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The Optimality of Beamforming in Uplink
Multiuser Wireless Systems
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Abstract—This paper considers the optimal uplink transmis-
sion strategy that achieves the sum-capacity in a multiuser multi-
antenna wireless system. Assuming an independent identically dis-
tributed block-fading model with transmitter channel side infor-
mation, beamforming for each remote user is shown to be neces-
sary for achieving sum-capacity when there is a large number of
users in the system. This result stands even in the case where each
user is equipped with a large number of transmit antennas, and
it can be readily extended to channels with intersymbol interfer-
ence if an orthogonal frequency division multiplexing modulation
is assumed. This result is obtained by deriving a rank bound on the
transmit covariance matrices, and it suggests that all users should
cooperate by each user using only a small portion of available di-
mensions. Based on the result, a suboptimal transmit scheme is
proposed for the situation where only partial channel side infor-
mation is available at each transmitter. Simulations show that the
suboptimal scheme is not only able to achieve a sum rate very close
to the capacity, but also insensitive to channel estimation error.

Index Terms—Beamforming, multiple antennas, multiple-access
channels, orthogonal frequency division multiplexing (OFDM),
sum capacity.

I. INTRODUCTION

ONE of the most important progress in recent wireless
system research is the realization of the profound benefit

of multiple antennas for achieving high spectral efficiencies.
This is apparent both from theoretic studies such as [1], in
which the ergodic capacity of an independent identically
distributed (i.i.d.) fading channel is shown to increase linearly
with the number of transmit and receive antennas, and from
system proposals such as [2], in which a linear-complexity
decoder is shown to be capable of achieving data rates close
to the capacity. The use of multiple antennas, especially at the
transmitter, also opens up the area of optimal transmit signal
design. Depending on the availability of channel knowledge at
the transmitter, many different schemes of utilizing multiple
antennas at the transmitter have been investigated in the
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Fig. 1. Beamforming.

literature. For single-user point-to-point systems, space-time
coding [3] has been shown to be capable of providing spatial
diversity when no channel information is available at the
transmitter. When perfect channel knowledge is available, a
transmission scheme based on multicarrier modulation and
spatial singular-value decomposition (SVD) has been shown
to achieve a rate close to the channel capacity [4]. When the
channel is unknown but its statistics (such as the covariance
information) is available, the conditions for the optimality of
beamforming has been derived in [10]. For multiuser cellular
systems, the idea of stream control has been examined in [7],
in which the authors conclude that not all space dimensions
should be utilized by every user if the users mutually interfere.
In [8], the use of multiple transmit antennas to artificially
induce large and fast channel fluctuations has been considered
for a system with no transmitter channel knowledge, and it has
been shown to achieve a high level of multiuser diversity. In this
paper, we focus on the uplink of a multiuser wireless system
(i.e., multiple-access channel [5]) in which the transmitters
have (at least partial) channel side information. The goal is
to identify an asymptotically optimal transmission strategy
when a large number of users simultaneously transmit to a
base-station. Interestingly and perhaps surprisingly, the optimal
capacity-achieving transmission scheme is beamforming.

Beamforming is a simple transmission scheme: A single
coded data stream is weighted by for transmis-
sion at the th antenna at the time index . is as-
sumed to be i.i.d. with unit power. The vector signal

is
transmitted simultaneously from the transmit an-
tennas (Fig. 1). Since the weighting vector is fixed,
the rank of the transmit signal covariance matrix,
rank rank rank ,
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Fig. 2. K-user multiple-access channel.

is one. On the other hand, if independent data streams
are simultaneously transmitted

with linearly independent weightings
(i.e., ), the rank of the transmit
covariance matrix, rank rank ,
is , and is larger than one. To distinguish this
method from beamforming, we call it space-multiplexing [9]
in this paper. More precisely, space-multiplexing refers to the
situation in which rank . Between these two
transmission methods, beamforming is preferred in terms of
complexity. Since only one data stream is used, coding and
transmission can be simply done as in a single antenna system
[6]. In practice, beamforming is widely used in multiantenna
applications due to the easiness of adopting multiple antennas
to conventional single antenna transmission systems.

However, for a single-user multiantenna system, beam-
forming usually cannot achieve a data rate close to the capacity,
because it utilizes only one space dimension. The data rate
loss from the capacity can be substantial in a rich-scattering
environment, and space-multiplexing must be used to prevent
such a large loss [1], [2]. However, the same conclusion does
not hold in multiuser systems.

Consider a multiple-access channel, where users each
with transmit antennas try to communicate with a common
receiver with receive antennas (Fig. 2). Unlike in a
single-user situation, independent data streams are received
at the common receiver even if only one data stream is trans-
mitted from each user. Therefore, when is large, all the
space dimensions can be utilized even with each user using
beamforming. This suggests that beamforming at the remote
terminals may be sufficient for achieving a high data rate in
the uplink environment. The main goal of this paper is to make
this intuition precise by showing that beamforming is not only
sufficient but also necessary for achieving the sum capacity
of a multiple-access channel, provided that the number of
users is much larger than the number of receive antennas.
This result implies that sophisticated space-multiplexing at
the remote terminals, which requires multiple space codes per
user, is not needed for achieving a high spectral efficiency in
a multiuser uplink system, because combining beamforming
with a conventional one-dimensional coding is optimal. This

conclusion is derived under the assumptions that the channels
are slowly fading and, thus, can be considered fixed for a block
of transmission [11], [12], and that the channel coefficients are
known (at least partially) at the transmitters.

The rest of the paper is organized as follows. Section II
presents a mathematical formulation of the problem for the
flat-fading case [intersymbol interference (ISI)-free], and the
main result is proved in Section III. For the frequency-selective
fading (ISI) case, the use of orthogonal frequency division
multiplexing (OFDM) is assumed for the sake of simplicity
and clarity of the result. With OFDM, each user’s channel
can be modeled as independent flat fading channels, and a
similar result as in an ISI-free channel is derived in Section IV.
In both flat and frequency-selective fading channels, channel
coefficients are assumed to be independently fading with
an i.i.d. Gaussian distribution. In Section V, a suboptimal
transmission scheme based on partial channel information,
which is available in a time division duplex (TDD) system, is
introduced. The suboptimal scheme is shown to achieve a data
rate close to the sum capacity and to be only mildly sensitive to
channel estimation error.

II. PROBLEM FORMULATION FOR ISI-FREE CHANNELS

Consider a -user synchronous multiple-access channel
where an average power constraint is imposed on user
in each block of transmission ( ). Full channel
information is assumed to be available at all transmitters and
the receiver for the analytical derivation. The case of partial
channel information and the effect of channel estimation error
are considered in Section V. The discrete-time base-band
equivalent model is as follows:

(1)

where is the received signal, is the
transmit signal of user , is the Gaussian noise at
the receiver, and is the channel of user . Let

be the noise covariance matrix and ,
be the transmit covariance matrices. Then, the sum

rate maximization problem with variables can be for-
mulated as follow under the average power constraints [15]

maximize

subject to for

for (2)

Note that denotes the trace of matrix , and
means that matrix is nonnegative definite. This paper con-
siders an i.i.d. Gaussian channel model, in which elements of

are i.i.d. complex Gaussian random variables with mean zero
and variance 0.5 in each of real and imaginary dimensions.

The previous formulation does not pose any restriction on the
rank of . If the solution of the above optimization problem is
such that rank , then can be represented by a vector,
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i.e., , and the transmission can be done by beam-
forming in the direction. In this case, only a single coded
data stream per user is needed to achieve the sum capacity, and
a conventional single-antenna based code can be used. However,
if the optimal solution is such that , multiple data
streams per user are needed for space-multiplexing, and a mul-
tidimensional space-time code with a higher encoding and de-
coding complexity would be necessary.

III. OPTIMALITY OF BEAM-FORMING IN ISI-FREE CHANNELS

This section shows the optimality of beamforming for
ISI-free channels.

Theorem 1: Consider a multiantenna Gaussian multiple-ac-
cess channel with no ISI. If the number of users is much
larger than the number of receive antennas , then the sum
capacity is achieved only if almost all users are using beam-
forming. More precisely, the optimal transmit strategy is such
that at most users can adopt space-multiplexing.

Proof: The sum rate maximization problem in (2)
is a convex optimization problem over the set of nonneg-
ative definite covariance matrices [14], [15]. Therefore,
Karush–Kuhn–Tucker (KKT) conditions are necessary and
sufficient for optimality [13]. The KKT conditions are the
following (see Appendix A):

(3)

(4)

(5)

(6)

where is the dual variable related to the power constraint of
user and is the ( ) nonnegative definite matrix related
to the non-negative constraint on . These equations need to
be satisfied for all . Let rank . The
theorem will be proved by deriving an upper bound on .

Since and are covariance matrices, they are Her-
mitian. In addition, is Hermitian due to (3). Therefore,
(3) imposes at most scalar equations for each
, corresponding to the diagonal and upper triangular parts of

matrices. The equations corresponding to the lower triangular
parts are automatically satisfied as long as the equations cor-
responding to the upper triangular parts are satisfied. Since the
elements of are drawn from an i.i.d. Gaussian distribution,
all equations are independent. With users with
independent channels, a total of independent
equations need to be satisfied to achieve (3) for all users.

Now, the number of variables in the KKT conditions is
counted. Define . Then, from (3)

(7)

Note that is common for all ’s. Since is an ( )
Hermitian matrix, it has at most degrees of
freedom. Also, from dual variables related to the

power constraints, degrees of freedom are obtained.
Furthermore, the degrees of freedom in can be shown to

be in the following way:
Since the rank of is , the maximum rank of is
from (5) and Lemma 1 and 2 in Appendix B. Then, the result
directly follows from Lemma 3 in Appendix B.

For the KKT conditions in (3)–(6) to have a valid solution,
the total number of degrees of freedom needs to be equal to or
larger than the number of independent equations. Therefore, the
following inequality is required:

(8)

Furthermore, since , the fol-
lowing can be concluded:

(9)

On the other hand, it is not difficult to see that .
First, note that , because any unused power can be
used to strictly increase the sum rate. Therefore, . By
summing up over all users, is obtained. Now,

from (9) and , the following bound is obtained:

(10)

for (11)

If , (10) and (11) imply for almost all users.
Clearly, the maximum number of users allowed to have
is .

In a single-user multiantenna system, capacity can be
achieved from an SVD of the matrix channel followed by a
water-filling on the singular values. This generally results in a
transmit covariance matrix whose rank is larger than one. In
contrast to the single-user case, Theorem 1 states that almost all
users need to transmit rank one signals (beamforming) in order
to achieve the sum capacity in a multiuser uplink transmission
environment. This holds even when is large. Thus, while
the rank of each user’s transmit covariance matrix can
be up to , it is necessary for almost all users to transmit
rank-one signals to achieve the sum capacity. In such case,
spatial diversity is fully utilized at the multiuser level and not
at the individual user level.

It can be seen from (10) and (11) that each user should use at
least one space dimension, and the extra dimen-
sions can be optionally used by any set of users. For instance,
one user could be using the whole extra dimensions, two users
could be using half of extra dimensions each, or the extra di-
mensions might not be used by any user at all. The distribution
of the use of the extra space dimensions depends on the channel
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Fig. 3. Sum capacity as a function of log N (K = 15, N = 1, 2, 3, and
average SNR of 10 dB per user).

realization, and the optimal choice could be anything as long as
(8), (10), and (11) are satisfied.

The assumption of independent channels is crucial for
the proof of Theorem 1. As an example, if all users have
exactly the same channel, for all , then the total
number of equations that needs to be satisfied is fewer than

, and the conclusion will not follow.1

However, Theorem 1 does hold for any realistic channel model
that results in independent equations. In
particular, Theorem 1 holds for the i.i.d. Gaussian channel
model.

Theorem 1 holds asymptotically as . However, even
for a relatively low value of , numerical simulation indi-
cates that beamforming is near optimal. As an example, a Monte
Carlo simulation shows that when , , ,

, and SNR dB for all users, the probability
that is approximately 0.5 .

If is close to or smaller than , many users need to have
transmit covariance matrices whose ranks are larger than one.
However, (8) and (10) still provide bounds on the sum rank,
from which the value of can be predicted. A similar argument
for ISI channels with is used in Section V.

In Fig. 3, the average sum capacity of a flat-fading channel
is plotted as a function of for , , 2, 3,

, SNR dB per user, and 100 random channel
realizations. As , beamforming is optimal for almost
all users. In this case, the sum capacity increases linearly with

. This can be explained as follows. Consider the case
with . With beamforming at each transmitter, doubling
the number of transmit antennas results in a 3-dB gain in the re-
ceived signal SNR on the average, because the transmitter can
transmit more power in the channel direction. A 3-dB power
gain is equivalent to one additional bit at high SNR, and thus,
doubling gives a capacity gain of 1 bps/Hz. For ,

1As long as K � N , there exists a resource allocation scheme achieving
sum capacity with almost all users beamforming. In other words, the optimal
power allocation scheme is not unique for H = H , and beamforming is one
way to achieve the sum capacity.

the effect of doubling is not so obvious because the power
increase corresponding to the by matrix channel is com-
plicated2 . From simulations, the capacity gain per doubling
is observed to be linear with when both and are in a
reasonable range. In Fig. 3, the average gains are 1 for ,
1.78 for , and 2.42 b/doubling for . In general, it
is observed that an exponential increase of is required for a
linear capacity increase when .

IV. RANK BOUND FOR OFDM SYSTEMS

In this section, an extension of Theorem 1 to ISI channels is
considered assuming OFDM modulation.

A. Extension to OFDM

An OFDM system decomposes the ISI channel into inde-
pendent ISI-free subchannels. In the rest of this section, all users
are assumed to be synchronized, and channel coefficients of dif-
ferent subchannels are assumed to be independent. If a power
spectrum mask constraint applies to each user, the problem can
be formulated exactly same as in the ISI-free case for each sub-
channel, and Theorem 1 directly applies to each subchannel. In
this section, a more general power constraint, where each user’s
total transmit power over all subchannels is limited, is consid-
ered. Using superscripts to denote subchannel indexes, the th
subchannel can be modeled as follows:

(12)

Let and represent the noise covariance matrix in sub-
channel and the transmit-covariance matrix of user in
subchannel , respectively. Then, the sum rate maximization
problem for the OFDM system can be formulated as the
following:

maximize

subject to for

for and

(13)

The KKT conditions for this problem are (see Appendix A)

(14)

(15)

(16)

(17)

2Lower and upper bounds on expectation can be derived from [16] by in-
vestigating the distributions of maximum and minimum eigenvalues of Wishart
matrices.
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TABLE I
MULTIPLE-ANTENNA MULTIPLE-ACCESS CHANNELS. GAUSSIAN CHANNELS WITHK = 10, N = 3, N = 3, Z = I , SNR = p =M = 10 dB AND M = 20

ARE ASSUMED. THE ITERATIVE WATER-FILLING ALGORITHM IN [15] WAS USED TO FIND THE OPTIMAL SPECTRUM, AND ONE MILLION SIMULATIONS WERE

PERFORMED TO FIND THE EMPIRICAL DISTRIBUTIONS. (a) A TYPICAL RANK STRUCTURE OF SUM CAPACITY ACHIEVING SPECTRUM. (b) EMPIRICAL PROBABILITY

DISTRIBUTION OF r . (c) EMPIRICAL PROBABILITY DISTRIBUTION OF � r .

(a)

(b)

(c)

These conditions need to be satisfied for all users
( ) and all subchannels ( ) in
order to achieve the sum capacity. By defining
and using these KKT conditions in a similar way as in the proof
of Theorem 1, the following Theorem 2 can be proved.

Theorem 2: In an OFDM-based multiantenna Gaussian mul-
tiple-access channel, where each user has independent sub-
channels, the sum capacity is achieved only if the following con-
dition is satisfied in each subchannel :

(18)

where are auxiliary variables that satisfy and
.

Proof: Considering each subchannel separately, the goal
is to derive an inequality similar to (10). From KKT condi-
tions (14)–(17), all the primal and dual variables except for
can be decoupled for each subchannel . Since remain as
global variables over all subchannels, it is convenient to intro-
duce auxiliary variables to represent the number of degrees
of freedom used in each subchannel . There are a total of
degrees of freedom stemming from , so .
Now, for each subchannel , (18) can be proved by following the
same derivations as in (8) and (9) with replaced by .

Unlike the frequency-nonselective channels considered in the
previous section, in (9) is distributed over independent
subchannels in (18) via auxiliary variables . Since each

user’s power constraint is over its all subchannels, a total of
dual variables exists in the optimization problem, and the
variables need to be shared among subchannels. Also,
does not need to hold anymore, because user does not need to
transmit in every subchannel. [Equation (15) can be satisfied
as long as user transmits nonzero power in at least one sub-
channel.] Therefore, the optimality of beamforming cannot be
directly concluded for the OFDM system. However, the upper
bound on the sum rank suggests a similar beamforming result
as in the ISI-free case.

From (18), at most space dimensions can
be used in each subchannel . Since the objective is to maximize
the sum rate, the space dimensions with large channel gains
are more likely to be selected among the
space dimensions. This is especially true when is large as the
dimension selection process becomes more competitive. Now,
assume that the spatial channel gains follow the same prob-
ability distribution for every user. If the space-channel gains
of all users are considered together, it is unlikely for multiple
dimensions of a single user’s space dimensions to have large
enough gains and appropriate directions to be selected among
the dimensions, because channels of all
users have the same distribution. Therefore, when is large,
the optimal solution is likely to be many users beamforming
rather than a few users space-multiplexing. This can be con-
firmed from simulations. Table I(a) shows an example of a typ-
ical optimal rank structure. In each subchannel, from to

users have the best space dimensions to transmit,
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and they transmit rank-one signals. In Table I(b), the empirical
distribution of is summarized. Note that the probability of a
user space-multiplexing for a given subchannel ( )
is around 0.39%. In Table I(c), the empirical distribution of

is summarized. In each subchannel, about 4 6 data
streams are used with about 90% probability.

In the extreme case where the number of subchannels, ,
goes to infinity, the effect of auxiliary variables be-
comes negligible. In [17], assuming infinite , where repre-
sents the number of fading states of a flat-fading multiple-access
channel, it was shown that at most users can si-
multaneously transmit in each fading state.

B. Single-Antenna Systems

The general rank bound for a multiple-antenna system can
now be specialized to the single-antenna case ( ).
By replacing with 1 and by noting that is either 0 or 1 for
single-antenna cases, (18) becomes the following:

(19)

(20)

Therefore, it can be seen that at most subchannels can have
, which means that at most subchannels can be

shared by two or more users in a single-antenna system. In fact,
the bound can be reduced to for the single-antenna case.

Theorem 3: For a single-antenna multiple-access channel
with users each with independent subchannels, the
optimal transmit strategy that achieves the sum capacity is such
that at most subchannels can be shared by two or more
users. In the limit, the probability of a subchannel being shared
by two or more users goes to zero as the number of subchannels

goes to infinity.
Proof: For a single antenna multiple access channel,

where all of users and the base station have only one antenna
each, the KKT conditions (14)–(17) can be written as the
following:

(21)

(22)

(23)

(24)

Note that the lower case letters are used for representing scalars.
Because of (23), if . Therefore

if (25)

If there are users (with indices ) with pos-
itive transmit power in subchannel , the following equations
need to hold in order to satisfy (25):

(26)

With probability one, (26) forms independent equality
equations since are random realizations
from an i.i.d. Gaussian distribution.

Now, the total number of independent equations needed to
satisfy the KKT conditions (21)–(24) for all subchannels is

. Note that “ ” operation is needed
to prevent a subchannel, that is not used by any user, from being
negatively counted. Since only variables exist for sat-
isfying (25) for all , the following inequality can be de-
rived:

However, if , the solution for
is a zero vector which does not allow (25) from having

a meaningful solution. Therefore

(27)

From (27), it is clear that the number of subchannels with
is at most .
The probability of a subchannel being shared by 2 or more

users is upper bounded by , because at most
subchannels out of subchannels can be shared by two or more
users. Therefore, assuming a fixed , the probability converges
to 0 as .

In the extreme case of , the sum capacity achieving
strategy is an frequency division multiple access (FDMA)-like
power allocation. This was derived by Cheng and Verdú in [18],
and a similar result was derived by Knopp and Humblet for
fading channels in [19]. Theorem 3 is a more general result in
the sense that it states the case of as well as the case of

.
Recently, orthogonal frequency division multiple access

(OFDMA) has received a significant amount of attention due
to its inherent ability to utilize multiuser diversity [22], [23].
In an OFDMA system, each subchannel is allocated to a single
user whose channel gain for the subchannel is sufficiently
large, and the overall spectral efficiency is optimized by
carefully assigning subchannels. Theorem 3 implies that such
an orthogonal allocation of subchannels can achieve a sum rate
that is very close to the sum capacity as .

An example of optimal power allocation that achieves the sum
capacity over a single-antenna multiple-access channel is shown
in Table II for users each with a single transmit antenna,
a base station with a single receive antenna, inde-
pendent subchannels with i.i.d. Gaussian distributed channels,
and an average SNR dB per user (SNR ). In



92 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 1, JANUARY 2004

TABLE II
SINGLE-ANTENNA MULTIPLE-ACCESS CHANNELS. GAUSSIAN CHANNELS WITH K = 5, N = 1, N = 1, Z = 1 AND SNR = p =M = 10 dB ARE

ASSUMED. (a) A TYPICAL POWER ALLOCATION ACHIEVING SUM CAPACITY FOR M = 20. EACH SUBCHANNEL, EXCEPT FOR THREE

SUBCHANNELS, IS EXCLUSIVELY USED BY A SINGLE USER. (b) EMPIRICAL PROBABILITY DISTRIBUTION OF � r . AS THE NUMBER

OF SUBCHANNELS, M , GOES TO1, Pr� r = 1 CONVERGES TO 1.

(a)

(b)

Table II(a), only three subchannels are shared which is consis-
tent with Theorem 3. It can also be seen from Table II(b) that the
probability of a subchannel being shared by two or more users,

, goes to 0 as .

V. SUBOPTIMAL TRANSMIT ALGORITHM

FOR TDD SYSTEMS

In previous sections, perfect channel information was
assumed to be available for all users. However, this may not
be true in real systems. In this section, a situation where only
partial channel information is available is considered as a toy
problem.

Consider a TDD system. In a TDD system, the uplink
channel is strongly correlated with the downlink channel, and
the channel estimation for transmission can be reliably done
while receiving signals. Thus, assuming perfect channel corre-
lation between uplink and downlink, can be assumed to be
available to user . However, ,
are not known to user because user does not have access
to other users’ received signals. For this system, a simple
suboptimal transmit algorithm based on the beamforming
result is considered in Section V-A. Then, the effect of channel
estimation error is considered in Section V-B.

A. Algorithm and Simulation Results

In this TDD scenario, only each user’s own channel informa-
tion is available at each user’s transmitter. The receiver is as-
sumed to have access to all channel information. From previous
sections, it is clear that the ranks of transmit covariances should

be upper bounded by a function of , , and . Motivated by
the upper bound result on , the following simple sub-
optimal algorithm is proposed for the allocation of power and
dimension.

Algorithm 1: Suboptimal transmit algorithm: All users inde-
pendently obey the following transmission scheme. Consider
SVD of subchannels of user . Define .
Then, singular values and corresponding right and left
singular vectors (beam vectors) are obtained from the SVD of
each subchannel. Find the largest singular values from the set
of singular values. Transmit streams (beams) each
with power to the right singular vector directions cor-
responding to the singular values.

Even though each user does not have access to other users’
channel information, cooperation among users is achieved by
controlling in Algorithm 1. Instead of each user greedily
trying to use most of dimensions, Algorithm 1 suggests each
user use only dimensions out of available dimen-
sions. Based on the results in the last section, could be chosen
somewhere between and for
the highest data rates. Note that Algorithm 1 is considered only
to understand an achievable data rate. In practice, data rate con-
trol, coding, and multiuser decoding need to be carefully de-
signed, and performance loss can be incurred by an imperfect
implementation.

Monte Carlo simulation results of sum rate as a function of
are shown in Fig. 4. , , and are fixed at 5, 5, and 10 for
both (a) and (b), and channels are randomly generated from an
i.i.d. Gaussian distribution. The number of users is 10 in (a)
and 2 in (b). For comparison purpose, the sum capacity and the
sum rate that can be achieved with an equal power allocation
( ) are plotted together. As discussed be-
fore, the sum capacity can be achieved only if each transmitter
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(a)

(b)

Fig. 4. Sum rates achievable with Algorithm 1 (N = 5,N = 5,M = 10,
and SNR = 10 dB). (a) K = 10 (b) K = 2.

has access to all user channel information, and it is the max-
imum achievable data rate of a multiple-access channel. On the
other hand, equal power allocation does not require any channel
information at any transmitter, and it can be shown to be the op-
timal power allocation scheme when transmitters do not have
access to any channel information [21]. Note that the amount
of channel information needed for Algorithm 1 is in between
these two extreme cases. As can be seen from Fig. 4, a sum rate
close to the sum capacity can be achieved by Algorithm 1 as
long as is chosen appropriately. For [Fig. 4(a)], se-
lecting results in a sum rate that is close to the sum
capacity. For [Fig. 4(b)], selecting results in a
sum rate close to the sum capacity. The analytical derivation of
the optimal , however, is a very difficult problem, because the
optimal spectrum can be found only through a numerical proce-
dure. Therefore, an extensive simulation is required to find the
optimal for a given system and channel statistics. In general,
a larger leads to a smaller optimal .

is a measure of transmission complexity. In general,
smaller means lower complexity, because is the number
of beams that need to be transmitted from each user. Therefore,

data streams are required for each user, and smaller is pre-
ferred to reduce complexity. However, a choice of much
smaller than makes many of the dimensions
unused, and a high data rate can no longer be achieved. Note
that an equal power allocation means , and it has the
maximum possible encoding complexity.

B. Effect of Channel Estimation Error

Even for a TDD system, the estimation might not be accu-
rate over a block of transmission due to the thermal noise or
the channel variation before the completion of a block trans-
mission. Define the true channel of user ’s th subchannel as

. Each element of is drawn from an i.i.d. Gaussian
distribution with mean zero and unit variance. Now, define the
estimated channel information at user ’s transmitter as .
Then, the channel estimation error can be calculated as

(28)

Since transmitter assumes to be the true channel, it will
find the best beams based on . As , which is
assumed to be independent to the true channel, becomes larger,
the beams will be more dependent on . Hence, the
beams will be selected more randomly by Algorithm 1.

Simulation results on the effect of channel estimation error
is plotted in Fig. 5. For simulation purpose, each element of

is assumed to have an i.i.d. Gaussian distribution with
mean zero and variance . For the case in Fig. 5, the sum
rate is insensitive to the estimation error unless is larger
than 10 dB. Even at dB, the degradation is mild.
This can be explained as follows. Even though the variance
of estimation error might not be negligible with respect to
the average channel gain, there is a good chance of the error
being much smaller than the largest channel gains. Since
the suboptimal algorithm utilizes only the largest channel
gains, it does not suffer much from the estimation error. In the
extreme, if is very large and is very small, the suboptimal
algorithm can be very robust to the estimation error, and even
rough channel state information can be very useful for achieving
high spectral efficiency.

In Fig. 5, channel estimation error is assumed at the transmit-
ters, but not at the receiver. It is well known that the performance
degradation can be significant even with small channel esti-
mation error at the receiver: The optimal receiver needs to be
able to decode jointly or successively multiple independent
codes, and a slight error on channel information can cause a
disaster for decoding. As can be seen from Fig. 5, however, the
channel estimation error at the transmitters causes a mild loss,
and even noisy channel information can be utilized to acquire a
reasonable capacity and complexity gain. In summary, Figs. 4
and 5 suggest that the loss of other users’ channel information
may not cause much loss in capacity (Section V-A) and that
the loss of accuracy on each user’s own channel information
may not cause much loss (Section V-B) either.
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(a)

(b)

Fig. 5. Sum rates achievable with Algorithm 1 in the presence of channel
estimation error (N = 5,N = 5,M = 10, and SNR = 10 dB). (a)K = 10,
R is fixed at 10. (b) K = 2, R is fixed at 30.

VI. CONCLUSION

This paper investigates the asymptotic optimality of beam-
forming in synchronous multiantenna Gaussian multiple-access
channels. The optimality of beamforming for ISI-free channels
is derived assuming a large number of users compared to the
number of receive antennas ( ). This implies that only a
logarithmic capacity gain can be achieved with a linear increase
in the number of transmit antennas when is large. For ISI
channels, a similar result on the bound of sum rank is obtained
assuming an OFDM modulation. As a by-product, Cheng and
Verdú’s result [18] and Knopp and Humblet’s result [19] are
extended for single antenna cases.

The optimality of beamforming is interesting mainly for two
reasons. First, beamforming can be realized with minimum

complexity, and it allows a simple combination of multiple
antennas with the conventional single-antenna transmit sys-
tems. Second, even though beamforming is in general far from
being optimal in most single-user multiantenna systems, it is
asymptotically optimal in multiple-access channels. In this
case, the cooperation among users, by means of each user not
using too many dimensions, is the key for achieving the sum
capacity.

Based on the beamforming and the rank results, a simple sub-
optimal transmit algorithm is considered for a situation where
each user’s transmitter has only its own channel information
available. The suboptimal scheme achieves a sum rate that is
very close to the sum capacity. Effect of channel estimation error
is shown to be small through Monte Carlo simulations, which
indicates that even moderate amount of channel information can
be very useful for achieving a high data rate.

APPENDIX A
KKT CONDITIONS FOR PARALLEL GAUSSIAN

MULTIPLE-ACCESS CHANNELS

In this Appendix, the KKT conditions of the maximization
problem (13) are shown to be (14)–(17). KKT conditions (3)–(6)
for ISI-free channels can then be obtained by setting .
A similar proof can be found from [15] for ISI-free case. First,
(13) can be reformulated into the following equivalent form:

minimize (29)

subject to for (30)

for (31)

for and (32)

The was replaced by ( ) without affecting the
optimal solution. In addition, the constant
for the objective is omitted for simplicity. Variables are
and . For each of the constraints in (30)–(32), associate
dual variables , , and . Note that the first and the
third constraints are matrix inequalities, so the dual variables

and are matrices and the inner product is the trace
of the matrix product. The power constraint is a constraint on
real numbers, so its associated dual variable is real. The
Lagrangian of the optimization problem is (33) (shown at the
bottom of the next page), where the fact
is used. The objective of the dual problem is

(34)

By differentiating with respect to , we have

for and
(35)

Further, by differentiating with respect to , we have

(36)
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which implies

(37)

Therefore

where is the number of receive antennas. The dual problem
of (13) is then

maximize

(38)

subject to for

and (39)

for (40)

Note that the only constraints on are nonnegative
semi-definite constraints, so (35) is equivalent to the inequality
in (38). Since the primal problem is convex, the dual problem
achieves a maximum at the minimum value of the primal
objective.

The KKT conditions are sufficient and necessary for
achieving the optimality, because the primal constraints satisfy
the Slater’s condition [13]. The KKT conditions include the
stationarity conditions on the Lagrangian (35) and (37), as well
as the complementary slackness conditions

for

(41)

for

and (42)

for

(43)

Consider the original optimization problem. Observe that at
the optimum, we must have , and

, (otherwise, sum rate can be
increased). So, only the last complementary slackness condi-
tion (43) is useful. Since the stationary and complementary
slackness conditions, together with primal and dual constraints,
are necessary and sufficient, the optimization problem can be

transformed into the problem of finding primal variables ,
, and dual variables , , that satisfy

for and (44)

for (45)

for and (46)

for and (47)

APPENDIX B
LEMMAS

The following lemmas hold for ( ) Hermitian non-negative
matrices and .

Lemma 1: If , then .
Proof: Since and are Hermitian non-negative defi-

nite, there exist and such that , . Then

using . However, is non-neg-
ative definite, and means is a zero
matrix. Therefore, is a zero matrix.

Lemma 2: If and rank , then maximum rank
of is .

Proof: Let the rank of be . Then output of spans
-dimensional space for . Since input null space

of has dimension , there exists a vector such that
for . This contradicts . Therefore,
.

Lemma 3: If rank , maximum number of inde-
pendent variables in is .

Proof: Consider a singular value decomposition of ,
. is a diagonal matrix with zeros on the last

diagonals. and are unitary matrices, and since
is Hermitian. Let . Then, . Note

that the last columns of are zeros. Since the first
columns of are orthogonal, the first columns of
are also orthogonal. Because of the orthogonality between the
second and the first column, at least one element of second
column needs to be dependent on first column. Because of the
orthogonality between the third and the first two columns, at
least two elements of third column need to be dependent on

(33)
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first two columns. In general, for th column, at least
elements need to be dependent on first columns to have
orthogonality between th column and the first columns.
Therefore, maximum number of independent variables in is

.
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