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Abstract—This paper considers minimum sum mean-squared for MMSE CSI estimation and designing linear transceivers
error (sum-MSE) linear transceiver designs in multiuser dovn-  for minimum sum-MSE communication. We consider the
link systems with imperfect channel state information. Speifi- optimum allocation of limited available energy between the

cally, we derive the optimal energy allocations for trainirg and o L L.
data phases for such a system. Under MMSE estimation of training and data communication phases for each quagi-stat

uncorrelated Rayleigh block fading channels with equal aveage communi(_:ation block. _ _
powers, we prove the separability of the energy allocation In Section Il, we describe the channel model under consid-

and transceiver design optimization problems. A closed-fin  eration and review the design of training sequences for MMSE
optimum energy allocation is derived and applied to existig  channe| estimation. We then present the linear precoding
transceiver designs. Analysis and simulation results denmstrate . - .
the improvements that can be realized with the proposed degn. S){st_em model and prOVIde an overV|_eW. of the design of
minimum sum-MSE linear precoders with imperfect CSI and
fixed transmit power. In Section IIl, we formulate the joint
. INTRODUCTION design problem for energy allocation and precoder design.

Transceiver designs that minimize the sum of mean squang@ present a closed-form solution for the optimum training
errors (sum-MSE) under a sum power constraint in the mwnergy, and apply the result to existing precoder desigm-tec
tiuser downlink with full channel state information (CSH aniques. Performance and behaviour of the proposed approach
the base station are well researched [1]-[4]. In these papeire illustrated in Section IV, and we draw conclusions in
an uplink-downlink duality is used to transform a non-conveSection V. Appendix A derives the MMSE channel estimation
downlink problem into an equivalent convex virtual uplinkerror variance and the calculations of our main proof are
problem. Recent studies [5]-[7] have extended these @ligipresented in Appendix B.
papers to the case of imperfect CSI, deriving an MSE duality Notation We use the following conventions: italics rep-
in the presence of channel estimation errors and providingsent scalars, lower case boldface type is used for vectors
robust transceiver designs. and upper case boldface represents matrices, (e.§.,X,

In order to design precoders, the base station must obte#gpectively). Entries in vectors and matrices are denaged
estimates of the channel coefficients. If channel recipyocix|; and[X], ;. The superscript§ and*’ denote the transpose
holds (i.e. the uplink and downlink channels are statififica and Hermitian operator&[-] represents the statistical expec-
identical), these estimates can be provided by trainindié ttation operator whild y is the N x N identity matrix. ||x|,
uplink (e.g., using uplink sounding, as in the WIMAX stanand ||x||, denote the 1-norm (sum of entries) and Euclidean
dard [8]). However, in frequency division duplex systemsda norm. diag(x) represents the diagonal matrix formed using
in some broadband time division duplex systems [9]), channtae entries in vectox, and diag [X1,...,Xy] is the block
reciprocity does not apply. In this case, channel estimatigiagonal concatenation of matric&s, . .., Xj. The vec(X)
must be performed in the downlink and communicated back éperator stacks the columns of the matdk in a single
the base station using an uplink feedback mechanism. In thisctor.CA (m, R) denotes the complex multivariate Gaussian
paper, we consider imperfect CSI estimation at the mobiigobability distribution with meamm and covariance matrix
receivers, but assume that the imperfect estimates are afso
available at the base station (via an error-free and deksy/-f
feedback mechanisrh)

The algorithms designed in [5]-[7] for minimization ofA. Channel Model
the sum-MSE under a sum-power constraint presume thain the linear precoding system illustrated in Fig. 1, a base
fixed channel estimation error variance$ are provided by station with M antennas transmits t” decentralized mobile
a predetermined estimation mechanism. In this paper, Weers withV;, antennas each over flat wireless channels. The
address the problem of jointly designing a training seqaenghannel between the transmitter and uses represented by

— ) ) the N, x M matrikaH, and the overallV x M channel matrix

In this regard, this work complements [10], where we consjoerfect

. H oo . _ .
receiver CSI estimates and a feedback mechanism incoiqppratediction, is HY, with H = [Hlv S HK]’ and \{VhGI’EN - Zk Ny is
error, and delay. the total number of receive antennas in the system. We assume

II. SYSTEM MODEL AND BACKGROUND



Downlink X7 = 1/£Z1,,. One may also choos¥r as the scaled size-

M DFT matrix, [Xr],, , = Y= 32mmn/M which has the
additional benefit of balancing training power equally over

_,L>\/F U H HkH

L M each transmit antenna in each training symbol.
In Appendix A, we show that the estimation errors of each
Virtual Uplink channel coefficient are equal under the assumption of i.i.d.
x channels with variance?, taking the value
1
/ a / a _
+NQ, VY, , 1B\
Ll - N] O'e = O'H + gﬁ . (1)
Xy : As we illustrate in Section II-D, the assumption of equal
N QI VK 7> estimation error variance is critical in maintaining coxieg
L N, of the virtual uplink sum-MSE minimization problem.

. . . ) ) . C. Linearly Precoded Data Communication Model
Fig. 1. Data processing for usérin downlink and virtual uplink.

Following training, we assume that all of the remaining

np = n — M symbol periods in each block will be used
that all channel coefficients are i.i.d. and drawn from a zerf broadcast data symbols. Under the block fading assump-
mean complex Gaussian distribution with varianég thatis, tion, the channeH does not change during thesg, data
vec(H) ~ CN(0,0%15x). We consider a quasi-static (blockiransmissions; thus, we can design a single precoder/decod
fading) channel model, where the channel coefficients 4pair to be used for all transmissions in the block. It follows
assumed to be fixed for a coherence intervahafonsecutive that the remaining available energy to be used for data
symbol periods. The firsty transmissions in each block arelEp = Emax — E7) should be divided equally over the
training symbols which the mobile receivers use to estimateo data transmissions, resulting in a maximum per-symbol
the downlink channelHZ; these imperfect CSI estimategfansmit powerPp = (Emax — Er)/np.
are assumed to be available at the base station via an errofPuring each data transfmission, useneceivesl, data sym-
free and delay-free feedback mechanism. We consider #ISxx = [2k1,...,zxr,]" from the base station, and the vec-
stochastic error model (as used in [5]-[7]) where the trder x = [xlT,...,x}T<]T comprises independent symbols with
channel is modelled as a sum of the estimated channel amit average energyE([xxH] =1, whereL = Zszl Ly).
an independent additive error terril;, = H; + E; with Userk’s data streams are precoded by thex L, transmit

vec(Ey) ~ CN (0,071, ), andE = [Eq,...,Ex]. fiter Uy = [ugi,...,urr,], Whereuy; is the precoding
beamformer for streami of userk with |jug;|l. = 1, and

B. MMSE Channel Estimation and Training the precoders are combined in thé x L global transmitter
Training sequence and estimator design can be simplifi%ECOder matrxU = [Uy,..., Ux]. Power is allocated to

, : . T
under the assumption of uncorrelated channel coefficients yserk's data streams in the vectas, = [p1, ..., prr.]

considering training for vector channels from thé transmit andtf_’k - glaf [cll)'k]; wereflne ;he d_ct)r\:v?llnlff pgw;r aI|I30cat|c;)n
antennas to each individual receive antenna. To simplify ngatnx ast™ = diag [pl ""’pK] with tr [P] < Pp. Base

. . DL __
tation in this section, we consider training for a singleteec onHt[h;;s/%nodel, ushek rtehcelves a Ie.ggwg_veftozﬁ’kd =
channelh?. Channel estimation is performed by transmitting * x+ny, Where the superscript” indicates the down-

a set ofny training signal vectorsXy = [X7.1, - - -, XTny), nk, and n; ~ CN(0,07 1w, ). To estimate IESLF symbols
from the M transmit antennas without precodingy > M Xk userk applies thelL, x N receive filterV;', yielding the

i &DL __ HyyH / H
training symbol vectors must be sent to guarantee resdil\yabiesnma;ed Sy(Tb(_)IXk h = Vi H, U _P_X _+_Vk Dk der for th
of the individual channel coefficients. The received sign%I In order to design the sum-MSE minimizing precoder for the

vector isyr = h' Xy +z, wherez ~ CA(0, 521,,, ), and the ownlink, we use the virtual uplink, also illustrated in Fiy

MMSE channel estimatb? — v A is found using the where each_ matrix is replaced by it_s conjugate transppse.
MMSE 7= YT20 S We emphasize that the virtual uplink is only a mathematical

2

linear MMSE estimatorA, = (XgXT'*‘ Z—glm) X7 construct to be used for precoder design, and that its use
Under the sum energy constraint, [XQHXT] < Er, where does not require reciprocity of the true uplink and downlink
Er is the energy allocated to training, and the assumptichannels. We imagine that transmissions from mobile user
of independent channel coefficients, a sufficient condifmn % in the virtual uplink propagate via thélipped channel
optimality of the training matrix isX,X# = %IM [11]; Hji to the base station. The transmit and receive filters for
that is, we are free to select any training matrix with omser ¥ becomeV,, and U respectively, with normalized
thogonal rows. When using the MMSE estimator, there is rmvecoding beamformers; i.efvi;|ls = 1, and the uplink
benefit using any more thamy = M training symbols. For precoder matrices are gathered as a block diagonal matrix
algorithmic simplicity, we choose the set of training vesto V = diag [V1,..., V]. Power is allocated to usérs data



streams asyr = [gk1,-- -, quk]T, with Q, = diag[qx], I11. JOINT OPTIMIZATION OF ENERGY AND PRECODER

Q =diag [q],...,q%], andtr [Q] < Pp. The received sym- DESIGN

bol vector at the base station and the Estimated symbolvectoThe previous section describes the design of a robust min-
for U§32k are;;IULUf HVVQx+n=>3 " H;Viy Qxi+n jmum sum-MSE precoder for a fixed data power allocation,
andx; = Up'y" ", respectively, withn ~ CN'(0,071n).  ppy. In this section, we extend this result by jointly optimigin

D. Robust Convex Minimum Sum-MSE Precoder Design the ava|I§bIe t_ralnlng_and data energy with the precodegdes_
As explained in Section II-C, the optimum strategy for sh@ri

The MSE matrix for uset in the virtual uplink can be the available data energyp overnp transmitted symbols is

written as with equal energy in each transmission. Using this strategy
eVl =Epyn {(ng —xp) (%" — xk)H} and substituting the estimation error variance from (1p int
the effective noise variance, we define the joint optimarati
=Eg {UkH (HVQVHHH + 07211) Uy o problem
_UMH,V/Qr — QI VIHIU, + IL,C] (V*,Q*, E%) = arg min o2gtr {R—l}
- N . V.Q,Er

= U/RU; — U/H, V- VU, + 1, st qu>0 k=1,....K; l=1,...,L,
where Vi, = ViyQr, R = HVQVYHY + 02,1, 0[Q) = Pp, Pp = Lmex = Er )
Here, we have defined the effective noise powé; = ’ np ’
o2 + S n o2tr [VyQr VY], under the general model with o2 — o2 4 Pp _
different estimation error variances’ for each userk. We off 7 (0;12 + %%)

have also assumed the independence of data symbols, noise,
and estimation errors. The optimum robust virtual uplink Theorem 1:The optimum training energys;. is
receiver for usek is found using the MMSE (Wiener) filter
U = VIHIR'. The resulting (minimum) sum-MSE is

2
EmaxVM—22M\/np 2
* i Emax > Z—"\/M’RD
X« « Ei = VAp+VM H (6)
SMSEy = Z Ly —tr lRl Z HkaV;?HkH] @) 0 otherwise.

k=1 k=1 Proof: See Appendix B.

=L— M + ot [Rfl} Corollary 1: The optimization of training/data energy allo-
cation and the optimum precoder design in problem (5) are
separable problems. This result can be seen directly ira&),
the optimum valueF?., is neither a function oV nor Q.
Corollary 2: The sum-MSE minimizing precoder can be

L . .
221 ¢t = |l is the sum of powers allocated to USES  gesigned using existing algorithms by setting the sum power
data streams. Under a sum-power constraint with a maxim®straintt Q] < P}, = (Emax — E3) /np and the noise

transmit power ofPp, the non-convex virtual uplink sum—MSEpower term to the effective noise powet; = o2 + o2 P;,
n e "

which follows fromtr [AB] = tr [BA], linearity of the trace
operator, and the definition aR. Since the beamforming
vectorsvy; have unit norm, it follows thatr [V;Q,; V1] =

minimization problem can be formally defined as Corollary 3: No information can be communicated using
K ~ the proposed algorithm in the case whéig., < Z+/Mnp.
(V*,Q") =argmin <Ui + Zailqul) tr [R_l} If the total available energy fails to exceed this threshold
Ve k=1 (4) there is zero energy allocated to training; as a result, the
st qgu =0 k=1,...,K; I=1,..., Ly, estimated channel H = 0 and the resulting symbol estimates
tr[Q] < Pp. are xPL = 0 as well. It is difficult to provide an intuitive

understanding of this result without a closed-form expogss
for the minimum sum-MSE as a function &fr; however, we
have observed in simulations that wheh,, falls below the
reshold, the resulting minimum sum-MSE is an increasing
nction of Er. It follows that the “best” (i.e., sum-MSE

When the channel estimation error variances are egfa(
02), the effective noise becomes; = o2 + o2 >, ||a||.
Since the minimum sum-MSE is a non-increasing function
>« llax|l1, we can assume that all available power allocate
to data transmission will be used [5]. Thus, the eﬁeCtiVﬁinimizing) strategy is to avoid training.

. L T, 5
noise can be further simplified agly = o7 + o2 Pp for We can reinterpret this threshold result in the context of

the optimum precoder, which is no longer a function of thg, o g6 received SNR. If we define the average transmitted
uplink power allocationsy,;. The optimization problem (4) POWer asPay, = Euax/n, We can rewrite the constraint as

thus becomes convex (the minimization of| R~'| under

2 /
a sum power constraint), and can thus be solved using the SNR,, = P“Wg;H < Mnp . (7)
algorithm from [2] designed for the perfect CSI case by On np + M

substituting the effective noise?; for the noise termv2 in It follows that asn — oo, a strictly positive optimum training
the original design. power allocation is always feasible. Furthermore, thedatg
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Fig. 2. Optimum training poweP;. for varying block lengthn Fig. 3. Sum-MSE performance for equal and optimal energycations

average received SNR value that the threshold can take
SNR,, = —3dB, corresponding to the maximum value of t
RHS of (7) whennp = M.

IV. NUMERICAL EXAMPLES

We now present both analytical and simulation results
illustrate the behaviour and performance of the propc
algorithm. In these results, the flat Rayleigh fading chém
are modelled withr?, = 1. We scale the total energi,.
proportionally to the block-lengtm to reflect a realistic
average power constrainf,y, = Enax/n = «; in these
simulations, we illustrate the case of = 1. As such, we
define the average transmit SNRRs, /02, and find different
SNR values by varying the noise powef. These preliminary
results illustrate performance in a system with= 2 users,
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M = 4 base station antennas, ahd = Ny = L; = Ly =2
receive antennas and data streams per user.

Figure 2 illustrates how the optimum power allocated tBg. 4. Average BER performance for equal and optimal enetipcations
training, P;., grows with average SNR and with block length
n. We observe that as grows, the optimum power allocated
to training becomes significantly larger than the equal powe
allocation Pr = 1; however, P} converges fairly rapidly
with increasing SNR. We also observe the threshold behaviouIn this paper, we have considered the problem of allocat-
described in Corollary 3. ing energy to training and data symbols for systems using

Figures 3 and 4 illustrate the sum-MSE and average BE®Rnimum sum-MSE linear precoding in the multiuser MIMO
performance of the proposed algorithm. Results in each adwnlink. We have derived the optimum closed-form energy
these plots are generated using 5000 channel realizatialiscation for the case of MMSE channel estimation when
per average SNR value, and data symbols are generad#idusers have statistically identical channels. Furtloen
as uncoded QPSK. Here, we compare performance of thhe have proven separability of the energy allocation and
proposed algorithm to the case where equal power is alldcafgecoder designs; thus, existing algorithms for minimum-su
to both training and data symbols (i.8y = Pp = 1). We MSE precoding can be applied following energy optimization
observe notable performance improvements for large bloBkeliminary simulation results demonstrate that significa
lengths & > M), with approximately3 dB of SNR gain improvements in performance can be made for both realistic
for n = 1000. channel coherence intervals and transmit SNR levels.

V. CONCLUSIONS



APPENDIXA requires that\,.x = Ay = 0; thus, any minimizer can
MMSE CHANNEL ESTIMATION ERROR be found by considering the unconstrained minimization of
SMSEy, and checking feasibility of the resulting solutions.
We begin by rewriting the effective noise power,

2
R R H 2 2 05 ( Emax — PrM
EMMSE,est = Eh n [(hMMSE — h) (hMMSE — h) ] Ooff = Op 7+ np < o+ Pr ) (13)

The minimum MSE matrix for the estimation &f can be
written as

with p = 02 /0% Define the derivative

. 00%  —02% (Emax + pM)
2 -1 D, = = 3
o (I-XH (X;IXT+”—"I ) X OPr np (p+ Pr)
nr
o4 We then separate the data powes from the uplink power

2
_— {Aéi (x?xT n ;’—31> Ao — (AUXHE + X1 Ag) + 1]
H

(14)

o2 -1 allocation by rewritingQ = PpQ, with associated sum power
=0y (I+ ZX,XE i .
H 0% TAT constrainttr {Q} < 1. It follows that
1 Ep\ ! . Emax — PrM -
- _92 T max T HyyH 2
= . I = (=== -~ - ,
<o—H +U% M) , R ( - )HVQV H" + o041 (15)
8) Define the derivative of the trace function
where we have assumed thdat and z are indepen- otr IR -
: I | otr - . OR -~
dent. The fourth equality follows from application of Dy, = — _tr IR R!
the matrix inversion lemma(A + BCD)™' = A~ — oPr OPr

ATB(Ct+ DAle)_1 DA !, Since the estimation er- - (M - el

ror hanse — h is a linear combination of random vectors — U | B @HVQV H” - Dol

from a multivariate Gaussian distribution with uncorretht ( Mo?,
D, + <

. . . o —2 M > —1
components, it follows that the estimation errors are also = —tr {R } P + tr [R }
npPp npPp
The candidate values d?r for unconstrained global opti-

independent Gaussian random variables.
APPENDIXB mality satisfy

OPTIMUM TRAINING AND DATA ENERGY ALLOCATION OSMSEy .

(16)

. . OB R 4 o2Dh = 0
Here, we derive a closed-form expression for the optimum OPr g + o

- . L 17)
training energyE* when using MMSE estimation and the . . 2 (
o oneroyri : = (i [R1] = o [R2]) (D, 4 2158 ).

sum-MSE minimizing precoder design. Due to space limita-
tions, we are only able to show the most common case of Iorllﬂe first term in (17) can be rewriten as
blocks (withn > M, and consequentlyp > M); however, - S H T H 1 , .
the identical result app“es me SJ\/[ PDtI’ R HVQV H"R y which Only has a trivial
We perform the optimization in terms of the training powef€0 Pr = Emax/M (corresponding toPp = 0) since
Pr = Ep/M. Using the virtual uplink MSE from (3) as the argument of the trace function is positive definite for
the objective function, and the energy constraifits > 0 Non-zero power allocation®. Any globally optimum Pr
and By < Emax, We derive the Karush-Kuhn-Tucker (KKT)must therefore satisfy

npPp

conditions D+ % o (18)
8SMSEUL + /\maxM . /\Jr -0 (9) nDPD
oPr Substituting the definitions of (13) and (14) gives rise te th
PrM >0, PrM < Funax (10) following quadratic equation iy,
A >0, Amax 20 (11) 2

E-.
P?(np — M) +2Pr (Epax + pnp) = % —p*np. (19)

. . . The two roots of this quadratic equation are
We consider only the solutions where the constraints are noq 1q q

A PrM =0,  Amax (PrM — Enpayx) =0.  (12)

binding, as allowing either constraint to hold with equalit Pp = (= Emax — pnp £7), (20)
prevents us from reaching a global minimum for the opti- np — M

mization problem. WhenPrM = 0, no training symbols with

are sent, and the resulting channel estimatéié = 0. If 2

PrM = E,.x, zero energy remains for data transmission. In v = \/TLD (pQJV[ + 20 FEmax + max)

either of these cases, the resulting data symbol estimates a M (21)

x% = 0, and no information can be communicated. Since _ g np ey
neither constraint is binding, complementary slacknegy (1 B VY TPVNRD



Clearly, fornp > M, the negative root-{~) results in an
infeasible solutionPr < 0. We can see that the positive root

gives rise to
P*_Emax( nﬁD_l)_an (1_ %)
r— np — M
Vio—VM vnp—vM
Ennae (L2220) = pp (L5

(22)

(v = VA1) (v + V1)
 Jp+VM

This solution always satisfie®; M < Fy.x, and is only [11]

infeasible (withP}. < 0) if Enax < pv/npM.
Finally, we prove that this stationary poitt; is indeed

(5]

(6]

[10]

a global minimum. We observe that the second derivative of

SMSEy, can be written as

tr [R*HVQVHHHR*} b (DU %)
+ (Dg + %) % (o [REVQVIHIR ),

(23)

but the second term vanishes/t due to (18). We previously
showed that the trace term is strictly positive; thus, tovpro
that P; is a global minimizer, we must only show that the

remaining term in the second derivative is positivePdt

4 D, + MoZ;\ _ 9D, + MD, Mol
6PT 7 TLDPD - 6PT nDPD n%P[%
D, M Mo?,
=90, Dy + —ef )
6PT npPp npPp

(24)

At the point Pr = Py, the second term vanishes due to (18).

The remaining term

0D,
IPr Pr=P;

B 202 (Emax + pM)
np (p+ P;)’

(25)

)

is positive; thus, the training powét;: is the global minimizer.
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