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Abstract—In this paper, a new algorithm for parametric local-
ization of multiple incoherently distributed sources is presented.
This algorithm is based on an approximation of the array covari-
ance matrix using central and noncentral moments of the source
angular power densities. Based on this approximation, a new com-
putationally simple covariance fitting-based technique is proposed
to estimate these moments. Then, the source parameters are ob-
tained from the moment estimates. Compared with earlier algo-
rithms, our technique has lower computational cost and obtains the
parameter estimates in a closed form. In addition, it can be applied
to scenarios with multiple sources that may have different angular
power densities, while other known methods are not applicable to
such scenarios.

Index Terms—Array processing, central and noncentral
moments, covariance fitting, incoherently distributed sources,
parametric localization.

I. INTRODUCTION

I N most applications of array processing, source localiza-
tion methods are based on point source modeling, where

it is assumed that the energy arriving at a sensor array origi-
nates from multiple point sources. In terms of direction finding,
this means that the source energy is assumed to be concentrated
at discrete angles which are referred to as the directions of ar-
rival (DOAs). Based on this assumption, several high-resolu-
tion direction-finding methods have been proposed to estimate
the source DOAs. MUSIC [1] and ESPRIT [2] are represen-
tative examples of such methods. However, in numerous ap-
plications such as sonar, radar, and wireless communications,
signal scattering phenomena may cause angular spreading of
the source energy [3]–[6]. Hence, in such cases, the distributed
source model is more appropriate than the point source one [5].

In wireless communications, much attention has recently
been paid to the use of the antenna array in order to exploit the
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spatial diversity [7]–[9] to improve the system coverage and
capacity and reduce the effect of co-channel and intersymbol
interference. In rural and suburban environments with a high
base station, one of the main problems to be faced is the fast
fading due to local scattering in the vicinity of the mobile
[3]–[5]. As a consequence, the source is no longer viewed by
the array as a point source as it represents a spatially distributed
source with some central angle and angular spread. Practical
measurements have shown that depending on the environment
of the mobile, the base-mobile distance and the base station
height, angular spreads up to 10 are commonly encountered
in practice [4], [6]. Note that depending on the relationship
between the channel coherency time and the observation pe-
riod, the sources can be viewed either as coherently distributed
(CD) or incoherently distributed (ID). Indeed, if the channel
coherency time is much smaller than the observation period,
then the ID model is relevant. In the opposite case, the CD
model or a partially coherent model can be used [10].

Several techniques have been proposed for distributed source
localization. The first two attempts to generalize the signal and
noise subspace concepts to distributed sources have been made
in [11] and [12]. In these papers, extensions of the MUSIC esti-
mator to the case of distributed sources are proposed. The first
algorithm can be applied to both CD and ID sources, whereas
the second one is able to treat ID source scenarios only. Both al-
gorithms involve a two-dimensional (2-D) spectral search and,
therefore, are computationally intensive.

In [13], it has been shown that apart from their high computa-
tional cost, the algorithms of [11] and [12] are severely restricted
in the ID source case in that they do not provide consistent esti-
mates of the source parameters. To overcome this drawback of
the distributed source parameter estimator of (DSPE) of [11] and
the dispersed signal parameter estimator (DISPARE) of [12], a
class of weighted subspace fitting algorithms has been proposed
[13] that gives consistent parameter estimates. However, the re-
sulting algorithms have prohibitively high computational costs
because they involve a multidimensional search over a highly
nonlinear objective function.

In [14], a maximum likelihood (ML) algorithm has been pro-
posed for localization of ID sources with Gaussian angular dis-
tributions. In this algorithm, the likelihood function is jointly
maximized for all parameters of the model used. Similar to the
techniques presented in [13], the computational complexity of
this method remains prohibitively high as a multidimensional
search over a highly nonlinear likelihood function is required.
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In [15] and [16], several techniques have been presented
for localization of a uniformly incoherently distributed (UID)
source. However, these algorithms cannot be applied to multiple
source scenarios or any non-UID source scenario.

Another approach to the localization of distributed sources
has been proposed in [5], where the Taylor series expansion
has been used to derive an approximate model of a distributed
source, which is referred to as the generalized array manifold
(GAM) and is based on a linear combination of the array re-
sponse vector and its derivatives. Using GAM, an algorithm has
been proposed [5] to estimate the source spatial signature. The
application of this algorithm is restricted to the case of a uni-
form linear array (ULA) and uniform CD sources.

Another interesting yet ad hoc approach to distributed source
localization has been proposed in [17]. The authors have sug-
gested an approximation of a distributed source by two point
sources. Then, the central angle is estimated by averaging the
angles obtained from the root-MUSIC polynomial, whereas the
angular spread is obtained by using a lookup table. An essential
shortcoming of this algorithm is that it is restricted to the single
source case.

Recently, several covariance fitting techniques have been
used to estimate the angular parameters of a distributed source
[18]–[21]. For example, the so-called extended invariance
principle (EXIP) algorithm [21] computes the central angle
and angular spread parameters in an efficient way, using two
successive one-dimensional (1-D) searches. However, the main
shortcoming of these algorithms is that they are entirely based
on the single source assumption and cannot be extended to the
multiple source case.

In [22], the conventional beamformer has been applied to esti-
mate the locations of distributed sources. It has been shown that
the performance of this approach in the distributed source case
can be far from the potentially achievable one, especially when
the sources are closely spaced, their SNRs are high and essen-
tially different, or the number of samples/sensors is large. How-
ever, in the case when the sources are widely spaced and have
approximately the same power, the conventional beamformer is
an excellent alternative to high-resolution methods because it
combines robustness with computational efficiency and can be
easily extended to arbitrary planar or volumetric arrays.

In [23], a subspace-based algorithm has been formulated that
is applicable to the ID multiple source case. In this algorithm,
the total least squares (TLS) ESPRIT approach is employed
to estimate the source central angles. Then, the source angular
spreads are estimated using the least squares (LS) covariance
matrix fitting. However, as it will be demonstrated below, the
performance of this algorithm may be unsatisfactory.

In the present paper, we develop a new algorithm for ID
source localization. We use the Taylor series expansion of
the array response vector to approximate the array covariance
matrix using the central or noncentral moments of the source
angular power densities. Based on this approximation, we
propose a covariance fitting optimization to estimate these
moments. We show that the source central angles and angular
spreads can be obtained from the central and noncentral mo-
ments. Using the second central moment of the source angular
power density as a measure of angular spread, we propose

a simple way to estimate this parameter in the presence of
sources with different angular power densities. The algorithm
developed is applicable to multisource scenarios. Further,
unlike the DSPE and DISPARE algorithms, it does not require
any spectral search. As a result, the proposed method has lower
computational cost than these techniques and outperforms the
ESPRIT-based estimator presented in [23].

The paper is organized as follows. In Section II, we present
our model for ID sources. In Section III, we show how the array
covariance matrix can be approximated using the noncentral
moments of the source angular power densities. Based on this
approximation, a new estimation algorithm is developed in the
same section. Computer simulation results are presented in Sec-
tion IV, and conclusions are drawn in Section V.

II. SIGNAL MODEL

Assume that stationary signals with the same central fre-
quency impinge on an array of sensors from distributed
narrowband far-field sources. The output of the th sensor of
the array is given by

(1)

where is the complex random time-varying an-
gular distribution of the th source, is the response of
the th sensor to the unit energy source emitting from the direc-
tion , is the location parameter vector of the th source,
and is the additive zero-mean spatially white noise in the
th sensor. Examples of the parameter vector are the two an-

gular bounds of a uniformly distributed source or the mean and
standard deviation of a source with the Gaussian or Laplacian
angular distributions. Equation (1) can be rewritten in the vector
form as

(2)

where

(3)

(4)

(5)

are the array observation, array response, and sensor noise vec-
tors, respectively, and denotes the transpose. Assuming that
the sources and noise are uncorrelated, the covariance matrix
can be written as

(6)

where is the unknown noise power, is the identity matrix,
is the statistical expectation operator, and denotes the

Hermitian transpose. The function

(7)
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is termed as the angular cross-correlation kernel, where
stands for the complex conjugate.

Throughout the paper, we will consider the ID source model.1

As a consequence, the source is no longer viewed by the array as
a point source as it becomes a spatially distributed source with
some central angle and angular spread.

A distributed source is said to be ID if its components arriving
from different directions are uncorrelated. That is, for the th
source, we have

(8)

where is the Dirac delta-function, is the power
of the th source, and is its normalized angular
power density. The index in is used to emphasize
that the sources can have different parameterized angular power
densities. Note that

(9)

Let us assume that all distributed sources are mutually uncorre-
lated. Then, we can rewrite (7) as

(10)

where is the Kronecker delta. Using (10), we can rewrite
(6) as

(11)

For further convenience, let us define the central angle of
the th source as the mass center of the source angular power
density

(12)
The source central angles form the vector

(13)

Next, let us define the th noncentral moment of the angular
power density of the th source around as

(14)

where is an arbitrary angle, and for the sake of brevity, we
use the notation where the dependence of on is not
shown explicitly.

In what follows, will be viewed as a coarse initialization
of the true central angle . If , then
becomes the th central moment of the th source
angular power density. The following lemma is of key impor-
tance for our subsequent derivations.

1The assumption of uncorrelated ID sources has been theoretically and exper-
imentally shown to be relevant in wireless communications in the case of rural
and suburban environments with a high base station [3]–[5].

Lemma 1: For the th source, the value of the first noncen-
tral moment around an arbitrary angle determines the devi-
ation of with respect to the central angle .

Proof: Using (14), we have

(15)

where the last row of (15) follows from (9) and (12).
From Lemma 1, we conclude that given some estimate for

the first noncentral moment, we are able to estimate the source
central angle from (15).

In what follows, we assume that the angular distribution of
each source is determined by the normalized angular power den-
sity, which is a non-negative function parameterized by two pa-
rameters: the central angle and the angular spread. We also as-
sume that different sources may have different shapes of their
angular distribution function. However, for each source, we as-
sume that we know the shape of the angular power density func-
tion2 (for example, we know whether it is Gaussian, Laplacian,
or uniform), but we do not know the parameters of this shape
that have to be estimated.

III. COVARIANCE FITTING

In this section, we show that the array covariance matrix can
be approximated using a few noncentral moments of the source
angular power densities. Then, we derive a new computation-
ally simple covariance fitting-based direction finding algorithm.
Note that the covariance fitting scheme (sometimes referred to
as the covariance matching approach) has been used earlier for
distributed source localization (see [14], [18]–[20], [25]–[28],
and references therein).

Let us define

(16)

Consider an -term Taylor series approximation of
around

(17)

where

(18)

The Taylor series approximation is a widely accepted approach
that is used for characterization of spread or moving sources
in array processing and adaptive beamforming (for example,
see [5], [29]–[31], and references therein). Note that there is a
tradeoff between the quality of source approximation and sen-
sitivity to array calibration errors. Indeed, we are able to ap-

2It should be noted that the estimation of the source angular power density
is a very difficult task [24]. However, the information about the form of this
function can be obtained from measurement campaigns [4], [6]. Furthermore,
the knowledge of the shape of the angular power density is not so critical for
our approach (see the end of Section III).
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proximate the matrix increasingly more accurately by in-
creasing the parameter in (17), but the sensitivity to array cal-
ibration errors will also increase due to the presence of higher
order derivatives. Therefore, in practical situations, should not
be much larger than one.

Inserting (17) into (11), we have the following approximation
of the covariance matrix (11):

(19)

where

(20)

Equation (19) represents an approximation of the exact covari-
ance matrix (6) using matrices. We will now use this
approximation to formulate our direction-finding algorithm.

Using the LS criterion and (19) and (20), let us minimize the
function

(21)

where

(22)

is the sample covariance matrix, and the vectors

(23)

(24)

(25)

contain the model parameters.
Assuming some initial value for the vector , we find the

estimate of (24) as

tr (26)

where tr denotes the trace operator.
Differentiating with respect to the th

( ) element of , we get

tr

tr

tr

tr

tr (27)

where (20), (24), and (25) are used, and denotes the th ele-
ment of a vector. Here, it is assumed that
( ). Differentiating with
respect to the ( )st element of , we have

tr

tr

tr

tr (28)

Then, equating (27) and (28) to zero and rewriting these equa-
tions in the vector form as

(29)

after straightforward manipulations, we have

(30)

where

tr (31)

tr (32)

for , , ,
, and

tr (33)

tr (34)

(35)

tr (36)

The solution to (30) is given by3

(37)

Using (37), we estimate the noncentral moments, and then,
using Lemma 1, the central angles can be estimated as

(38)

where is the first estimated noncentral moment of
the angular density of the th source.

Note that is an arbitrary angle that should be chosen suf-
ficiently close to . In practice, most of the source energy is
concentrated around the central angles, and if the difference be-
tween and is large, then the accuracy of the covariance

3If the matrix is singular or ill-conditioned, one can replace its inverse
by pseudoinverse. However, note that in our simulations (based on multiple sim-
ulation runs, see below) there was no single run where this matrix became sin-
gular or ill-conditioned.
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approximation (20) will be low, and this will increase the esti-
mation errors. Therefore, it is important to select as close
as possible to to maintain the estimation errors reasonably
small.

When the central angles are estimated, we can obtain the es-
timates of the central moments ( )
by means of solving the system (30) again with replaced
by . Hence, the estimation algorithm should involve two
stages. In the first stage, the noncentral moments and, conse-
quently, the central angles are estimated, whereas in the second
stage, the central moments can be obtained using previously es-
timated central angles.

According to our assumptions, the angular power density
of each source is determined by its central angle and angular
spread. It is clear that all central moments are related to the
second parameter. The functional form of the angular power
density determines this relationship. For instance, for a UID
source with the central angle and the angular spread ,
the th central moment is given by

is even
is odd.

(39)

For a Gaussian ID (GID) source with the central angle and
the angular spread , the th central moment can be ex-
pressed as [32]

is even
is odd.

(40)

For a Laplacian ID (LID) source with the central angle and
the angular spread , the expression for the th central mo-
ment takes the following form:

is even
is odd.

(41)

Hence, having one of the even-indexed central moments and
assuming a certain parametric angular power density, we can
estimate the angular spread. For example, using the estimate of
the second central moment, we have that for UID sources

(42)

whereas for GID/LID sources

(43)

It is worth noting that the estimates of the source central angles
can be refined by an iterative algorithm in which the estimates
of the source central angles are used in (37) instead of ,

. This refinement procedure can be iterated a
few times to improve the estimates.

Now, we can summarize our algorithm as follows.

Step 1) Compute the sample covariance matrix , and
specify the initial values of , .

Step 2) Compute from (37) and, using (24) and (25),
find the estimates , from
the proper elements of the vector .

Step 3) Update , and set
.

Step 4) Repeat steps 2 and 3 a few times. Compute
and from (31) and (32), respectively. Then,
using (37), calculate the vector , and obtain

from the proper elements of this vector.
Step 5) Estimate the source angular spread from the

previously estimated second central moments
, [for example, use

(42) and (43) for the UID and GID/LID sources,
respectively].

Remark 1: The algorithm is initialized using the preliminary
(coarse) estimates of the source DOAs. Note that a priori knowl-
edge of either angular sectors or initial estimates of the signal
DOAs is required in numerous array processing algorithms; see
[33]–[44]. Such preliminary estimates can be easily obtained
using the conventional beamformer [22], [37].

Remark 2: It is worth noting that the knowledge of the shape
of the angular power density function is required only in the
last step of our algorithm. Therefore, if this knowledge is not
available, one can use the estimated second central moments as
a measure of the source angular spread parameters. In addition,
it is important to stress that the central angle estimates do not
depend on the shape of the angular power density function. Fur-
thermore, according to (43), the angular spread estimates are not
affected by mismodeling GID sources as LID sources or vice
versa. Therefore, our estimator is quite insensitive to uncertain-
ties in the shape of the angular power density function.

IV. SIMULATION RESULTS

In our simulations, we assume a ULA of omnidi-
rectional sensors spaced half a wavelength apart. The number
of statistically independent snapshots in each simulation run is

. A total of 100 independent simulation runs are per-
formed to obtain each simulated point. Note that by increasing
the parameter , we are able to improve the quality of approxi-
mation of the covariance matrix. However, at the same time, the
sensitivity of the algorithm to array calibration errors increases
in this case (i.e., should be not much larger than one). Because
of this fact, we have chosen to implement our algorithm with

. Using extensive simulations with different scenarios, we
have found that our algorithm converges in less than four iter-
ations. Therefore, three iterations of steps 2 and 3 are used in
all our examples. All initial values of , have
been chosen far enough from the true central angles so that the
difference between these initial values and the true central an-
gles is larger than that between the true central angles and their
estimates obtained by means of conventional beamformer.

In the first example, we model the case of a single distributed
source. This source is assumed to be either UID or GID with the
central angle and the angular spread . In this
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Fig. 1. RMSE of the central angle estimates versus the SNR; first example.

Fig. 2. RMSE of the angular spread estimates versus the SNR; first example.

example, we compare the performances of our algorithm (with
the initial value ) and the EXIP method.4

Figs. 1 and 2 show the root-mean-squared errors (RMSEs) of
the estimates of the central angle and angular spread, respec-
tively, versus the SNR. From Fig. 1, we see that in terms of
central angle estimation, EXIP has a substantially better perfor-
mance than the algorithm proposed. Indeed, our technique gives
biased estimates even at high values of SNR. However, as fol-
lows from Fig. 2, the performances of the algorithms tested are
comparable in terms of angular spread estimation. In particular,
at high SNRs in Fig. 2, the EXIP method has a visibly better
performance than our method in the UID source scenario, but
its performance in the GID scenario is worse than that of the
proposed technique. One of possible explanations of this fact is
that the EXIP estimator takes no advantage of knowing the form
of the angular distribution function, whereas our method does.

4Note that the EXIP algorithm has been developed for the single source case
only. For this case, the EXIP approach has been shown to be one of the best
methods of choice [21].

Fig. 3. RMSE of the central angle estimates versus the SNR; second example.

Fig. 4. RMSE of the angular spread estimates versus the SNR; second
example.

Note that essential advantages of the proposed algorithm rel-
ative to EXIP are that our technique has lower computational
cost and that its application is not restricted to the single-source
case.

In the second example, we assume two distributed sources.
One of them is UID with the central angle and the an-
gular spread . The second source is GID with the cen-
tral angle and the angular spread . In this
example, we compare our method (with the initial values

and ) with the ESPRIT-based method [23]. To sim-
ulate the ESPRIT-based algorithm in a proper way, two iden-
tical 11-element ULAs with the half-wavelength interelement
spacing have been assumed, and the intersubarray displacement

has been chosen, where is the wavelength.5 Figs. 3 and 4
display the RMSEs of the estimates of the central angle and an-
gular spread, respectively, versus the SNR. From these figures,
we see that our method essentially outperforms the ESPRIT-

5Note that the ESPRIT-based algorithm requires rather small inter-subarray
displacement to to reduce the bias [23].
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Fig. 5. RMSE of the central angle estimates versus the SNR; third example.

Fig. 6. RMSE of the angular spread estimates versus the SNR; third example.

based approach. In particular, it can be seen that the ESPRIT-
based algorithm has much higher SNR threshold both in central
angle and angular spread estimates than the proposed technique.
Interestingly, the performance of our algorithm is better in the
GID case, whereas the ESPRIT-based method shows the oppo-
site effect. The explanation of this fact is that these two methods
use different approaches to estimate the source central angles.
In particular, the ESPRIT-type algorithm approximates the dis-
tributed source with two point sources, whereas our technique
uses the Taylor series for this purpose.

In our third example, we consider the case of two LID sources
with the central angles and and the an-
gular spreads , respectively. Similar to the
previous example, our method (with the initial values
and ) and the ESPRIT-based algorithm are compared.
Figs. 5 and 6 display the RMSEs of the estimates of the cen-
tral angle and the angular spread, respectively, versus the SNR.
Similar to the previous example, we observe that the proposed
method drastically outperforms the ESPRIT-based estimator. It

Fig. 7. RMSE of the central angle estimates versus the SNR; fourth example.

Fig. 8. RMSE of the angular spread estimates versus the SNR; fourth example.

can be seen from Fig. 5 that in this example, the ESPRIT-based
method has much higher SNR threshold than the proposed tech-
nique. As it follows from Fig. 6, the angular spread estimation
performance of the ESPRIT-based method does not decrease
monotonically with SNR because of strongly biased estimates.
At the same time, the proposed estimator can be seen to have
much smaller bias, and its angular spread estimation perfor-
mance decreases monotonically with SNR.

In our last example, we consider the case of two sources,
but, in contrast to the previous two examples, these sources are
closely spaced. The first source was modeled as a UID source
with the central angle and angular spread

, whereas the second source was GID with the central angle
and angular spread . Again, we compare

our method (with the initial values and ) and
the ESPRIT-based algorithm. Figs. 7 and 8 show the RMSEs of
the estimates of the central angle and the angular spread, respec-
tively, versus the SNR. Similar to the previous two examples,
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our technique substantially outperforms the ESPRIT-based al-
gorithm in having much lower SNR threshold for both central
angle and angular spread estimates than the proposed technique.
By comparing Figs. 8 and 4, we see that for closely spaced
sources, this effect is stronger than for widely spaced sources.

We conclude this section with two comments on other simula-
tion results that are not included in the manuscript in the interest
of brevity.

As any other parametric method, our method breaks down if
the number of sources is underestimated. However, it is very
robust to overestimating this number. In the latter case, the esti-
mated power (the estimate of the first central moment) is close
to zero for all spurious sources, and this helps to finally deter-
mine the true number of sources and their parameter estimates.

Another question we have studied is whether the perfor-
mance of our method breaks down in scenarios where, apart
from spread sources, point sources are present. Our simulations
have shown that the proposed algorithm is applicable to such
scenarios without affecting its performance.

V. CONCLUSIONS

We have presented a new parametric approach to localiza-
tion of multiple incoherently distributed sources in sensor array.
Our algorithm approximates the covariance matrix using cen-
tral and noncentral moments of the source angular power den-
sities. Based on this approximation, a simple covariance fitting
optimization technique is proposed to estimate these moments.
Then, the source parameters are obtained from the moment es-
timates. Compared to the existing methods, our approach has a
reduced computational cost and is applicable to the multisource
scenarios with different angular power densities.
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