our implementation consists of roughly 1,000 lines of C++ code.

We run our Click implementation in user mode on a Dell Pow-
erEdge server with an Intel Xeon 3.0 GHz processor and 1 Gbps
Ethernet interface. To make fairness relevant, we throttle the out-
going bandwidth to 200 Mbps while keeping the inbound band-
width as is. We also throttle the Click module to use only 20%
CPU so that CPU could also be a bottleneck. We configure three
packet processing modules in Click to emulate a multi-functioning
middlebox: packet checking, statistical monitoring, and IPsec. The
former two modules are bandwidth-bound, though statistical mon-
itoring requires more CPU processing time than packet checking
does. The IPsec module encrypts packets using AES (128-bit key
length) and is CPU-bound. We configure another server as a traffic
source, initiating 60 UDP flows each sending 2000 800-byte pack-
ets per second to the Click router. The first 20 flows pass through
the packet checking module; the next 20 flows pass through the sta-
tistical monitoring module; and the last 20 flows pass through the
IPsec module.

6.1.1 Fairness-Efficiency Tradeoff
We first evaluate the achieved tradeoff between schedule fair-

ness and makespan. To fairly compare the makespan at different
fairness levels, it is critical to ensure the same traffic input when
running the algorithm with different values of fairness knob α.
Therefore, we initially consider an idealized scenario where each
flow queue has infinite capacity and never drops packets. Table 2
lists the observed makespans with various fairness requirements, in
an experiment where each flow keeps sending packets for 10 sec-
onds. We see that, as expected, trading off some level of fairness
leads to a shorter makespan and higher efficiency. Furthermore, the

Table 2: Schedule makespan observed in Click at different fairness
levels. The queue capacity is infinite.

Fairness knob α Makespan (s) Normalized Makespan
1.00 55.68 100.00%
0.95 52.50 94.28%
0.90 48.97 87.95%
0.85 47.17 84.72%
0.70 47.13 84.64%
0.60 47.07 84.54%
0.50 47.07 84.54%
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Figure 3: Overall resource utilization observed in Click. No packet
drops.

marginal improvement of efficiency is decreasing. This suggests
that one does not need to compromise too much fairness in order to
achieve high efficiency. In our experiment, trading off 15% of fair-
ness shortens the makespan by 15.3% from the strictly fair schedule
(α = 1), which is equivalent to a 18.1% bandwidth throughput en-
hancement and is near-optimal as seen in Table 2. Fig. 3 gives a de-
tailed look into the achieved resource utilization over time, at four
fairness levels. We see that strictly fair queueing (α = 1) wastes
30% of CPU cycles, leaving the bandwidth as the bottleneck at
the beginning. This situation remains until bandwidth-bound flows
finish, at which time the bottleneck shifts to CPU. By relaxing fair-
ness, CPU-bound flows receive more services, leading to a steady
increase of CPU utilization up to 100%. Meanwhile, bandwidth-
bound flows experience slightly longer completion times due to the
fairness tradeoff.

We now verify the fairness guarantee. We run the scheduler at
various fairness levels. At each level, for each flow, we measure its
received dominant share every second for the first 20 seconds, dur-
ing which all flows are backlogged. Fig. 4 shows the results, where
each cross (“x”) corresponds to the dominant share of a flow mea-
sured in one second. As expected, under strict fairness (α = 1),
all flows receive the same dominant share (around 2%). As α de-
creases, the fairness requirement relaxes. Some flows are hence
favored and are allocated more dominant share, while others re-
ceive less. However, the minimum dominant share a flow receives
is lower bounded by the α-portion of the fair share, shown as the
solid line in Fig. 4. This shows that the algorithm is correctly oper-
ating at the desired fairness level.

We next extend the experiment to a more practical setup, where
each flow queue has a limited capacity and drops packets when it
is full. We set the queue size to 200 packets for each flow and re-
peat the previous experiments. In this case, comparing makespan
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Figure 5: Average resource utilization and dominant share each flow receives in Click at different fair-
ness levels. The queue capacity is 200 packets. The measurement of resource utilization and dominant
share is conducted every second over the entire schedule.

is inappropriate as the scheduler may drop different packets when
running at different fairness level. We instead measure the resource
utilization achieved every second over the entire scheduling period.
Fig. 5a illustrates the average utilization of both CPU and band-
width, where the error bar shows one standard deviation. Similar
to the previous experiments, a fairness degradation of 15% is suffi-
cient to achieve the optimal efficiency, enhancing the CPU utiliza-
tion from 71% to 100%. Further trading off fairness is not well
justified. As shown in Fig. 5b, the increased CPU throughput is
mainly used to process those CPU-bound flows (Flows 41 to 60),
doubling their dominant shares. Meanwhile, the dominant share
received by all the other flows is at least 85% of the fair share,
as promised by the algorithm. We also depict the per-packet la-
tency CDF in Fig. 5c. We see that trading off fairness for effi-
ciency significantly improves the tail latency, usually caused by
flows that finish the last. On the other hand, flows whose shares
have been traded off see slightly longer delays of their packets. For-
tunately, these latency penalties are strictly bounded—thanks to the
fairness guarantee—and are compensated by the significant latency
improvement of favored flows.

We have also measured the scheduling overhead in the experi-
ments. In particular, we configure the tradeoff scheduler for strict
fair queueing by setting α = 1. We then compare the incurred CPU
overhead with that of MR3 [31], a low complexity fair scheduler.
Our measurement shows that the tradeoff scheduler introduces 1%
CPU overhead compared with MR3.

6.1.2 Service Isolation
We next examine the impact of fairness tradeoff on service iso-

lation. We initiate 6 UDP flows sending 800-byte packets. Flows
1 to 3 are elephant flows, each sending 20,000 packets per second,
and undergo the checking, monitoring, and IPsec modules, respec-
tively. Flows 4 to 6 are mice flows, each sending 2 packets per
second, and undergo the checking, monitoring, and IPsec modules,
respectively. The queue capacity is set to 200 packets. Fig. 6 shows
the per-packet latency of each flow at different fairness levels. We
see that the tradeoff mainly affects those high-rate flows. For mice
flows, even if they may receive less resource share when α < 1,
the guaranteed share is sufficient to accommodate their low-rate
traffic. As a result, their packets are scheduled almost immediately
upon arrival, with two orders of magnitude lower latency than the
elephant flows.

We also compare our tradeoff scheduler against other fair queue-
ing algorithms. In particular, we have implemented MR3 [31] and
GMR3 [34] as two other round-robin O(1) schedulers in Click,
and conducted the same experiments mentioned above. We find
that they achieve almost the same makespan and resource utiliza-
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Figure 6: Mean per-packet latency of elephant (sending 20,000
pkts/s) and mice flows (sending 2 pkts/s) in Click. The error bar
shows the standard deviation.

tion as that of the tradeoff scheduler running with the strict fairness
requirement (α = 1). This should come with no surprises, as all
the existing multi-resource fair queueing algorithms are essentially
different approximations to the fluid schedule with perfect DRF.
These results are omitted to avoid redundancy.

6.2 Trace-Driven Simulation
Next, we use trace-driven simulation to further evaluate the pro-

posed algorithm from a macroscopic perspective. We have written
a packet-level simulator consisting of 3,000 lines of C++ code and
fed it with real-world traces [2] captured in a university switch.
The traces are dominated by UDP packets. Based on the IP pre-
fix and port number, we classify packets in the traces into nearly
3,000 flows and synthesize the input traffic by randomly assigning
each flow to one of three middlebox modules: basic forwarding,
statistical monitoring, and IPsec. The CPU processing time of each
module follows a linear model based on the measurement results
of [13]. The flow queue size is set to 200 packets, and the outgo-
ing bandwidth is set to 200 Mbps. We linearly scale up the traffic
by 5× to simulate a heavy load. Depending on the total resource
consumption, the synthesized traffic is classified into the follow-
ing three patterns: CPU-bound traffic where the CPU processing
time exceeds 1.2× the transmission time, bandwidth-bound traf-
fic where the transmission time exceeds 1.2× the CPU time, and
balanced traffic otherwise.

Fig. 7 shows the mean utilization achieved at various fairness
levels, where each data point is averaged over 10 runs under the
corresponding traffic pattern. The error bar shows one standard de-
viation. We observe similar trends in all three patterns, that trading
off fairness leads to higher utilization on both resources. Simi-
lar to our Click implementation results, we see that the marginal
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Figure 8: The improvement of per-packet latency and packet drop rate due to the fairness tradeoff.
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Figure 7: Resource utilization achieved at different fairness levels
in the simulation, averaged over 10 runs.

improvement in utilization is decreasing, with the optimal utiliza-
tion achieved by trading off more than 15% of fairness. Among all
three patterns, traffic with balanced resource consumption has the
least incentive to trade off fairness, as flows have complementary
resource demands and can dove-tail one another [13]. In this case,
fair queueing is sufficient to realize high efficiency. We have also
simulated the other two multi-resource fair queueing algorithms,
DRFQ [13] and MR3 [31], and observed almost the same perfor-
mance as that of the strictly fair queueing (α = 1). We omit these
results to avoid redundancy.

We examine in Fig. 8 the tradeoff impact on other measures rel-
evant to efficiency. Specifically, we depict the per-packet latency
CDF of three scheduling algorithms—tradeoff with α = 0.8, com-
plete fairness (α = 1.0), and another round-robin fair scheduler
called MR3 [31]—in Figs. 8a, 8b, and 8c, for each of the three traf-
fic patterns. In general, the enhanced resource utilization due to the
fairness tradeoff translates into shorter latencies in all three traffic
patterns. The improvements are mainly attributed to the shortened
packet latency of favored flows. Furthermore, the packet drop rates
are compared in Fig. 8d. We observe an average of 15% to 20%
decrease in the packet drop rate under all three traffic patterns, sug-
gesting that higher bandwidth throughput is achieved.

Finally, we investigate the tradeoff impact on service isolation in
a dynamic environment. Ideally, we would like to see that compro-
mising a small percentage of fairness will not affect the per-packet
latency of mice flows as their guaranteed resource share, even when
traded off, is sufficient to support their low packet rate. Fig. 9 con-
firms this isolation property with CPU-bound traffic, where we de-
pict the mean packet latency for each flow in the first 20 seconds
of the simulation, running with complete fairness and 80% of fair-
ness, respectively. We see that compared to strictly fair queueing,
trading off fairness has no impact on the latency of small flows, but
it affects those medium and large ones: Some see shorter latency
while others experience longer delay, depending on if they are fa-
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Figure 9: Per-packet latency against flow sizes in the first 20s of
simulation, feeding CPU-bound traffic, with and without the fair-
ness tradeoff.

vored flows or not. We have similar observations in the other two
traffic patterns.

7. RELATED WORK
Ghodsi et al. [13] identified the need of multi-resource fair queue-

ing for deep packet inspection in middleboxes. They compared a
set of queueing alternatives and proposed DRFQ, the first multi-
resource fair queueing algorithm, that implements DRF in the time
domain. Two follow-up queueing algorithms [31, 34] have also
been proposed with lower scheduling complexity and bounded schedul-
ing delay. All these works focus solely on fairness, and use the goal
of achieving work conservation as the only indication of efficiency,
similar to traditional single-resource fair queueing [9, 21].

However, as we have shown in this paper, unlike single-resource
scheduling, there is a general tradeoff between fairness and effi-
ciency when packet processing requires multiple types of resources.
We have briefly mentioned this problem in our previous position
paper [33], where we shared our visions on several possible direc-
tions that may lead to a concrete solution. We have materialized
some of our visions in this paper by formally characterizing the
tradeoff problem and proposing an implementable queueing algo-
rithm to achieve a flexible balance between fairness and efficiency
in the two-resource setting.

While the tradeoff problem has received little attention in the fair
queueing literature, striking a balance between allocation fairness
and efficiency has been a focus of many recent works in both net-
working and operations research. Specifically, Danna et al. [8] have
presented an efficient bandwidth allocation algorithm to achieve a
flexible tradeoff between fairness and throughput for traffic engi-
neering. Joe-Wong et al. [18] have proposed a unifying framework
with fairness and efficiency requirements specified by two param-
eters for a given multi-resource allocation problem. Discussions



on the tradeoff between fairness and performance have also been
given in the context of P2P networks [11, 37]. In the literature of
operations research, Bertsimas et al. [3] have derived a tight bound
to characterize the efficiency loss under proportional fairness and
max-min fairness, respectively. They have later developed a more
general framework to characterize the fairness-efficiency tradeoff
in a family of “α-fair” welfare functions [4]. All these works focus
on one-shot resource allocation in the space domain. In contrast,
our focus in this paper is a packet scheduling problem where re-
sources are shared in the time domain.

As explained in §2.4, our tradeoff problem captures the flow
shop problem [5–7, 12, 15, 20, 23, 24, 30] as a special case when
efficiency is the only concern. Our approach borrows the idea
of WFQ [1, 9, 21], in relaxing a discrete packet flow to an ideal-
ized fluid and tracking the fluid schedule based on virtual time.
However, for single-resource fair queueing, the main challenge is
to design a packet-by-packet tracking algorithm, because the fluid
schedule, GPS [1, 9, 21], is fairly straightforward and easy to com-
pute. Our problem is more complex, requiring more careful mod-
eling of the fluid schedule, packet-by-packet tracking with multiple
resources, and tradeoff analysis.

8. CONCLUSION AND FUTURE WORK
Middleboxes perform complex network functions whose packet

processing requires the support of multiple types of hardware re-
sources. A multi-resource packet scheduling algorithm is therefore
needed. Unlike traditional single-resource fair queueing, where
bandwidth is the only concern, there exists a general tradeoff be-
tween fairness and efficiency in the presence of multiple resources.
Ideally, we would like to achieve flexible tradeoff to meet QoS re-
quirements while maintaining the system at a high resource utiliza-
tion level. We show the difficulty of the general problem and limit
our discussion to a common scenario where CPU and link band-
width are the two resources required for packet processing. We
propose an efficient scheduling algorithm by tracking an idealized
fluid schedule. We show through both our Click implementation
and trace-driven simulation that our algorithm achieves a flexible
tradeoff between fairness and efficiency in various scenarios.

Despite the initial progress made by this paper, many challenges
remain open. First, while optimized, the current implementation
requiresO(logn) time per packet scheduling, which may be a con-
cern given a large number of flows. A simpler scheduler with lower
complexity may be desired. Given the extensive techniques devel-
oped for low-complexity scheduler in the fair queueing literature,
it would be interesting to see if and how these techniques extend
to the multi-resource setting. Also, as shown by Theorem 1, in
general, the more types of resources a system has, the more salient
the fairness-efficiency tradeoff would be. For a system with more
than two types of resources, we believe the intuition and technique
developed in this paper may still be applied. We could define a
similar fluid schedule that maximizes the dominant throughput un-
der the specified fairness constraint, and use start-time tracking to
implement it in practice.
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APPENDIX
A. PROOF OF LEMMA 1:

Suppose there are n backlogged flows at time t, where flow i
has head-of-line packet pi. Let d∗ = (d∗1, . . . , d

∗
n) be the opti-

mal solution to (17). It is equivalent to show that d∗ leads to tight
constraints of (17) if the stated condition is met. Let

A = {pi|τ̄i,1 = 1 > τ̄i,2}

be the set of head-of-line packets whose dominant resource is re-
source 1, and let

B = {pi|τ̄i,1 < τ̄i,2 = 1}

be the set of head-of-line packets whose dominant resources is re-
source 2. We know thatA,B 6= ∅ according to the stated condition.

We first claim that for the optimal solution d∗, there exist pj ∈ A
and pl ∈ B, such that d∗j > 0 and d∗l > 0. To prove this claim,
let us assume the opposite and see what happens. Without loss
of generality, suppose for all d∗i > 0, we have either pi ∈ A or
pi /∈ A ∪ B (i.e., τ̄i,1 = τ̄i,2 = 1). This implies

∑
i d
∗
i = 1.

We show a contradiction by constructing a feasible allocation that
leads to a dominant throughput higher than 1. Consider two packets
pj ∈ A and pl ∈ B. We construct the following allocation:

di =


min{1− τ̄l,1

2
, 1

2τ̄j,2
}, i = j,

1/2, i = l,
0, otherwise.

To see that the allocation is feasible, we substitute di to the con-
straints of (17) and have∑
i

τ̄i,1di = dj + τ̄l,1dl = min

{
1− τ̄l,1

2
,

1

2τ̄j,2

}
+
τ̄l,1
2
≤ 1

for resource 1 and∑
i

τ̄i,2di = τ̄j,2dj + dl ≤ 1

for resource 2. To see that the allocation leads to a dominant through-
put higher than 1, we first have

dj = min

{
1− τ̄l,1

2
,

1

2τ̄j,2

}
>

1

2

by noting that τ̄j,2, τ̄l,1 < 1 (because pj ∈ A and pl ∈ B). We
then have ∑

i

di = dj + dl > 1 =
∑
i

d∗i ,

contradicting the fact that d∗ optimally solves (17).
We are now ready to prove the statement of the lemma. We as-

sume the opposite that at least one resource is not fully utilized
under allocation d∗, hoping to show a contradiction. Since (17) is
a linear program, one constraint must be tight for the optimal solu-
tion. Without loss of generality, we assume that only resource 1 is
fully utilized under allocation d∗. That is, for resource 1 we have∑

i

τ̄i,1d
∗
i = 1 ,

but for resource 2 we have∑
i

τ̄i,2d
∗
i = 1−∆ < 1

for some ∆ ∈ (0, 1). We construct an allocation d with the same
dominant throughput as that of d∗, but does not fully utilize any of
the two resources. This suggests that a higher dominant throughput
can be achieved, leading to a contradiction.

By our previous claim, there exist pj ∈ A and pl ∈ B such that
d∗j > 0 and d∗l > 0. We construct the following allocation:

di =

 d∗j − δ, i = j,
d∗l + δ, i = l,
d∗i , otherwise,

where δ = min{d∗j ,∆/2(1− τ̄j,2δ)}. Clearly, the constructed al-
location d leads to the same dominant throughput as that of d∗, i.e.,∑
i di =

∑
i d
∗
i , but does not fully utilize any of the two resources.



In particular, we have∑
i

τ̄i,1di =
∑
i

τ̄i,1d
∗
i − (τ̄j,1 − τ̄l,1)δ

= 1− (1− τ̄l,1)δ < 1

for resource 1 and∑
i

τ̄i,2di =
∑
i

τ̄i,2d
∗
i + (τ̄l,2 − τ̄j,2)δ

= 1−∆ + (1− τ̄j,2)δ

≤ 1−∆/2

< 1

for resource 2. This suggests that strictly higher dominant through-
put can be achieved (by increasing some di by some sufficiently
small ε > 0). We hence see a contradiction. ut

B. PROOF OF LEMMA 2:
It suffices to consider the following two cases.
Case 1: All flows have the same dominant resource. Without

loss of generality, assume that resource 1 is the dominant resource
of all flows. In this case, the constraint of resource 2 in (17) is in-
effective, and the constraint of resource 1 is tight under the optimal
solution of (17). Resource 1 is hence fully utilized until the end of
the schedule. The makespan of the schedule is equal to the total
amount of time required to process all packets on resource 1, and
is the minimum.

Case 2: There are two flows with different dominant resources.
By Lemma 1, the fluid schedule schedule fully utilizes both re-
sources until some flows complete services and all the remaining
backlogged flows have the same dominant resource, say, resource
1. Since then, the fluid schedule fully utilizes resource 1 until the
end of the schedule. Therefore, resource 1 is fully utilized in the
entire schedule. The makespan is equal to the total amount of time
required to process all packets on resource 1, and is the minimum.

ut

C. PROOF OF THEOREM 2:
Let t0 be the first time when the system has two flows having dif-

ferent dominant resources. A flow is called an early flow if it arrives
before t0. All early flows have the same dominant resource. With-
out loss of generality, let resource 1 be their dominant resource.
Flows that arrive at or after t0 are called late flows. Let Wr be the
total amount of time required to process all packets on resource r.
For an arbitrary schedule σ, let Pσr (t) be the total amount of time
that resource r is busy in (0, t). The makespan of the schedule σ is
lower bounded by the following equation:

Tσ ≥ t0 + max
r=1,2

{Wr − Pσr (t0)} , (32)

where Wr − Pσr (t0) is the remaining amount of packet processing
time required on resource r.

Now for the fluid schedule schedule ρ, since all the early flows
have resource 1 as their dominant resource, any vector d∗ with∑
i d
∗
i = 1 optimally solves (17). By the fluid schedule model, this

implies that resource 1 is fully utilized while the utilization rate of
resource 2 is also maximized, at all times before t0. Therefore, we
have {

P ρ1 (t0) = t0 ,

P ρ2 (t0) = maxσ′ P
σ′
2 (t0) .

(33)

Let t1 be the last flow arrival time after t0. (If no flow arrives
after t0, let t1 = t0.) One can always find two backlogged flows

with different dominant resources in (t0, t1). By Lemma 1, both
resources are fully utilized in (t0, t1), i.e.,

P ρr (t1)− P ρr (t0) = t1 − t0 . (34)

After t1, since there is no flow arrivals, no newly arrived packet
would become the head-of-line packet. Therefore, for the fluid
schedule schedule, packets are scheduled as if they were available
at t1. By Lemma 2, the schedule fully utilizes one resource until
the end of the makespan, i.e.,

T ρ − t1 = max
r=1,2

{Wr − P ρr (t1)} . (35)

Plugging (33) and (34) into (35), we have

T ρ = t0 + max
r=1,2

{Wr − P ρr (t0)}

= t0 + max{W1 − t0,W2 −max
σ′

Pσ
′

2 (t0)} .
(36)

Now for any schedule σ, we have{
Pσ1 (t0) ≤ t0 = P ρ1 (t0) ,

Pσ2 (t0) ≤ maxσ′ P
σ′
2 (t0) = P ρ2 (t0).

(37)

Substituting (37) to (36), we have

T ρ ≤ t0 + max
r=1,2

{Wr − Pσr (t0)} ≤ Tσ, (38)

where the last inequality is derived from (32). Since (38) holds
for any schedule σ, we see that the fluid schedule schedule ρ is
optimal. ut

D. PROOF OF THEOREM 3:
We first show that given any optimal solution d̃∗ with d̃∗j > 0

for some 1 < j < n, we can convert it to another optimal solution
d̃ with d̃j = 0 and d̃i = d̃∗i for all i 6= 1, j, n. It is easy to check
that there exists some k such that

1 = τ̄1,1 = · · · = τ̄k,1 > τ̄k+1,1 ≥ · · · ≥ τ̄n,1 ,
τ̄1,2 ≤ · · · ≤ τ̄k,2 ≤ τ̄k+1,2 = · · · = τ̄n,2 = 1 .

In particular, if j ≤ k, we let

d̃i =

 d̃∗1 + d̃∗j , i = 1,
0, i = j,

d̃∗i , o.w.

We show that d̃ is a feasible solution to (21). Consider the con-
straint of resource 1 in (21). Because τ̄1,1 = τ̄j,1 = 1 for j ≤ k,
we have∑

i

τ̄i,1d̃i =
∑
i6=j

τ̄i,1d̃
∗
i + τ̄1,1d̃

∗
j =

∑
i

τ̄i,1d̃
∗
i ≤ µ1 .

For the constraint of resource 2 in (21), because τ̄1,2 ≤ τ̄j,2 when
j ≤ k, we have∑

i

τ̄i,2d̃i =
∑
i6=j

τ̄i,2d̃
∗
i + τ̄1,2d̃

∗
j ≤

∑
i

τ̄i,2d̃
∗
i ≤ µ2 .

Also note that
∑
i d̃i =

∑
i d̃
∗
i , we see that d̃ is an optimal solution

to (21).
If j > k, we let

d̃i =


0, i = j,

d̃∗n + d̃∗j , i = n,

d̃∗i , o.w.

With similar arguments, we see that d̃ optimally solves (21).



Repeatedly applying the approach above to all the non-zero com-
ponents, except the first and the last, of an optimal solution, we see
that the statement holds. Because only d̃1, d̃n > 0, problem (21)
reduces to a simple linear program with two variables and two con-
straints. Exhaustive discussions lead to the results in all the three
cases. ut

E. ANALYSIS OF START-TIME TRACKING
Because the discrete schedule tracks the fluid schedule based on

the packet start times, the packet scheduling orders of both sched-
ules are the same. Let the orders be p1, . . . , pN , where pi is the
ith packet scheduled. For the discrete schedule, let sD

i,r be the start
time of packet pi on resource r, and fD

i,r the finish time of pi on
resource r. For the fluid schedule, since each packet starts (com-
pletes) processing the same time on both resources, let sF

i and fF
i

be the start and finish time of packet pi, respectively. Let τr(pi)
be the packet processing time required by pi on resource r, and
τmax = maxi,r τr(pi) the maximum packet processing time re-
quired by any packet on any resource. The following lemma gen-
erally holds for any discrete schedule.

Lemma 3. For any packet pi, there exists some pivotal packet
pk, 1 ≤ k ≤ i, such that the processing of pk on resource 2 follows
immediately after the processing on resource 1 completes, and the
processing of pk, . . . , pi is continuous on resource 2, i.e.,

fD
i,2 = fD

k,1 +

i∑
j=k

τ2(pj) . (39)

Proof: For the pivotal packet pk, the processing on resource 2
starts immediately after its processing on resource 1 completes, i.e.,

fD
k,1 = sD

k,2 . (40)

To find the pivotal packet, we search from packet pi and check if it
satisfies (40). If it does, then pi is the pivotal packet and the search
stops. Otherwise, the processing of packet pi on resource 2 is de-
layed for a certain amount of time after the processing completes
on resource 1. This implies that the processing of pi on resource
2 starts immediately after its previous packet pi−1 completes pro-
cessing on resource 2:

fD
i,1 < sD

i,2 = fD
i−1,2 . (41)

We continue the search to pi−1 and check if it satisfies (40). If it
does, then pi−1 is the pivotal packet because the processing of pi−1

and pi is continuous on resource 2, as suggested by (41), and the
search stops. Otherwise, we must have

fD
i−1,1 < sD

i−1,2 = fD
i−2,2 , (42)

for the similar reason as that of (41). We continue the search to
pi−2. Note that the search is guaranteed to stop at packet p1, be-
cause it is the first packet scheduled and there is no delay between
the processing on the two resources. In this case, p1 is the pivotal
packet. ut

Lemma 4. For any fluid schedule with α > 0 and its corre-
sponding discrete schedule, we have

sD
i,1 ≤ sF

i + (n− 1)τmax, for all i, (43)

where n is the maximum number of concurrent flows in the fluid
schedule.

Proof: For any packet pi, let pj be the earliest-scheduled packet
where pj , pj+1, . . . , pi are continuously processed on resource 1 in

the discrete schedule, i.e.,

j = arg min
1≤l≤i

{fD
l,1 = sD

l−1,1} .

The reason that pj is not processed right after its previous packet
completes processing on resource 1 is because it has not yet started
processing in the corresponding fluid schedule. Packet pj should
hence be scheduled immediately in the discrete schedule upon its
start in the fluid counterpart, i.e.,

sD
j,1 = sF

j . (44)

Now for the fluid schedule, consider the time interval [sF
j , s

F
i ),

during which packets pj , . . . , pi−1 start processing. When packet
pi starts processing at time sF

i , there are at most (n − 1) other
packets that have not yet completed processing, all of which must
start earlier than pi. Therefore, the length of busy period of fluid
schedule in [sF

j , s
F
i ) is at least

i−1∑
l=j

τ1(pl)− (n− 1)τmax ≤ sF
i − sF

j = sF
i − sD

j,1, (45)

where the equality is derived from (44). We rewrite (45) as

sF
i ≥ sD

j,1 +

i−1∑
l=j

τ1(pl)− (n− 1)τmax

= sD
i,1 − (n− 1)τmax,

(46)

where the equality holds because packets pj , . . . , pi are processed
continuously on resource 1 in the discrete schedule. ut

With Lemma 3 and Lemma 4, we give proofs of Theorem 4 and
Theorem 5 in the following two subsections.

E.1 Makespan Analysis (Proof of Theorem 4)
By Lemma 3, for the discrete schedule, there exists a pivotal

packet pk, such that

fD
N,2 = fD

k,1 +

N∑
i=k

τ2(pi) = sD
k,1 + τ1(pk) +

N∑
i=k

τ2(pi). (47)

Since packets pk, . . . , pN are all processed after sF
k in the corre-

sponding fluid schedule, we have

N∑
i=k

τ2(pi) ≤ TF − sF
k . (48)

On the other hand, Lemma 4 suggests that

sD
k,1 ≤ sF

k + (n− 1)τmax. (49)

Plugging (48) and (49) into (47), we have

fD
N,2 ≤ TF + (n− 1)τmax + τ1(pk) ≤ TF + nτmax.

By noting that fD
N,2 = TD, we see that the statement holds. ut

E.2 Fairness Analysis (Proof of Theorem 5)
Without loss of generality, we limit the discussion to a busy

period of the fluid schedule. We first prove the lower bound of
DD
i (0, t). This requires the following lemma.

Lemma 5. For any fluid schedule with α > 0 and its corre-
sponding discrete schedule, we have

fD
i,2 ≤ fF

i + (2n− 1)τmax, for all i.



Proof: For any packet pi, by Lemma 3, there exists a pivotal
packet pk where

fD
i,2 = fD

k,1 +

i∑
j=k

τ2(pj) = τ1(pk) + sD
k,1 +

i∑
j=k

τ2(pj) . (50)

For the fluid schedule, consider the time interval [sF
k , f

F
i ), during

which packets pk, . . . , pi start processing. Right before packet pi
completes processing at time fF

i , there are at most n−1 other pack-
ets processed in parallel, all of which start earlier than pi. There-
fore, the workload processed by the fluid schedule during [sF

k , f
F
i )

is at least
i∑
l=k

τl,2 − (n− 1)τmax ≤ fF
i − sF

k .

We then have

fF
i ≥ sF

k +
∑i
l=k τl,2 − (n− 1)τmax

≥ sDk,1 +
∑i
l=k τl,2 − 2(n− 1)τmax (By Lemma 4)

= fD
i,2 − τ1(pk)− 2(n− 1)τmax (By (50))

≥ fD
i,2 − (2nc − 1)τmax .

ut
We are now ready to establish the lower bound of DD

i (0, t).

Lemma 6. For any Fluid with α > 0 and its corresponding
Discrete, at any time t, we have

DD
i (0, t) ≥ DF

i (0, t)− 2(n− 1)τmax, for all i.

Proof: For any flow i, because 0 ≤ d
dt
DF
i (0, t) ≤ 1 and

d
dt
DD
i (0, t) ∈ {0, 1}, equation DF

i (0, t) − DD
i (0, t) reaches its

maximum at some time t when a packet p of flow i starts process-
ing on its dominant resource in the discrete schedule. Packet p
completes its dominant processing at time t + τ∗, where τ∗ is the
packet processing time required by p on its dominant resource. Let
fD be the time when packet p completes processing (on resource
2) in the discrete schedule. We have

fD ≥ t+ τ∗ . (51)

Let fF be the time when packet p completes processing in the fluid
schedule. We have

DF
i (0, fF) = DD

i (0, t+ τ∗) = DD
i (0, t) + τ∗ . (52)

By Lemma 5 and (51), we have

fF ≥ fD − (2n− 1)τmax ≥ t+ τ∗ − (2n− 1)τmax .

This immediately suggests that

DF
i (0, t+ τ∗ − (2n− 1)τmax) ≤ DF

i (0, fF)

= DD
i (0, t) + τ∗ .

(53)

On the other hand, we have

DF
i (0, t+τ∗−(2nc−1)τmax) ≥ DF

i (0, t)+τ∗−(2nc−1)τmax .
(54)

Combining (53) and (54), we see that the statement holds. ut
We next prove the upper bound of DD

i (0, t) using the following
lemma, hence completing the proof of Theorem 5.

Lemma 7. For any fluid schedule with α > 0 and its corre-
sponding discrete schedule, at any time t, we have

DD
i (0, t) ≤ DF

i (0, t) + τmax, for all i.

Proof: Let p(i,k) be the kth packet of flow i. Let sD
(i,k) be the

time when p(i,k) starts processing (on resource 1) in the discrete
schedule, and fD

(i,k) the time when p(i,k) completes processing (on
resource 2) in the discrete schedule. Let sF

(i,k) and fF
(i,k) be sim-

ilarly defined for the fluid schedule. We note the following two
facts. First, a packet does not start processing in the discrete sched-
ule until it starts in the fluid schedule, i.e.,

sD
(i,k) ≥ sF

(i,k), for all p(i,k) . (55)

Second, because packets of a flow are processed in sequence in
both fluid schedule and discrete schedule, the following must hold
for all p(i,k):

DD
i (0, sD

(i,k)) = DF
i (0, sF

(i,k)) . (56)

Without loss of generality, we assume sF
(i,k) ≤ t ≤ sF

(i,k+1) for
some k. It suffices to consider the following two cases.

Case 1: sD
(i,k) ≥ t. In this case, we have

DD
i (0, t) ≤ DD

i (0, sD
(i,k)) = DF

i (0, sF
(i,k)) ≤ DF

i (0, t) .

Case 2: sD
(i,k) < t. Let τ∗(i,k) be the packet processing time re-

quired by p(i,k) on its dominant resource. Because the dominant
service flow i receives in [sD

(i,k), t) in the discrete schedule is lim-
ited by the dominant processing time of p(i,k) and the processing
rate, we have

DD
i (sD

(i,k), t) ≤ min{τ∗(i,k), t− sD
(i,k)}

≤ min{τ∗(i,k), t− sF
(i,k)} ,

(57)

where the second inequality holds because of (55). Now consider
the dominant service flow i receives in the fluid schedule in [sF

(i,k), t).
Let β be the minimum dominant processing rate flow i receives in
[sF

(i,k), t). We have 0 < β ≤ 1 and

DF
i (sF

(i,k), t) ≥ min{τ∗(i,k), (t− sF
(i,k))β} . (58)

By (56), (57), and (58), we have

DD
i (0, t)−DF

i (0, t)

=DD
i (0, sD

(i,k)) +DD
i (sD

(i,k), t)−DF
i (0, sF

(i,k))−DF
i (sF

(i,k), t)

=DD
i (sD

(i,k), t)−DF
i (sF

(i,k), t)

≤min{τ∗(i,k), t− sF
(i,k)} −min{τ∗(i,k), (t− sF

(i,k))β}

=


(t− sF

(i,k))(1− β), t− sF
(i,k) < τ∗(i,k),

τ∗(i,k) − (t− sF
(i,k))β, (t− sF

(i,k))β < τ∗(i,k) < t− sF
(i,k),

0, τ∗(i,k) ≤ (t− sF
(i,k))β .

It is easy to check that in either case above, we have

DD
i (0, t)−DF

i (0, t) ≤ τ∗(i,k) ≤ τmax .

ut


