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Abstract—This correspondence proposes an efficient numerical algo-
rithm to compute the optimal input distribution that maximizes the sum
capacity of a Gaussian multiple-access channel with vector inputs and
a vector output. The numerical algorithm has an iterative water-filling
interpretation. The algorithm converges from any starting point, and
it reaches within 1/2 nats per user per output dimension from the sum
capacity after just one iteration. The characterization of sum capacity also
allows an upper bound and a lower bound for the entire capacity region to
be derived.

Index Terms—Channel capacity, convex optimization, Gaussian chan-
nels, multiuser channels,multiple-access channels, multiple-access commu-
nications, multiple-antenna systems, optimization methods, power control,
water-filling.

I. INTRODUCTION

A communication situation where multiple uncoordinated transmit-
ters send independent information to a common receiver is referred
to as a multiple-access channel. Fig. 1 illustrates a two-user mul-
tiple-access channel, whereX1 andX2 are uncoordinated transmitters
encoding independent messagesW1 andW2, respectively, and the re-
ceiver is responsible for decoding both messages at the same time. An
(n; 2nR ; 2nR ) codebook for a multiple-access channel consists of
encoding functions Xn

1 (W1), Xn

2 (W2), where W1 2 f1; . . . ; 2
nR g

andW2 2 f1; . . . ; 2
nR g, and decoding functions Ŵ1(Y

n), Ŵ2(Y
n).

An error occurs when W1 6= Ŵ1 or W2 6= Ŵ2. A rate pair (R1; R2)

is achievable if there exists a sequence of (n; 2nR ; 2nR ) codebooks
for which the average probability of error Pn

e ! 0 as n ! 1.
The capacity region of a multiple-access channel is the set of all
achievable rate pairs.

The capacity region for the multiple-access channel has the fol-
lowing well-known single-letter characterization [1], [2]. Consider
a discrete-time memoryless multiple-access channel with a channel
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transition probability p(yjx1; x2). For each fixed input distribution
p1(x1)p2(x2), the following pentagon rate region is achievable:

R1 � I(X1;Y jX2)

R2 � I(X2;Y jX1)

R1 +R2 � I(X1;X2;Y ) (1)

where the mutual information expressions are computed with respect
to the joint distribution p(yjx1; x2)p1(x1)p2(x2). When the input dis-
tribution is not fixed, but constrained in some ways, the capacity re-
gion is the convex hull of the union of all capacity pentagons whose
corresponding input distributions satisfy the input constraint after the
convex hull operation [3], [4]. Since the input signals in a multiple-ac-
cess channel are independent, the input distribution must take a product
form p1(x1)p2(x2). This product constraint is not a convex constraint,
so the problem of finding the optimal input distribution for a mul-
tiple-access channel is in general nontrivial [5]. The aim of this corre-
spondence is to provide a numerical solution to this input optimization
problem for a particular type of multiple-access channel: the Gaussian
vector multiple-access channel.

A Gaussian multiple-access channel refers to a multiple-access
channel in which the law of the channel transition probability
p(yjx1; x2) is Gaussian. When a Gaussian multiple-access channel is
memoryless and when X1 and X2 are scalars, the input optimization
problem has a simple solution. Let the power constraints on X1 and
X2 be P1 and P2, respectively. Gaussian independent distributions
X1 � N (0; P1) and X2 � N (0; P2) are optimal for every boundary
point of the capacity region. In fact, for scalar Gaussian channels,
the union and the convex hull operations are superfluous, and the
capacity region is just a simple pentagon [6]. However, the input
optimization problem becomes more difficult when the Gaussian
multiple-access channel has vector inputs. In this case, different points
in the capacity region may correspond to different input distributions,
and a characterization of the capacity region involves an optimization
over vector random variables.

The input optimization problem for the vector Gaussian multiple-ac-
cess channel has been studied in the literature for the special cases of
intersymbol interference (ISI) channels and scalar fading channels. The
capacity region of the Gaussian multiple-access channel with ISI was
characterized by Cheng and Verdú [7]. For the scalar ISI multiple-ac-
cess channel, the input optimization problem can be formulated as a
problem of optimal power allocation over frequencies. An analogous
problem of finding the ergodic capacity of the scalar independent and
identically distributed (i.i.d.) fading channels was studied by Knopp
and Humblet [8] and Tse and Hanly [9], where the optimal power allo-
cation over fading states was characterized. Both the scalar ISI channel
and the scalar i.i.d. fading channel are special cases of the vector mul-
tiple-access channel considered in this correspondence. In both cases,
individual channels in the multiple-access channel can be simultane-
ously decomposed into parallel independent scalar subchannels. For
the ISI channel, a cyclic prefix can be appended to the input sequence
so that the channel can be diagonalized in the frequency domain by a
discrete Fourier transform. For the i.i.d. fading channel, the indepen-
dence among the subchannels in time is explicitly assumed. In both
cases, the optimal signaling direction is just the direction of the simul-
taneous diagonalization, and the input optimization problem is reduced
to the power allocation problem among the scalar subchannels.
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Fig. 1. Multiple-access channel.

Fig. 2. Gaussian vector multiple-access channel.

The situation is more complicated if simultaneous diagonalization is
not possible. Thismore general setting corresponds to amultiple-access
situation where both the transmitters and the receiver are equipped
with multiple antennas. In the spatial domain, the channel gain
between a transmit antenna and a receive antenna can be arbitrary,
so the channel matrix can have an arbitrary structure. In general, it is
not possible to simultaneously decompose an arbitrary set of matrix
channels into parallel independent scalar subchannels. Unlike the
ISI channels, where the time-invariance property leads to a Toeplitz
structure for the channel matrix, a multiple-antenna channel does
not follow spatial invariance. Consequently, the equivalence of a
cyclic prefix does not exist in the spatial domain, and the transmitter
optimization problem becomes a combination of choosing the optimal
signaling directions for each user and allocating a correct amount
of power in each signaling direction. Such a joint optimization
strikes a compromise between maximizing each user’s data rate
and minimizing its interference to other users. Fortunately, it can
be shown that the input optimization problem for Gaussian vector
multiple-access channels is a convex optimization problem [10]. So, the
optimization problem is tractable in theory, and general-purpose convex
programming routines, such as the interior-point method [11], are
applicable. However, for a large-dimensional problem, the optimization
may still be computationally intensive, because the optimization is
performed in the space of positive semidefinite matrices, and the
number of scalar variables grows quadratically with the number of
input dimensions. In the literature, the input optimization problem
for a multiple-antenna multiple-access fading channel is considered
in [12] where asymptotic results in the limit of infinite number of
users and infinite number of antennas have been reported. A similar
problem exists for the CDMA systems, where the matrix channel is
determined by the spreading sequences. Recent results in this area
have been obtained in [13]–[15].

The main contribution of this correspondence is a numerical
algorithm that can be used to efficiently compute the sum capacity
achieving input distribution for a Gaussian vector multiple-access
channel. It is shown that the joint optimization of signaling power
and signaling directions for a vector multiple-access channel can be
performed by a generalization of the single-user input optimization. In
a single-user vector channel, the optimal signaling directions are the
eigenmodes of the channel matrix, and the optimal power allocation is
the so-called water-filling allocation [6]. For a vector multiple-access
channel, although each user has a different channel and experiences
a different interference structure, it is possible to apply single-user

water-filling iteratively to reach a compromise among the signaling
strategies for different users. This iterative water-filling procedure
always converges, and it converges to the sum capacity of a vector
multiple-access channel.

The rest of this correspondence is organized as follows. In Section II,
the input optimization problem for the Gaussian vector multiple-ac-
cess channel is formulated in a convex programming framework. In
Section III, an optimization condition for the sum rate maximization
problem is presented. In Section IV, the iterative water-filling algorithm
is derived, and its convergence property is studied. Section V provides
capacity region bounds based on the sum rate points. Section VI con-
tains concluding remarks.

After this correspondence was initially submitted for review, the au-
thors learned that a similar alternate input optimization procedure was
suggested by Médard in the context of single-antenna multipath fading
channels [16]. The algorithm presented in this correspondence is based
on the same principle. The treatment here includes a more complete
proof and a novel convergence analysis of the algorithm.

II. PROBLEM FORMULATION

A memorylessK-user Gaussian vector multiple-access channel can
be represented as follows (see Fig. 2):

YYY =

K

i=i

HiXXXi +ZZZ (2)

where XXXi is the input vector signal, YYY is the output vector signal, ZZZ
is the additive Gaussian noise vector with a covariance matrix denoted
as Sz , and Hi is the time-invariant channel matrix. The channels are
assumed to be known to both the transmitters and the receiver. Fur-
ther, no feedback channel is available between the receiver and the
transmitters, thus, transmitter cooperation (beyond time synchroniza-
tion) is not possible. The input signals are assumed to be independent,
with a joint distribution �K

i=1pi(xxxi) that satisfy the power constraints
tr(EEE[XXXiXXX

T

i ]) � Pi. Let Si be the covariance matrices of XXXi, i.e.,
Si = EEE[XXXiXXX

T

i ]. Then, the power constraint becomes tr(Si) � Pi.
The capacity region for a K-user multiple-access channel is the

convex hull of the union of capacity pentagons defined in (2). For
Gaussian vector multiple-access channels, the convex hull opera-
tion is not needed, and the capacity region can be characterized
by maximizing K

i=1
�iRi, with �i � 0. The input distribution

that maximizes this weighted rate sum is known to be a Gaussian
distribution. Without loss of generality, let �1 � � � � � �K . The



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 1, JANUARY 2004 147

optimal covariance matrices S1; . . . ; SK can be found by solving the
following optimization problem (see, e.g.,[7], [10]):

maximize �1 �
1

2
log

K

i=1

HiSiH
T
i + Sz � �K �

1

2
log jSzj

+

K

j=2

(�j � �j�1) �
1

2
log

K

i=j

HiSiH
T
i + Sz

subject to tr(Si) � Pi; i = 1; . . . ; K

Si � 0; i = 1; . . . ; K
(3)

where Si � 0 denotes that Si is positive semidefinite. When the goal
is to maximize the sum rate, the problem can be simplified by setting
�1 = � � � = �K = 1 as below

maximize
1

2
log

K

i=1

HiSiH
T
i + Sz �

1

2
log jSzj

subject to tr(Si) � Pi i = 1; . . . ; K

Si � 0: i = 1; . . . ; K:

(4)

The objective function is concave because log j � j is concave (see, e.g.,
[17, p. 466], [18, p. 48], or [19]). The constraints are convex in the space
of positive semidefinite matrices [11]. Thus, the above optimization
problem belongs to a class of convex programming problems for which
efficient numerical optimization is possible [12], [11].

III. SUM CAPACITY

This section focuses on the sum capacity and derives a sufficient and
necessary condition for the optimal input distribution that achieves the
sum capacity. Toward this end, the single-user transmitter optimiza-
tion problem is first cast into a convex optimization framework. The
single-user optimization problem has a well-known water-filling solu-
tion. The water-filling algorithm takes advantage of the problem struc-
ture by decomposing the channel into orthogonal modes, which greatly
reduces the optimization complexity. It turns out that this idea may be
extended to the multiuser case under the sum-rate objective.

A. Single-User Water-Filling

For a single-user Gaussian vector channel, the mutual information
maximization problem is

maximize
1

2
log jHSHT + Sz j �

1

2
log jSzj

subject to tr(S) � P

S � 0:

(5)

The solution to this problem involves two steps. First, since Sz is a
symmetric positive definite matrix, its eigenvalue decomposition is of
the form Sz = Q�QT , where Q is an orthogonal matrix QQT = I ,
and � is a diagonal matrix of eigenvalues f�1; . . . ; �mg. Define Ĥ =

�� QTH . The objective can then be rewritten as

maximize
1

2
log jĤSĤT + Ij: (6)

Next, let Ĥ = F�MT be a singular-value decomposition of Ĥ , where
F and M are orthogonal matrices, and � is a diagonal matrix of sin-
gular values fh1; h2; . . .hrg, where r is the rank of Ĥ . Consider Ŝ =
MTSM as the new optimization variable. Since tr(S) = tr(Ŝ), the
problem is then transformed into

maximize
1

2
log j�Ŝ�T + Ij

subject to tr(Ŝ) � P

Ŝ � 0:

(7)

UsingHadamard’s inequality [6], it is easy to show that the solution can
be obtained by the well-known water-filling algorithm. The optimal Ŝ
is a diagonal matrix diagfp1; p2; . . . prg such that

pi + 1=h2i =Kl; if 1=h2i < Kl (8)

pi =0; if 1=h2i � Kl (9)

whereKl is known as the water-filling level, and it is a constant chosen
so that r

i=1
pi = P . Finally, the optimal S isMŜMT .

It can be seen that the optimal input distribution for a single-user
Gaussian vector channel is a Gaussian distribution with a covariance
matrix that satisfies two conditions. First, the transmit directions
must align with the right eigenvectors of the effective channel. This
decomposes the vector channel into a set of parallel independent scalar
subchannels. Second, the power allocation among the subchannels
must be a water-filling power allocation based on the noise-to-channel-
gain ratio in each subchannel. Solving the single-user input optimiza-
tion via water-filling is more efficient than using general-purpose
convex programming algorithms, because water-filling takes advan-
tage of the problem structure by decomposing the equivalent channel
into its eigenmodes.

Note that although eigenvalues and singular values are unique up to
ordering, the matrix decompositions themselves (i.e., matricesM and
Q in the above derivation) are not necessarily unique. The nonunique-
ness occurs when multiple eigenvalues (or singular values) have the
same value. However, the optimal covariance matrix for the optimiza-
tion problem (5) is unique. A short proof of this fact is provided in the
following.

Suppose that S1 and S2 are both water-filling covariance matrices.
Pick any orthogonal matrix Q in the eigenvalue decomposition of Sz
and any orthogonal matrix M in the singular value decomposition of
Ĥ . Define Ŝ1 = MTS1M and Ŝ2 = MTS2M . Clearly, both Ŝ1 and
Ŝ2 must be diagonal, and they both have to satisfy the water-filling
condition pi = (Kl � 1=h2i )+. Thus, Ŝ1 and Ŝ2 must be the same.
This implies that S1 = MŜ1M

T = MŜ2M
T = S2.

B. Multiuser Water-Filling

The idea of water-filling can be generalized to multiple-access chan-
nels if the objective is to maximize the sum data rate. The first result
toward this direction is a multiuser water-filling condition for the op-
timal transmit covariance matrices that achieve the sum capacity of a
multiple-access channel.

Theorem 1: In a K-user multiple-access channel, fSig is an op-
timal solution to the rate-sum maximization problem

maximize
1

2
log

K

i=1

HiSiH
T
i + Sz �

1

2
log jSzj

subject to tr(Si) � Pi i = 1; . . . ; K

Si � 0; i = 1; . . . ; K

(10)

if and only if Si is the single-user water-filling covariance matrix of
the channel Hi with Sz + K

j=1;j 6=i
HjSjH

T
j as noise, for all i =

1; 2; . . . ; K .
Proof: The only if part is easy. Suppose that at the rate-sum op-

timum, there is an Si that does not satisfy the single-user water-filling
condition. Fix all other covariance matrices, set Si to be the water-
filling covariance matrix with Sz + K

j=1;j 6=i
HjSjH

T
j as noise.

With all other covariance matrices fixed, the single-user optimization
problem for Si differs from the sum rate optimization problem by a
constant. Thus, setting Si to be the water-filling covariance matrix
strictly increases the sum rate objective. This contradicts the optimality
of fSig. Thus, at the optimum, all Si’s must satisfy the single-user
water-filling condition.
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The if part also holds. The proof relies on standard convex analysis.
The constraints of the optimization problem are such that Slater’s con-
dition is satisfied. So, the Karush–Kuhn–Tucker (KKT) condition of
the optimization problem is sufficient and necessary for optimality. To
derive the KKT conditions, form the Lagrangian

L(Si; �i;	i) = log

K

i=1

HiSiH
T
i + Sz

�

K

i=1

�i(tr(Si)� Pi) +

K

i=1

tr(Si	i): (11)

The coefficient 1=2 and the constant log jSzj are omitted for simplicity.
Here, f�ig are the scalar dual variables associated with the power con-
straints, f	ig are the matrix dual variables associated with the positive
definiteness constraints. The inner product in the space of semidefinite
matrices is the trace of matrix product.

The KKT condition of the optimization problem consists of the con-
dition @L=@Si = 0, the complementary slackness conditions, and the
primal and dual constraints

�iI = HT
i

K

j=1

HjSjH
T
j + Sz

�1

Hi +	i

tr(Si) = Pi

tr(	iSi) = 0

	i; Si; �i � 0 (12)

for all i = 1; . . . ; K . Note that the gradient of log jXj is X�1.
Now, the aboveKKT condition is also valid for the single-user water-

filling problem when K is set to 1. In this case, it is easy to verify
that the single-user solution (8), (9) satisfies the condition exactly. But,
for each user i, the multiuser KKT condition and the single-user KKT
condition differ only by the additional noise term K

j=1;j 6=iHjSjH
T
j .

So, if each Si satisfies the single-user condition while regarding other
users’ signals as additional noise, then collectively, the set of fSig
must also satisfy the multiuser KKT condition. By the sufficiency of
the KKT condition, fSig must then be the optimal covariance for the
multiuser problem. This proves the if part of the theorem.

IV. ITERATIVE WATER-FILLING

A. Algorithm

At the rate-sum optimum, each user’s covariance matrix is a water-
filling covariance against the combined noise and all other users’ in-
terference. This suggests that the set of rate-sum optimal covariance
matrices can be found using an iterative procedure.

Algorithm 1: Iterative water-filling
initialize Si = 0, i = 1; . . .K:
repeat
for i = 1 to K

S0z =
K

j=1;j 6=i

HjSjH
T
j + Sz;

Si = argmax
S

1

2
log jHiSH

T
i + S0zj;

end
until the sum rate converges.

Theorem 2: In the iterative water-filling algorithm, the sum rate
converges to the sum capacity, and (S1; . . . ; SK) converges to an
optimal set of input covariance matrices for the Gaussian vector
multiple-access channel.

Proof: At each step, the iterative water-filling algorithm finds
the single-user water-filling covariance matrix for each user while re-
garding all other users’ signals as additional noise. Since the single-user

rate objective differs from the multiuser rate-sum objective by only
a constant, the rate-sum objective is nondecreasing with each water-
filling step. The rate-sum objective is bounded above, so the sum rate
converges to a limit.

The convergence matrices S1; . . . ; SK also converge to a limit. Be-
cause the single-user water-filling matrix is unique, each water-filling
step in the iterative algorithm must either yield a strict increase of the
sum rate or keep the covariance matrices the same. At the limit, all Si’s
are simultaneously the single-user water-filling covariance matrices of
user i with all other users’ signals regarded as additional noise. Then,
by Theorem 1, this set of (S1; . . . ; SK)must achieve the sum capacity
of the Gaussian vector multiple-access channel.

Note that the proof does not depend on the initial starting point. Thus,
the algorithm converges to the sum capacity from any starting values
of (S1; . . . ; SK). However, although the sum capacity is unique, the
optimal covariance matrices themselves may not be. It is possible for
the iterative algorithm to converge to two different sets of covariance
matrices both giving the same optimal sum rate. The following example
illustrates this point. Let H1 = H2 = Sz = I2�2, and P1 = P2 = 2.
Then, S1 = S2 = I2�2, and

S01 =
2 0

0 0
; S02 =

0 0

0 2

both achieve the same sum capacity.
Fig. 3 gives a graphical interpretation of the algorithm. The capacity

region of a two-user vector multiple-access channel is shown in
Fig. 3(a). The sum rate R1 + R2 reaches the maximum on the line
segment between C and D. Initially, the covariance matrices for the
two users, S(0)

1 and S(0)
2 , are zero matrices.

1) The first iteration is shown in Fig. 3(b). After a single-user water-
filling forS(1)

1 , the rate pair (R1; R2) is at pointF. Then, treating
S
(1)
1 as noise, a single-user water-filling for S(1)

2 moves the rate
pair to point E.

2) The second iteration is shown in Fig. 3(c). First, note that with
fixed covariance matrices S(1)

1 and S(1)
2 , the capacity region is

the pentagon abEFO. So, by changing the decoding order of user
1 and 2, the rate pair can be moved to point b without affecting
the rate sum. Once at point b, water-filling forS(1)

1 while treating
S
(1)
2 as noise givesS(2)

1 . This increases I(X1;Y ), while keeping
I(X2;Y jX1) fixed, thus moving the rate pair to point c.

3) The capacity pentagon with (S
(2)
1 ; S

(1)
2 ) is now represented by

acdeO. So, the decoding order can again be interchanged to
get to the point d. Performing another single-user water-filling
treating S

(2)
1 as additional noise gives S

(2)
2 and the corre-

sponding rate-pair point f in Fig. 3(d). The process continues
until it converges to points C and D.

Note that in every step, each user negotiates for itself the best
signaling direction as well as the optimal power allocation while
regarding the interference generated by all other users as noise. The
iterative water-filling algorithm is more efficient than general-purpose
convex programming routines, because the algorithm decomposes the
multiuser problem into a sequence of single-user problems, each of
which is much easier to solve. Further, in each step, the single-user
water-filling algorithm takes advantage of the problem structure by
performing an eigenmode decomposition. In fact, the convergence is
very fast.

B. Convergence Behavior

The iterative procedure arrives at a corner point of some rate region
pentagon after the first iteration. The following theorem shows that this
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(a) (b)

(c) (d)

Fig. 3. First two iterations of iterative water-filling algorithm.

corner point is only 1/2 nats per user per output dimension away from
the sum capacity.

Theorem 3: After one iteration of the iterative water-filling
algorithm, fSig achieves a total data rate K

i=1
Ri that is at most

(K � 1)m=2 nats away from the sum capacity.
Proof: The idea is to form the Lagrangian dual of the original

optimization problem, and use the fact that the difference between the
primal and dual objectives, the so-called duality gap, is a bound on the
difference between the primal objective and the optimum.

The first step in deriving the dual problem is to reformulate the op-
timization problem (10) in the following equivalent form:

minimize � log jT j

subject to T �

K

i=1

HiSiH
T
i + Sz

tr(Si) � Pi i = 1; . . . ; K

Si � 0; i = 1; . . . ; K

(13)

where again the coefficient 1=2 and the constant log jSzj are dropped.
The Lagrangian of the new optimization problem is

L(fSig; T;�; f�ig; f	ig)

= � log jT j+ tr � T �

K

i=1

HiSiH
T
i � Sz

+

K

i=1

�i(tr(Si)� Pi)�

K

i=1

tr(	iSi)

= � log jT j+ tr(�T)� tr(�Sz)

�

K

i=1

�iPi +

K

i=1

tr[(�iI �HT
i �Hi �	i)Si] (14)

where the fact tr(AB) = tr(BA) is used. The objective of the dual
program is

g(�; f�ig; f	ig) = inf
fS g;T

L(fSig; T;�; f�ig; f	ig): (15)

At the optimum, @L=@Si = 0. Thus,

�iI = HT
i �Hi +	i; i = 1; 2; . . . ; K: (16)

Further, at the optimum, @L=@T = 0. Thus,

@

@T
(� log jT j+ tr(�T)) = 0: (17)

This implies that

T�1 = �: (18)

Therefore,

g(�; f�ig; f	ig) = log j�j+m� tr(�Sz)�

K

i=1

�iPi

wherem is the number of output dimensions. The dual problem of (13)
is then

maximize log j�j+m� tr(�Sz)�

K

i=1

�iPi

subject to �iI � HT
i �Hi; i = 1; . . . ; K

� � 0:

(19)

Note that the only constraints on f	ig are positive semidefinite con-
straints, so (16) is equivalent to the inequality in (19). Because the
primal program is convex, the dual problem achieves a maximum at
the minimum value of the primal objective.
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The duality gap, denoted as , is the difference between the objective
of the primal problem (13) and the dual problem (19)

 = tr

K

i=1

HiSiH
T
i + Sz

�1

Sz +

K

i=1

�iPi �m: (20)

Now, consider the duality gap after one iteration of the algorithm.
Starting with Si = 0, the first iteration consists of K water-fillings:
S1 is the single-user water-filling covariance of noise Sz alone, S2 is
the water-filling of noise plus interference from S1, and so on. SK
is the water-filling of noise plus interference from all other users.
The duality gap bound holds for all dual feasible �i’s. The gap is
the tightest when �i is chosen to be the smallest nonnegative value
satisfying the dual constraints in (19)

�i=max eig HT
i

K

j=1

HjSjH
T
j +Sz

�1

Hi ; i=1; . . . ; K:

(21)

In fact, the duality gap reduces to zero if the primal feasible Si is the
optimal S�i , and the dual feasible �i’s are chosen in the above fashion.

Now, since S1 is a single-user water-filling, the duality gap for this
single-user water-filling must be zero. Thus,

tr[(H1S1H
T
1 + Sz)

�1Sz] + �01P1 �m = 0 (22)

where

�01 = max eig[HT
1 (H1S1H

T
1 + Sz)

�1H1]: (23)

More generally, Si is the single-user water-filling regarding
i�1

j=1
HjSjH

T
j + Sz as noise. Thus,

tr

i

j=1

HjSjH
T
j + Sz

�1 i�1

j=1

HjSjH
T
j + Sz

+�0iPi �m = 0 (24)

where

�0i = max eig HT
i

i

j=1

HjSjH
T
j + Sz

�1

Hi : (25)

Now, the following three inequalities are needed. First, since A � B
implies tr(A) � tr(B), the following must be true:

tr

K

j=1

HjSjH
T
j + I

�1

� tr(H1S1H
T
1 + I)�1 (26)

Second, since

HT
i

K

j=1

HjSjH
T
j + Sz

�1

Hi

� HT
i

i

j=1

HjSjH
T
j + Sz

�1

Hi (27)

from (21) and (25)

�i � �0i: (28)

Third, since the trace of a positive definite matrix is positive, from (24)

�0iPi � m: (29)

Now, putting everything together

 =tr

K

i=1

HiSiH
T
i + Sz

�1

Sz +

K

i=1

�iPi �m (30)

� tr

K

i=1

HiSiH
T
i + Sz

�1

Sz +

K

i=1

�0iPi �m (31)

=tr

K

i=1

HiSiH
T
i + Sz

�1

Sz + �01P1 �m+

K

i=2

�0iPi

(32)

�

K

i=2

�0iPi (33)

� (K � 1)m (34)

where the first inequalities follows from (28), the second inequality
follows from (26) and (22), and the last inequality follows from (29).
Recall that a factor of 1=2 was omitted in the statement of the primal
and dual problems, (13) and (19). Therefore, the duality gap bound is
(K � 1)m=2 nats.

The capacity region of aK-user multiple-access channel with fixed
input covariance matrices is a polytope. Depending on the order of
water-filling, after the first iteration, the iterative water-filling algo-
rithm reaches one of the K! corner points of the capacity polytope.
The above theorem asserts that none of these corner points is more than
(K�1)m=2 nats away from the sum capacity, wherem is the number
of output dimensions. This result roughly states that the capacity loss
per user per output dimension is at most 1/2 nats after just one iteration.
This bound is rather general. It works for arbitrary channel matrices,
arbitrary power constraints, and arbitrary input dimensions. Numerical
simulation on realistic channels suggests that in most cases the actual
difference from the capacity is even smaller.

A numerical example with K = 10 users is presented below. Each
user is equipped with 10 antennas, and the receiver is also equipped
with 10 antennas. A fading channel with 10 i.i.d. fading states is con-
sidered. Thus, the transmitters and the receiver have effectively 100
dimensions each. The channel matrix is block diagonal, where each
block is of size 10 � 10. The block matrix entries are randomly gener-
ated from an i.i.d. zero-mean Gaussian distribution with unit variance.
The channel matrix is assumed to be known at both the transmitters
and the receiver. The total power constraint for each user is set to 100,
and noise variance is set to 1. The ergodic sum capacity iscomputed
using the iterative water–computed using the iterative water-filling al-
gorithm. Fig. 4 shows the convergence behavior. The sum capacity of
this channel is about 44.5 bits per transmission. Both the duality gap
and the difference between the capacity and the achievable rate after
each iteration are plotted. Observe that for practical purposes, the al-
gorithm converges after only a few iterations. The convergence appears
to be exponentially fast.

V. CAPACITY REGION

The iterative water-filling algorithm can be used to find the set of op-
timal covariance matrices that achieve the sum capacity of a Gaussian
vectormultiple-access channel. This set ofK covariancematrices gives
K! corner points of a capacity pentagon, each corresponding to a dif-
ferent decoding order. Upper and lower bounds on the entire capacity
region can be derived from these corner points.

The following two-user multiple-access channel is used as an ex-
ample. The transmitters and the receiver are equipped with seven an-
tennas each. The power constraint for each user is set to 10. The noise
variance is set to 1. The entries of the channel matrices are generated
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Fig. 4. Convergence of the iterative water-filling algorithm.

Fig. 5. Lower bound and upper bound of a typical capacity region.

according to an i.i.d. Gaussian random variable with zero mean and
unit variance.

In Fig. 5, the points B and E can be found after one iteration of
water-filling. Let their respective input covariance matrices be SB =
(SB;1; SB;2) and SE = (SE;1; SE;2). Also, the sum capacity points
C and D are found using iterative water-filling. Denote the sum-ca-
pacity achieving covariance matrix as SCD = (SCD;1; SCD;2). Note

that the line segment between C andD defines a portion of the capacity
boundary. If the optimal sum-capacity covariance matrices happen to
be orthogonal, points C and D collapse to the same point.

A lower bound for the region between B and C (or D and E) can be
found based on the linear combination of covariance matrices SB and
SCD (orSE andSCD, respectively). Consider the data rates associated
with the covariance matrices �SB +(1��)SCD with user 1 decoded
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first (or �SE +(1��)SCD with user 2 decoded first), where � (or �)
ranges from 0 to 1. These rates are achievable, so they are lower bounds.
Because the objective is a concave function of the covariance matrices,
this lower bound is better than the time-sharing of data rates associated
with B and C (or D and E). Since the corner points after one iteration
(i.e.,B andE) are at most (K�1)m=2 nats away from the sum capacity,
the lower bound is a close approximation of the capacity region. A
typical example is shown in Fig. 5. Extensive numerical simulations
show that the lower bound is fairly tight. An upper bound is also plotted
by extending the line segments AB,CD, and EF. This is an upper bound
because the capacity region is convex.

VI. CONCLUSION

This correspondence addresses the problem of finding the optimal
transmitter covariance matrices that achieve the sum capacity in a
Gaussian vector multiple-access channel. The computation of the
sum capacity is formulated in a convex optimization framework. A
multiuser water-filling condition for achieving the sum capacity is
found. It is shown that the sum-rate maximization problem can be
solved efficiently using an iterative water-filling algorithm, where
each step of the iteration is equivalent to a local maximization of
one user’s data rate with multiuser interference treated as noise. The
iterative water-filling algorithm is shown to converge to the sum
capacity from any starting point. The convergence is fast. In particular,
it reaches within 1/2 nats per user per output dimension from the sum
capacity after just a single iteration. As mentioned before, the vector
channel model discussed in this correspondence includes ISI channels
and fading channels as special cases. Thus, the iterative water-filling
algorithm can also be used to efficiently compute the power allocation
across the frequency spectrum for an ISI channel or over time for a
fading channel.

Finally, although the iterative water-filling algorithm solves the sum
capacity problem efficiently, it does not directly apply to other points
in the capacity region. The computations of other capacity points are
also convex programming problems. However, how to best exploit the
problem structure in these cases is still not clear.
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Maximizing the Spectral Efficiency of Coded CDMA
Under Successive Decoding
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Abstract—We investigate the spectral efficiency achievable by random
synchronous code-division multiple access (CDMA) with quaternary
phase-shift keying (QPSK) modulation and binary error-control codes, in
the large system limit where the number of users, the spreading factor, and
the code block length go to infinity. For given codes, we maximize spectral
efficiency assuming a minimum mean-square error (MMSE) successive
stripping decoder for the cases of equal rate and equal power users. In
both cases, the maximization of spectral efficiency can be formulated
as a linear program and admits a simple closed-form solution that can
be readily interpreted in terms of power and rate control. We provide
examples of the proposed optimization methods based on off-the-shelf
low-density parity-check (LDPC) codes and we investigate by simulation
the performance of practical systems with finite code block length.

Index Terms—Channel capacity, code-division multiple access (CDMA),
low-density parity-check (LDPC) codes, multiuser detection, quaternary
phase-shift keying (QPSK) modulation, successive decoding.

I. INTRODUCTION

All points in the capacity region of the scalar Gaussian multiple-ac-
cess channel are achievable by successive single-user encoding,
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