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Detecting the Number of Signals in
Wireless DS-CDMA Networks

Shahrokh Valaee and Shahram Shahbazpanahi

Abstract—In this paper, a new information theoretic algorithm
is proposed for signal enumeration in DS-CDMA networks. The
approach is based on the predictive description length (PDL) of
the observation vector. The PDL is the length of a predictive
code of observations. For signal detection, the PDL criterion
is computed for the candidate models and is minimized to
determine the number of signals. The proposed technique uses
the maximum likelihood (ML) estimate of the correlation matrix.
The only information used in the ML estimation of the correlation
matrix is the multiplicity of the smallest eigenvalue. The PDL
algorithm has a signal-to-noise ratio resolution threshold that
is smaller than that of the minimum description length (MDL).
The proposed method can be used on-line and can be applied to
time-varying and non-stationary systems.

Index Terms—DS-CDMA networks, cellular networks, wireless
local area networks (WLANs), multiuser detection, signal enu-
meration, information theoretic techniques, predictive descrip-
tion length.

I. INTRODUCTION

D IRECT sequence code division multiple access (DS-
CDMA) has widely been used in wireless communi-

cations. A DS-CDMA signal is formed by multiplying each
data bit by the signature waveform allocated to the user. In an
ideal case, the signature waveforms form an orthogonal set.
Therefore, the data bit is extracted by multiplying the received
signal by the corresponding signature waveform. However,
in practice, the signature waveforms are rarely orthogonal.
For instance, in cellular networks, the received signal is the
superposition of the actual signal and inter-cell and intra-cell
interference. The interference is generated by the transmitters
that use a signature waveform that is not orthogonal to the
signature waveform of the desired signal. Nonetheless, if the
signature waveforms are selected at transmitters as orthogonal
signals, channel impairments such as random delay and mul-
tipath transmission may cause the signals to be nonorthogonal
at the receiver.

Another example of the application of DS-CDMA systems
is in WLANs. In practice, it is possible to operate several
WLANs in the same environment by using a unique DS-
CDMA signal for each WLAN. Since wireless terminals
operate on different WLANs, the signal received by a receiver
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is the combination of the signals transmitted by terminals com-
municating on different WLANs, and since the DS-CDMA
signals are generated on different WLANs, they may not be
orthogonal, hence, the signal of each WLAN will act as an
interference for other WLANs.

In both examples above, the channel is interference-
limited. In such systems, the performance of the conventional
receivers—in terms of bit-error-rate (BER)—is very poor.
Multiuser detectors [1] can be used to combat the degradation
of performance of conventional detectors. A multiuser detector
can significantly reduce the BER. Multiuser detectors need
to know the true number of signals and their corresponding
signature waveforms. If only the signature waveform of the
signal-of-interest is known to the receiver, a blind multiuser
detector [2] should be used. An example of this case is the
reception of downlink signals at a mobile terminal. A blind
multiuser detector uses a signal subspace method to detect the
transmitted data. The signal subspace methods assume that the
true number of transmitted signals is known.

In many applications, the true number of signals is not
known and should be estimated prior to multiuser detection.
Here, we present two such examples. In wireless cellular
networks, the true number of signals is not known at mo-
bile terminals. Therefore, if signal subspace-based multiuser
detectors are to be used, the true number of signals should be
estimated. A similar problem exists in uplink since the number
of interfering signals emanated from wireless terminals con-
nected to neighboring cells is not known at the base station.

In WLANs, since each WLAN is an autonomous sys-
tem, it is very difficult to determine the number of active
users (WLANs) and communicate it to all wireless terminals.
Therefore, effective techniques should be developed to detect
the number of signals by observing the waveform of the
received signal. In this paper, we introduce a novel technique
to enumerate DS-CDMA signals that are used in both cellular
networks and WLANs.

In an enumeration problem, several hypotheses—each cor-
responding to a particular number of signals—are examined
and the best hypothesis is selected using a certain cost. In this
paper, we use an information theoretic approach to detect the
number of DS-CDMA signals. Recently, much attention has
been given to information theoretic criteria [3]–[11]. A popular
information theoretic technique is the minimum description
length (MDL) [12]. The MDL is based on minimizing the
length of the code required to describe data. Code length
minimization is appropriate for model selection since the
model, which best fits the data, is the one that gives the most
information about it; having more information results in a
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Fig. 1. The block diagram of the system.

smaller code length. Coding of data in the MDL criterion is
performed in two steps. First, data is encoded using a uniquely
decodable prefix code. Then, the parameter vector is encoded
and added as a preamble to the codeword of data. Therefore,
the MDL cost consists of two parts that correspond to the log-
likelihood function of the observation vector and an additive
over-parameterization term. The over-parameterization term in
MDL represents the number of digits required to encode the
parameter vector to an optimal precision [13]. It has been
shown that the MDL is consistent [14]. MDL can only be
applied to a batch of data and therefore cannot be used in
on-line procedures.

Most MDL approaches in the literature assume that the
transmitted signals are Gaussian. This assumption has been
used even for the cases where the signals are known to be
non-Gaussian. Recently, in [15], the MDL estimator has been
modified so that it can be applied to non-Gaussian signals. It
has been shown in [15] that the modified MDL approach not
only improves the enumeration performance, but also enhances
the resolution capacity; that is, the number of signals that can
be detected by the modified MDL technique is larger than
the length of the received data vector. However, the method
of [15] requires that the ML estimates of source signatures
be obtained. In general, the ML estimate of such signature
waveforms can be computationally very expensive.

In this paper, we develop an algorithm based on the pre-
dictive description length (PDL) [13] [16]. The PDL criterion
is the cumulative log-likelihood function of the observation
vectors such that at each time instant, the maximum likelihood
(ML) estimate of the parameter based on the past data is used
in the probability distribution function. In the MDL principle,
the restriction of coding to a two-step scheme increases the
code length. It has been shown that the PDL achieves the
shortest code length for data relative to the generating model
class [16]. The PDL technique has a structure that is suitable
for on-line tracking of time-varying systems.

We apply the PDL principle to a system with the block
diagram shown in Fig. 1. In many applications, the obser-
vation vector can be represented as the output of a multiple-
input/multiple-output channel with an additive white Guassian
noise

x = Hs + n (1)

where x is the N × 1 observation vector, H is the N × M
channel transfer matrix, s is the M × 1 signal vector and n
is the N × 1 additive noise vector. M is the dimension of the
input signal and N is the dimension of the channel output. In
(1), M < N and H is a full-column-rank matrix; that is, the
column vectors of H are linearly independent. This is a valid
assumption in many applications.

There are several applications where the model (1) holds.
Two examples are the complex envelope representation of ar-
ray output signals in a multi-antenna array [17], and temporal
representation of discrete signals in harmonic resolution [18].
Another interesting example arises in DS-CDMA networks.
In this paper, we will develop a signal enumerator scheme
for DS-CDMA networks. However, the proposed technique is
general and can be applied to all applications that have the
observation vector represented as (1).

II. DS-CDMA SIGNALS

In an M -user synchronous DS-CDMA system, the received
continuous-time baseband signal can be represented as

x(t) =
∞∑

n=−∞

M∑
m=1

αmbm(n)hm(t − nTs) + v(t) (2)

where αm is the received signal amplitude of the mth user,
bm(n) is the nth data symbol of this user, hm(t) is its signature
waveform, Ts is the symbol period, and v(t) is the zero-mean
additive random noise process with the variance σ2. In this
paper, we consider the short spreading code case, i.e., it is
assumed that the chip sequence period is the same as the
symbol period. Furthermore, we assume that for each user,
the data symbols are independent random variables which are
equally likely drawn from a finite alphabet. We further assume
that the spreading codes of all users have the same length and
the system is single-rate.

We model the channel for each user as an FIR filter whose
impulse response is much shorter than the symbol period Ts,
so that in each symbol period, only a few chips are affected by
inter-symbol-interference (ISI) [19]. This model is frequently
used in wireless communications and can be easily achieved
by adjusting the symbol rate Ts. For each user, the number
of those chips affected by the ISI is indeed equal to the
length of the user channel impulse response. We assume that
the maximum length of the user channel impulse response is
LcTc, where Tc is the chip period. Because the duration of
the channel impulse response is assumed to be comparable to
the chip period Tc, there is a substantial inter-chip-interference
(ICI) [20]. Using these assumptions, the signature waveform
of the mth user is given by

hm(t) =
L−1∑
l=0

cm(l)gm(t − lTc) (3)

where cm = [cm(0), cm(1), . . . , cm(L − 1)]T is the user
spreading code vector, gm(t) is its chip waveform convolved
with the channel impulse response, L is the spreading factor
(the number of chips per symbol), Tc = Ts/L is the chip
period, and the superscript (·)T stands for the transposition.
In an ICI-free scenario, gm(t) spans only one chip, while in
practice, due to channel dispersion, gm(t) can span several
chips and this causes ICI.

Sampling (2) at t = kTs +pTc for p = 0, 1, 2, ..., L−1 and
ignoring the first Lc samples, which are contaminated by ISI,
we can use vector notation to write the received data vector
as

xk =
M∑

m=1

αmbm(k)hm + nk (4)
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where

xk = [x(kTs + LcTc), x(kTs + (Lc + 1)Tc), . . . ,
x(kTs + (L − 1)Tc)]T , (5)

hm = [hk(LcTc), hk(LcTc + Tc), . . . ,
hk((L − 1)Tc)]T , (6)

nk = [v(kTs + LcTc), v(kTs + (Lc + 1)Tc), . . . ,
v(kTs + (L − 1)Tc)]T (7)

are the data vector, the signature vector of the mth user,
and the noise vector, respectively. In general, the actual user
signature is defined as the user spreading code distorted by the
channel effect (or, in other words, each signature represents
the result of convolution of the corresponding spreading code
and the channel impulse response). Now using the following
definitions

sm(k) Δ= αmbm(k) (8)

H Δ= [h1 h2 · · · hM ] (9)

we get

xk = Hsk + nk (10)

where sk = [s1(k), . . . , sM (k)]T is the M × 1 signal vector,
and H = [h1, . . . ,hM ] is the N × M matrix of signature
waveforms.

It has already been shown in the literature that a low rank
data model can be obtained for frequency selective channels,
see [19], [21], [22], and [20]. In fact, as was shown in
these references, by ignoring the samples affected by inter-
symbol-interference (which in turn is the result of frequency
selectiveness of the channel), one can come up with the low
rank data model (10).

The date model in (10) is applicable to both downlink and
uplink communications. In both cases, the number of signals
should be known, as the subsequent signature estimation
techniques (such as signal subspace based methods) require
this piece of information. In uplink, the receiver at the base-
station should know the number of signals, which includes
the signals from the users in its cell as well as the signals
from users in the neighboring cells. The number of out-of-
cell signals is not known to the base station and should be
estimated. In downlink, the received signal by each user also
consists of the signals transmitted by the base station to the
other users. The number of such users is not known at the
receiver and should be estimated. In this paper, we propose
an algorithm to find the column rank of H, which is the same
as the number of transmitted signals.

Throughout this paper, we assume that the columns of the
signature waveform matrix H are linearly independent. We
further assume that the signal snapshots form an independent
identically distributed (i.i.d.) sequence of Gaussian random
vectors with an unknown covariance matrix SM . The noise
samples are assumed to be independent from the signal
samples and form an i.i.d. sequence of Gaussian random
vectors with an unknown covariance matrix σ2IN , where IN

is the N × N identity matrix. With these assumptions, the
observation vector will be a sample of the Gaussian process

with zero mean and the correlation matrix

RM = E[xkxT
k |H, σ2,SM ] (11)

= HSMHT + σ2IN . (12)

Therefore, the probability density function of the observation
vector is

f(x|RM ) =
1

(2π)
N
2 |RM | 12 exp

(
− 1

2
xT [RM ]−1x

)
(13)

where |.| represents the determinant of the matrix.
It is possible to show that the observation vector can be

decomposed into two orthogonal vectors in the signal and
noise subspaces [23]. The signal subspace is the subspace
spanned by the column vectors of H. If the signal correlation
matrix SM is full-rank, the signal subspace will coincide
with the span of the eigenvectors of RM corresponding
to M largest eigenvalues. Note that the dimension of the
signal subspace is M . The noise subspace is the orthogonal
complement of the signal subspace. The dimension of the
noise subspace is N − M . The objective of this paper is to
estimate the dimension of the signal subspace, M , given that
M ∈ N Δ= {0, 1, . . . , N − 1}.

A direct implication of the signal and noise subspace
decomposition technique is that for a high signal-to-noise
ratio (SNR), the eigenvalues of the sample correlation matrix,
corresponding to signal components, are significantly larger
than the noise eigenvalues. Furthermore, the noise eigenvalues
of the true correlation matrix are identical and are equal to
σ2. These observations can be used to devise a simple signal
enumeration technique by comparing the difference between
consecutive eigenvalues. In the sequel, we will refer to this
numerator as EIG. We will show that the performance of this
enumerator is inferior to that of MDL and PDL. An inherent
problem of the EIG enumerator is that it cannot detect the true
number of signals when M = 0.

III. INFORMATION THEORETIC CRITERIA

For any m ∈ N , we construct an appropriate model of
order m. Assume that each model m is represented by a
conditional probability density function f(x|φm) where x is
the observation vector and φm is the corresponding parameter
vector. The MDL cost for a model of order m over a window
of size K is represented by [12]

MDLm(K) = − log f(XK |φ̂m
K) +

dm

2
log K (14)

where XK is the N × K matrix of observations up to time
K , φ̂m

K is the ML estimate of the parameter vector φm using
K observation vectors, dm is the number of free elements for
the model of order m, and f(.|.) is the generating model class
(conditional probability density function). In (14), the first
term is the log-likelihood function of the observation vectors
and the second term is the over-parameterization factor—a two
step encoding scheme.

The PDL cost of the observation vectors xk, k = 1, . . . , K,
for a model of order m is defined as [16]

PDLm(K) = −
K∑

k=1

log f(xk|φ̂m
k−1) (15)
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where φ̂m
k−1 is the ML estimate of the parameter vector using

the observations up to time (k − 1). The PDL principle is
based on the predictive encoding of data. At each time instant,
the parameter vector is estimated using the past observations.
Therefore, the kth term, − log f(xk|φ̂m

k−1), is indeed the code
length of the prediction error [16]. In this paper, the PDL cost
is calculated for each model and the smallest is selected as
the best-fit model, that is

M̂K = argmin
m

PDLm(K) (16)

where we have implicitly assumed that the number of signals
can be time varying.

The initial point in the recursion (15) is usually chosen
arbitrarily. In practice, f(x1|φ̂m

0 ) is obtained by selecting φ̂m
0

from the uniform distribution 1
φ2−φ1

in [φ1, φ2] for some φ1

and φ2 [24]. In this paper, we take an alternative approach.
We collect N snapshots and form the sample correlation
matrix using these snapshots. This sample correlation matrix
is then used to estimate the parameter vector. The PDL cost is
accumulated for all i = N + 1, N + 2, . . . , K to find the total
code length. Therefore, our formulation of the PDL criterion
is

PDLm(K) = −
K∑

k=N+1

log f(xk|φ̂m
k−1). (17)

In the following section, we derive the PDL cost to detect the
number of linearly independent columns of H in (1).

IV. PREDICTIVE DESCRIPTION LENGTH

For the model of order m, let the channel output signal at
the kth time instant be expressed as

xk = Hmsm
k + nm

k (18)

where Hm is the N ×m matrix of signature waveforms, and
sm
k (t) is an m × 1 signal vector, and nm

k is the N × 1 noise
vector of model m. Assuming that the signal vector sm

k and
the noise vector nm

k are independent, the correlation matrix
of the observation vector xk is

Rm = HmSmHT
m + σ2

mIN (19)

where Sm is the signal autocorrelation matrix and σ2
mIN is the

noise autocorrelation matrix. Here, we assume that the noise
is white with the unknown variance σ2

m that depends on the
selected model.

The conditional probability density function of the obser-
vation vector for model m is given by

f(x|Rm) =
1

(2π)
N
2 |Rm| 12 exp

(
− 1

2
xT [Rm]−1x

)
. (20)

From (20), the PDL for a model of order m at time instant
K ≥ N + 1 is given by

PDLm(K) = −
K∑

k=N+1

log f(xk|R̂m
k−1)

=
K∑

k=N+1

(
log |R̂m

k−1| + xT
k [R̂m

k−1]
−1xk

)
(21)

where R̂m
k−1 is the ML estimate of the correlation matrix for

the model of order m using the observations up to time (k −
1); in (21), the constant terms that are independent of the
selected model have been removed and the cost function has
been multiplied by 2. The PDL cost is computed for each
model and the minimum is chosen to estimate M . Indeed, at
each time instant K ≥ N +1, the best model is selected from
(16).

In the sequel, the sample correlation matrix is used to obtain
the ML estimate of the true correlation matrix. The sample
correlation matrix is defined with the recursion

R̄k = (1 − ε)R̄k−1 + εxixT
i (22)

where 0 < ε < 1 is usually very small. This definition of
the sample correlation matrix is very useful for nonstationary
environments. In (22), by varying ε, we can have different
weights for R̄k−1 and xkxT

k . For large values of ε, the sample
correlation matrix has a short memory and is sensitive to recent
changes of the underlying statistics, and for small values of ε,
it has a longer memory and sudden changes in the statistics
of xkxT

k cannot be easily detected.
Let λ̄k,j , j = 1, . . . , N , be the eigenvalues of R̄k arranged

in non-increasing order, and v̄k,j , j = 1, . . . , N be the
corresponding eigenvectors. It is possible to show that the
eigenvalues and the eigenvectors of the ML estimator R̂m

k

are given by [25]

λ̂k,j =

⎧⎪⎨
⎪⎩

λ̄k,j for j = 1, . . . , m,

1
N − m

N∑
�=m+1

λ̄k,� for j = m + 1, . . . , N,
(23)

v̂k,j = v̄k,j for j = 1, . . . , N. (24)

In other words, (23) and (24) imply that once the eigenval-
ues and the eigenvectors of the sample covariance matrix R̄k

are known, the ML estimate of the covariance matrix, R̂m
k can

be obtained as a matrix whose eigenvectors are the same as
those of R̄k, its largest m eigenvalues are the same as the m
largest eigenvalues of R̄k, and its smallest eigenvalue is equal
to the arithmetic mean of the smallest N − m eigenvalues of
R̄k. Therefore, eigenvalues and eigenvectors of R̄k can be
used to obtain the ML estimate of the correlation matrix, R̂m

k

as
R̂m

k = V̂kΛ̂kV̂T
k (25)

where

V̂k
Δ= [v̄k,1 . . . v̄k,N ] (26)

Λ̂k
Δ=

[
diag(λ̄k,1, . . . , λ̄k,m) 0m,N−m

0N−m,m σ̂2
m,kIN−m

]
(27)

where diag(λ̄k,1, . . . , λ̄k,m) is a diagonal matrix with the
diagonal entities given in the brackets,

σ̂2
m,k =

1
N − m

N∑
�=m+1

λ̄k,� (28)

is the ML estimate of the noise variance σ2
m, and 0i,j is an

i × j all-zero matrix.
Using (23) and (24), we formulate the PDL criterion for the

model of order m as
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PDLm(K) =

K∑
k=N+1

( m∑
j=1

log λ̄k−1,j + (N − m) log σ̂2
m,k−1

+ xT
k [R̂m

k−1]
−1xk

)
. (29)

The PDL criterion is computed for all 0 ≤ m ≤ N − 1 and
the minimum is used to estimate the number of signals.

The PDL cost can also be represented in an alternative way.
We subtract

∑K
k=N+1

∑N
j=1 log λ̄k−1,j from all models. Since

this term is independent of the selected model, it will not
affect the enumeration results. Then, the PDL cost function
for model m will be

PDLm(K) =
K∑

k=N+1

(
log

( (σ̂2
m,k−1)

N−m∏N
j=m+1 λ̄k−1,j

)

+ xT
k [R̂m

k−1]
−1xk

)
. (30)

Note that the first term in (29) is the logarithm of the ratio
of arithmetic average to the geometric average of the (N −
m) smallest eigenvalues of the sample correlation matrix. The
smallest value for this term will be obtained if all λ̄k−1,j , j =
m+1, . . . , N are identical. This case corresponds to having a
single eigenvalue with the multiplicity (N −m)—as expected
in a system with m signals. The minimum value of the first
term is always obtained for m = N − 1, and the second term
handles over-parameterization.

The MDL cost can also be obtained with a similar approach
[14]. The MDL for our problem is

MDLm(K) = K log
( (σ̂2

m,K)N−m∏N
j=m+1 λ̄K,j

)
+

m

2
(2N − m) log K

(31)
where the first term measures the multiplicity of the smallest
eigenvalue and the second term is the over-parameterization
factor.

The method proposed here for the ML estimation of Rm

uses the fact that the correlation matrix of the mth model
can be expressed as Rm = Qm + σ2

mI, where Qm is a
positive semi-definite matrix with rank m < N . The structure
of Qm is not used in this approach; the only information
utilized is the multiplicity of the smallest eigenvalue of Rm.
It is possible to show that this technique cannot properly
estimate the number of signals when Qm is rank-deficient
(signals are fully correlated). This case is not discussed in the
present paper since we assume that the DS-CDMA signals are
generated by independent users.

V. FIRST ORDER PERTURBATION

The PDL criterion, as formulated in (29), needs eigenvalue
decomposition and inversion of the correlation matrix that both
are computationally expensive. In this section, we provide
techniques that can reduce the computational complexity of
the PDL algorithm. We use the first order perturbation tech-
nique to devise a recursive structure for PDL.

Using the cumulative structure of the PDL algorithm, we
have

PDLm(k) = PDLm(k − 1) + �m,k (32)

where �m,k is the description length of model m at time instant
k and is given by

�m,k =
m∑

j=1

log λ̄k−1,j+(N−m) log σ̂2
m,k−1+xT

k [R̂m
k−1]

−1xk.

(33)
The estimate of M is then obtained from

M̂k = argmin
m

{
PDLm(k − 1) + �m,k

}
. (34)

The recursive structure of (34) allows us to design a trellis
representation for the PDL algorithm which can be very useful
in time-varying cases [26].

Note that [R̂m
k−1]

−1 can be represented by

[R̂m
k−1]

−1 =
N∑

j=1

1

λ̂k−1,j

v̂k−1,j v̂T
k−1,j . (35)

Then, using (23) and (24), �m,k can be written as

�m,k =
m∑

j=1

log λ̄k−1,j + (N − m) log σ̂2
m,k−1

+
m∑

j=1

|yj,k|2
λ̄k−1,j

+
1

σ̂2
m,k−1

N∑
j=m+1

|yj,k|2 (36)

where yj,k is the projection of the observation vector xk onto
v̄k−1,j , the jth eigenvector of the sample correlation matrix
R̄k−1, and is given by

yj,k
Δ= v̄T

k−1,jxk. (37)

In (36), the eigenvalue decomposition of the sample corre-
lation matrix is needed. A direct calculation of the eigenvalues
and eigenvectors is computationally expensive. Here, we use
the first order perturbation technique to obtain an estimate of
the eigenvalues and eigenvectors [27]. First order perturbation
provides a recursive procedure to estimate the eigenvalues and
the eigenvectors of the sample correlation matrix R̄k in terms
of the eigenvalues and the eigenvectors of R̄k−1.

In the first order perturbation, we assume that the eigenval-
ues and the eigenvectors of the sample correlation matrix at a
given time k can be found from the corresponding eigenvalues
and eigenvectors at time k − 1 with the following formulas

λ̄k,j = λ̄k−1,j + γk,jε, (38)

v̄k,j = v̄k−1,j + uk,jε, (39)

where γk,j and uk,j are the perturbation values for the
eignevalues and the eigenvectors, respectively. Using (38) and
(39) in the eigenvalue decomposition of the sample correlation
matrix gives

[R̄k−1 + ε(xkxT
k − R̄k−1)](v̄k−1,j + uk,jε) =

(λ̄k−1,j + γk,jε)(v̄k−1,j + uk,jε). (40)

Equating the terms of order ε at the left-hand-side and the
right-hand-side of (40) results in

(xkxT
k −R̄k−1)v̄k−1,j+R̄k−1uk,j = λ̄k−1,juk,j+γk,j v̄k−1,j .

(41)
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Multiplying both sides of (41) from left with v̄k−1,j and using
the orthonormality of the set {v̄k−1,j} gives

v̄T
k−1,j(xkxT

k − R̄k−1)v̄k−1,j = γk,j . (42)

Using the eigen-decomposition of the sample correlation ma-
trix and the orthonormality of the eigenvectors gives

|yj,k|2 = v̄T
k−1,jxkxT

k v̄k−1,j = λ̄k−1,j + γk,j . (43)

Therefore, the PDL cost can be represented by

�m,k =
m∑

j=1

log λ̄k−1,j + (N − m) log σ̂2
k−1

+
m∑

j=1

γk,j

λ̄k−1,j
+

1
σ̂2

k−1

N∑
j=m+1

γk,j (44)

where the constant terms (independent from the model order
m) have been removed, and γk,j is found from

γk,j = v̄T
k−1,jxkxT

k v̄k−1,j − λ̄k−1,j . (45)

Multiplying both sides of (41) from left with v̄T
k−1,i and

using the orthonormality of the set {v̄k−1,j} gives

v̄T
k−1,ixkxT

k v̄k−1,j = (λ̄k−1,j − λ̄k−1,i)v̄T
k−1,iuk,j . (46)

We also add a third equality using the orthonormality of the
eigenvectors,

v̄T
k−1,iv̄k−1,j = δij (47)

where δij is the Kronecker delta. Using the perturbation of
the eigenvectors and equating the terms with the order ε, we
have

uT
k,iv̄k−1,j + v̄T

k−1,iuk,j = 0. (48)

Let bij be defined as the projection of the vector uk,j onto
v̄T

k−1,i. Then, using (48) and (46), we have

bij = −bT
ji =

yi,kyT
j,k

λ̄k−1,j − λ̄k−1,i
. (49)

Such as in [27], we assume bii = 0, and to stabilize the
estimator for very close eigenvalues, we use the following
approximation

bij = −bT
ji =

yi,kyT
j,k

max{0.01λ̄1,j, λ̄k−1,j − λ̄k−1,i} . (50)

With these assumptions, the eigenvalue decomposition of
the sample correlation matrix can be summarized as

λ̄k,j = (1 − ε)λ̄k−1,j + εv̄T
k−1,jxkxT

k v̄k−1,j (51)

v̄k,j = v̄k−1,j + ε

N∑
i=1

bijv̄k−1,j (52)

bij =
v̄T

k−1,jxkxT
k v̄k−1,j

max{0.01λ̄1,j, λ̄k−1,j − λ̄k−1,i} . (53)

The PDL algorithm proceeds by solving (51)-(53) and using
the results in (44). It has been shown that the first order
perturbation can significantly reduce the computational cost of
the eigenvalue decomposition of the sample correlation matrix
[27]. More specifically, for fixed j, our algorithm needs 2N
multiplications to compute λ̄k,j in (51), N multiplications to
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Fig. 2. The eigenvalues of the sample correlation matrix averaged over 100
independent runs. The results correspond to 3 different SNRs.

obtain v̄k,j in (52), and N multiplications to calculate {bij}N
i=1

in (53). Taking into account that j ∈ {1, 2, . . . , N}, the total
computational complexity is O(N2) while the computational
complexity of eigenvalue decomposition and matrix inversion
is indeed O(N3).

VI. SIMULATION RESULTS

Consider a DS-CDMA system with 4 active signals using
the 31-bit Gold codes. The received signal is the superposition
of the signals of all users. Noise is assumed to be a white
Gaussian process. The signal-to-noise ratio (SNR) is defined
as the ratio of the power of any one of the signals to the power
of noise. Two of the four signals are assumed to have equal
SNRs ranging from -15 dB to -10 dB. The other two signals
have also equal SNRs, but their SNRs are assumed to be 3
dB higher than that of the first two users.

We performed 100 independent runs and found the eigen-
values of the sample correlation matrix in each run. Fig. 2
illustrates the eigenvalues of the sample correlation matrix av-
eraged over 100 runs for three different values of the weakest
source SNR. Note that the eigenvalues can be decomposed into
signal and noise eigenvalues. The large eigenvalues (in this
example the first 4 eigenvalues) are the signal eigenvalues. In
this example, the distance between the 4th and the 5th eigen-
values is larger than the distance between the other subsequent
eigenvalues. Therefore, a simple detector (denoted as EIG)
selects the number of signals by comparing the difference
between the consecutive eigenvalues. We will compare our
proposed detector to EIG in the sequel.

The MDL and PDL techniques were used to estimate the
number of signals. We have performed 100 independent runs
and presented the results in Table I. In this table, three
detectors have been compared. Each row in the table shows the
number of times that the detector selected the corresponding
model for the given SNR. Note that PDL outperforms the
MDL and EIG methods. As the SNR decreases, the signal and
noise eigenvalues approach each other and cannot be easily
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TABLE I
THE NUMBER OF DS-CDMA SIGNALS DETECTED BY THE EIG, MDL,

AND PDL ALGORITHMS FOR 100 INDEPENDENT RUNS.

SNR (dB)
m −15 −14 -13 -12 -11 -10
1 43 36 32 26 22 18
2 37 50 58 65 68 70

EIG 3 18 12 5 3 2 0
4 2 2 5 6 8 12
5 0 0 0 0 0 0
1 100 98 47 1 0 0
2 0 2 52 81 33 1

MDL 3 0 0 1 17 47 14
4 0 0 0 1 20 85
5 0 0 0 0 0 0
1 45 9 0 0 0 0
2 41 56 35 6 0 0

PDL 3 14 32 45 32 9 0
4 0 3 20 62 91 100
5 0 0 0 0 0 0
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Fig. 3. The probability of resolution versus SNR for the MDL and PDL
algorithms for 100 independent runs.

separated. In such cases, none of the methods can properly
estimate the true number of DS-CDMA signals.

The probability of resolution for this example has been
illustrated in Fig. 3. In this example, we have divided the
number of times that each algorithm properly estimated the
true number of sources to the total number of runs. As noticed,
PDL has 1 dB gain over MDL and almost 2 dB gain over EIG.

The recursive structure of the PDL algorithm can be very
useful in non-stationary environments. We study two cases
where the number of sources changes inside the window of
observation. We consider a window size of 300 samples with
SNR = 3dB for all users. In the first example, we assume that
the number of signals is 3 at the beginning of the window and
changes to 4 at k = 100. We compute the PDL cost for 20
independent runs and find the average of these runs. The PDL
cost is computed for all 1 ≤ k ≤ 300. At each time instant,
we estimate the number of signals by locating the minimum
PDL cost. The number of detected signals has been shown as
a function of time in Fig. 4. Note that the number of detected
signals changes from 3 to 4 in the vicinity of the 100th time
instant.
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Fig. 4. The estimated number of sources as a function of the observation
window. The true number of signals changes from 3 to 4 at k = 100.
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Fig. 5. The difference between the PDL terms of a model of order m and
the corresponding terms of the model of order m + 1. The true number of
signals changes from 3 to 4 at k = 100.

For this example, we have also computed PDLm(k) −
PDLm+1(k), the difference between the PDL costs of con-
secutive models for all time instants inside the window of
observation. The results have been illustrated in Fig. 5 for three
different values of m = 1, 2, 3. Note an abrupt change in the
slope of PDL3(k)− PDL4(k) in the vicinity of k = 100. The
change indicates that the underlying model which was used
for k = 1, . . . , 100 is not valid for the rest of the window.
This figure can be used to locate the change point inside the
window of observation. Since MDL operates on a batch of
data, it cannot locate the change.

We also study the case where the number of signals changes
from 4 to 3 at the 100th time instant. Such as before, the
PDL cost is averaged over 20 independent runs. The results
have been shown in Fig. 6 and Fig. 7. Note that the number
of signals has not been detected properly over the window
k = 101, . . . , 300. The reason for this malfunctioning is that
the number of prominent eigenvalues of the sample correlation

Authorized licensed use limited to: The University of Toronto. Downloaded on December 23, 2009 at 17:17 from IEEE Xplore.  Restrictions apply. 



1196 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 7, JULY 2008

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

k (time)

D
et

ec
te

d 
no

. o
f S

ig
na

ls

Fig. 6. The estimated number of sources as a function of the observation
window. The true number of signals changes from 4 to 3 at k = 100.
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Fig. 7. The difference between the PDL terms of a model of order m and
the corresponding terms of the model of order m + 1. The true number of
signals changes from 4 to 3 at k = 100.

matrix is 4 even after the actual number of signals is reduced
to 3. Fig. 7 shows the difference between the PDL costs
of consecutive model orders. Notice the abrupt change in
the slope of the curve PDL3(k) − PDL4(k). The change
indicates that the underlying model is not valid and the sample
correlation matrix should be reset and recomputed using the
recent data.

VII. SUMMARY

In this paper, we have introduced a new information theo-
retic method to estimate the number of signals in DS-CDMA
networks. Our approach is based on the predictive description
length (PDL). PDL is the length of a predictive code that
encodes the observed data. We use the code length as a metric
that describes the observation vector. The best model is the one
that gives the smallest code length. The PDL cost is computed
for all candidate models and the one with the smallest cost is
selected as the best-fit model.

The proposed method is based on the ML estimate of the
correlation matrix. To apply our technique, we do not need
the signature waveform of DS-CDMA signals and only use
the multiplicity of the smallest eigenvalue of the correlation
matrix. Therefore, this technique can be used in blind mul-
tiuser detection where the signature waveform of signals is not
known. The simulation results show that the PDL algorithm
has a lower detection threshold SNR than the MDL and EIG
methods.
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