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Uplink–Downlink Duality Via Minimax Duality
Wei Yu, Member, IEEE

Abstract—The sum capacity of a Gaussian vector broadcast
channel is the saddle point of a minimax Gaussian mutual in-
formation expression where the maximization is over the set of
transmit covariance matrices subject to a power constraint and the
minimization is over the set of noise covariance matrices subject
to a diagonal constraint. This sum capacity result has been proved
using two different methods, one based on decision-feedback
equalization and the other based on a duality between uplink and
downlink channels. This paper illustrates the connection between
the two approaches by establishing that uplink–downlink duality
is equivalent to Lagrangian duality in minimax optimization. This
minimax Lagrangian duality relation allows the optimal transmit
covariance and the least-favorable-noise covariance matrices in a
Gaussian vector broadcast channel to be characterized in terms of
the dual variables. In particular, it reveals that the least favorable
noise is not unique. Further, the new Lagrangian interpretation of
uplink–downlink duality allows the duality relation to be general-
ized to Gaussian vector broadcast channels with arbitrary linear
constraints. However, duality depends critically on the linearity of
input constraints. Duality breaks down when the input constraint
is an arbitrary convex constraint. This shows that the minimax
representation of the broadcast channel sum capacity is more
general than the uplink–downlink duality representation.

Index Terms—Broadcast channel, Lagrangian duality, minimax
optimization, multiple-input multiple-output (MIMO), multiple-
access channel, multiple-antenna.

I. INTRODUCTION

THERE is an interesting input–output reciprocity for
Gaussian vector channels. Consider a Gaussian vector

channel under a power constraint:

(1)

where and are vector-valued input and output, respectively,
is the channel matrix, and is the additive independent and

identically distributed (i.i.d.) Gaussian vector noise with a co-
variance matrix equal to an identity matrix. The capacity of the
channel remains the same if the input and the output are inter-
changed, the channel matrix is transposed, and the same power
constraint is applied to the reciprocal channel

(2)
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This relation has been observed in [1]. Reciprocity holds be-
cause the computation of the Gaussian vector channel capacity
under a power constraint involves a water-filling of the total
power over the set of singular values of the channel matrix and
the singular values of and are identical. This reciprocity
relation is true even when the matrix is not a square matrix.
In this case, and (also and ) do not have to have the
same dimension.

Interestingly, the input–output reciprocity generalizes to mul-
tiuser channels. Let . Consider a Gaussian
vector broadcast channel

(3)

where ’s do not cooperate and . The ca-
pacity region of the Gaussian vector broadcast channel under
a sum power constraint is exactly the same as the capacity re-
gion of a reciprocal multiple-access channel, where the roles
of inputs and outputs are reversed, the channel matrix is trans-
posed, and a sum power constraint is applied to all input ter-

minals [2]–[4]. Let . The reciprocal mul-
tiple-access channel has the form

(4)

and it has a sum capacity

(5)

where is a block-diagonal matrix with covariance ma-
trices on the diagonal, and the maximization is
over all positive semidefinite matrices subject to a sum
power constraint . Reciprocity implies that
the capacity expression (5) is also the sum capacity of the
Gaussian vector broadcast channel. This reciprocity relation
is called “uplink–downlink duality,” because the multiple-ac-
cess channel corresponds to the uplink transmission and the
broadcast channel corresponds to the downlink transmission in
a wireless system.

This paper focuses on the sum capacity of the Gaussian
broadcast channel and aims to provide a new understanding of
uplink–downlink duality. Uplink–downlink duality is originally
established in [2] and [3] by identifying a signal-to-inter-
ference-and-noise ratio (SINR) transformation between the
multiple-access channel and the broadcast channel. Such a
transformation, however, is not very intuitive. One of the main
contributions of this paper is that we show uplink–downlink
duality is in fact equivalent to Lagrangian duality in convex
optimization. This new interpretation not only unifies several
existing seemingly unrelated proofs for the sum capacity,
but also permits a new characterization of the optimal input
and noise covariance matrices in a Gaussian vector broadcast
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channel. As the dual problem often lies in a lower dimensional
space, the computation of sum capacity and the optimal trans-
mission strategy for a broadcast channel can be done more
efficiently via its dual.

Further, this new interpretation allows a generalization of up-
link–downlink duality to broadcast channels with general linear
input constraints. Generalized input constraints arise, for ex-
ample, in a multiple-antenna broadcast channel with per-an-
tenna power constraints. Interestingly, the dual of such a channel
happens to be a multiple-access channel with an uncertain noise.

A. Literature Review

To put the new results in this paper into perspective, this sub-
section is devoted to an overview of the Gaussian vector broad-
cast channel. The capacity of Gaussian vector broadcast channel
is first investigated in [5] and the sum capacity is proved for the
case where the transmitter is equipped with two antennas. This
sum capacity result is then independently generalized in [6], [2],
and [3] for a broadcast channel with an arbitrary number of an-
tennas. Finally, [4] fully established the entire capacity region
for the Gaussian vector broadcast channel.

The achievability result for the Gaussian vector broadcast
channel is obtained using a precoding technique known as
“writing on dirty paper” [7]. The main idea is as follows [5]. To
transmit independent information to multiple receivers at the
same time, the transmitter may treat the signals intended for
other users as known interference. Using dirty-paper precoding,
such known interference can effectively be subtracted at the
transmitter.

The converse result is established using the notion of “least
favorable” noise. The idea is based on the observation that the
capacity of a broadcast channel does not depend on the joint
distribution of the noise but only on the marginals [8]. It then
follows that the sum capacity of the vector broadcast channel
is bounded by the minimum capacity of a cooperative vector
channel

(6)

minimized over all possible joint distributions of the noises. For
a Gaussian vector broadcast channel with a convex input con-
straint, the minimax solution is necessarily jointly Gaussian.

The main part of the sum capacity result is in proving that
the minimax upper bound is achievable using dirty-paper pre-
coding. Several proofs are available. One way to establish the
achievability is to design a decision-feedback equalizer as a
joint receiver in the broadcast channel [6]. As shown in [6],
under a least-favorable-noise correlation, a decision-feedback
equalizer can be designed so that the feedforward matrix is di-
agonal. In addition, the feedback section can be moved to the
transmitter as a precoder. Thus, with a least favorable noise,
no receiver cooperation is needed and is
achievable. This minimum can be further maximized over all
possible input distributions. Since min-max and max-min are
equal in a convex–concave function, this implies that (6) is in-
deed the sum capacity of a Gaussian vector broadcast channel.

The minimax capacity result for the broadcast channel can
be obtained using a completely different approach, called up-

link–downlink duality. This duality approach is used in [2] and
[3] and is based on an observation that the achievable SINRs
of the uplink channel and the downlink channel are exactly the
same. The proof in [2] further uses the fact that the noise covari-
ance matrix for the broadcast channel corresponds to an input
cost constraint in the reciprocal channel. It is then established
that the input cost constraint corresponding to the least-favor-
able-noise covariance matrix is precisely the one that decouples
the inputs of the reciprocal channel. This establishes the duality
between the broadcast channel and the multiple-access channel
and shows that (5) is the broadcast channel sum capacity.

The approach in [3] is based on a different idea. The authors
of [3] observed that the precoding region for a Gaussian vector
broadcast channel is exactly the capacity region of the recip-
rocal multiple-access channel. The proof of this fact involves
a clever choice of transmit covariance matrix for the broadcast
channel for each achievable point in the multiple-access channel
and vice versa. Based on this duality, [3] showed that the min-
imax problem for the broadcast channel (6) and the maximiza-
tion problem for the dual multiple-access channel (5) have pre-
cisely the same solution.

Although giving essentially the same result, the results in
[6], [2], and [3] nevertheless contain several subtle differences.
First, the duality approaches of [2] and [3] appear to apply only
to Gaussian vector broadcast channels with a sum power con-
straint, while the decision-feedback equalization approach of [6]
applies to broadcast channels with arbitrary convex constraints
and is therefore more general. Second, the minimax result [6]
applies only to the sum capacity point, while the duality re-
sult [3] applies to the entire achievable rate region. Third, the
duality expression (5) is numerically much easier to evaluate
as compared to the minimax expression (6). This is especially
true when the least favorable noise is singular. Singular least
favorable noise is not necessarily an unlikely event. In fact, it
almost always happens when the number of receive dimensions
is larger than the number of transmit dimensions in the broad-
cast channel.

B. Overview of Main Results

The purpose of this paper is to establish a connection between
the duality approach and the minimax approach, to reconcile
some of their differences, and to provide an explicit solution to
the Gaussian vector broadcast channel sum capacity problem.
Toward this end, uplink–downlink duality is re-interpreted in
the framework of Lagrangian duality in minimax optimization.
This general approach not only unifies the previous results on
Gaussian broadcast channel sum capacity, but also allows an
explicit solution to the minimax problem based on its dual. In
fact, the new Lagrangian duality relation reveals that the least
favorable noise is often not unique, and different least favor-
able noises are related to each other via a linear estimation rela-
tion. Finally, the minimax framework allows uplink–downlink
duality to be generalized to broadcast channels under arbitrary
linear covariance constraints. However, it is also shown that du-
ality depends critically on the linearity of the input constraint.
For a broadcast channel with a general convex input constraint,
the minimax expression for the sum capacity is more general
than the characterization based on uplink–downlink duality.
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The organization for the rest of the paper is as follows.
In Section II, a minimax Lagrangian duality relation for the
Gaussian mutual information is established. In Section III,
the minimax duality theory is applied to the Gaussian vector
broadcast channel and a new derivation of uplink–downlink
duality is given. This new derivation not only illustrates the
connection between uplink–downlink duality and Lagrangian
duality, but also gives a characterization of the saddle point of
the Gaussian minimax mutual information expression in terms
of the dual variables. In Section IV, the uplink–downlink du-
ality is generalized to broadcast channels with arbitrary linear
covariance constraints, and the sum capacity for a Gaussian
vector broadcast channel with individual per-antenna power
constraints is found. Section V contains concluding remarks.

II. DUALITY FOR GAUSSIAN MUTUAL INFORMATION

In this section, we illustrate a Lagrangian duality for a min-
imax Gaussian mutual information expression. Lagrangian du-
ality refers to the fact that a convex minimization problem can
be solved as a maximization problem over a set of dual variables
where each dual variable corresponds to a constraint in the orig-
inal primal problem [9], [10]. For a minimax problem, its dual is
also a minimax problem. The Lagrangian duality, when applied
to minimax problems, is termed minimax duality in this paper.

Consider a Gaussian channel in which the transmitter chooses
a transmit covariance matrix to maximize the mutual infor-
mation and the receiver chooses a noise covariance matrix
to minimize the mutual information

(7)

subject to linear covariance constraints of the form

(8)

(9)

where and are parameters of the linear constraints, and
they are assumed to be symmetric positive semidefinite ma-
trices. Implicitly, and are constrained to be positive
semidefinite matrices. For example, the usual power constraint
corresponds to an identity matrix . The minimax capacity is
a function of , , and and is denoted as .
This minimax problem may correspond to the capacity of a com-
pound channel in which the transmitter must construct a code-
book to achieve a vanishing probability of error for all possible
realizations of the noise or a broadcast channel in which the
noise correlation among the receivers may vary arbitrarily.

The main result of this section is a characterization of a
Lagrangian dual of the above minimax problem. The duality
formulation presented in this section is different from the con-
ventional Lagrangian duality as in [9] and [10]. It relies instead
on a transformation of the optimality conditions of the minimax
problem and pertains to the particular form of the Gaussian
mutual information expression only. Note that the Lagrangian
dual of an optimization problem is in general nonunique.
The duality between the two minimax problems presented in

this section is one possible way in which Lagrangian duality
relation may be formulated.

The dual relation presented in this section is most transparent
when is invertible and the saddle-point solutions and
are strictly positive definite. For the moment, we explicitly as-
sume the invertibility and positive semidefiniteness conditions.
These are technical conditions that will be removed later.

The first step in the development of minimax duality is a
characterization of the saddle point of the minimax problem via
its Karush–Kuhn–Tucker (KKT) condition. The KKT condition
consists of the usual water-filling condition with respect to the
maximization over

(10)

and the least-favorable-noise condition with respect to the min-
imization over

(11)

where and are the appropriate Lagrangian dual variables.
(The coefficient is omitted for simplicity.) The KKT condition
is necessary and sufficient for optimality. Now, pre- and post-
multiplying (11) by and , respectively, substituting (10)
into (11), and rearranging the terms, it is easy to see that

(12)

If is invertible, then

(13)

This is precisely the water-filling KKT condition for a Gaussian
vector channel with as the channel matrix, as the
transmit covariance matrix, and as the noise covariance.
The above is also an explicit solution for the minimizing .
Further, substituting (13) into (10) and solving for , we
obtain

(14)

This is precisely the least-favorable-noise KKT condition with
as the channel matrix, as the least favorable noise,

and as the transmit covariance matrix. Define

(15)

(16)

Equations (13) and (14) can be rewritten as

(17)

(18)

Now, if and are set to

(19)

then

(20)

(21)
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TABLE I
MINIMAX DUALITY

Therefore, associated with the original minimax problem (7),
there is a “dual” minimax problem

(22)

with linear covariance constraints

(23)

(24)

Further, it can be verified using (10), (11) and (15) that at the
saddle point, we get (25) at the bottom of the page. Thus, the
minimax problems (7) and (22) are duals of each other in the
following sense.

• The optimal dual variable in the maximization part of
(7) is the optimal dual variable in the minimization part
of (22).

• The optimal dual variable in the minimization part of
(7) is the optimal dual variable in the maximization
part of (22).

• The optimizing variables of (7) are related to the con-
straints of (22) by .

• The optimizing variables of (22) are related to the con-
straints of (7) by .

• .
The duality relation is summarized in Table I. This minimax
duality result is formally stated as follows.

Theorem 1: Let be the primal and dual
optimal solutions of the Gaussian minimax mutual information
optimization problem . Define
and . Then, the primal and dual optimal solu-
tions of the dual minimax problem are pre-
cisely , , , and .
Further, .

The derivation leading to the theorem provides a proof of
Theorem 1 for the case where is square and invertible and
where the optimal and are both full rank. The proof for
the general case is given in Appendix A.

To summarize, there is an input–output duality for the
Gaussian mutual information minimax problem. By trans-
posing the channel matrix and interchanging the input and
the output, the constraints of the original problem become the
optimal solution of the dual problem (and vice versa.) Solving
one minimax problem is equivalent to solving the other.

It should be emphasized that the Lagrangian dual of an
optimization problem is in general not unique. The minimax
duality relation formulated in this section is a particular form
of Lagrangian dual formulation that allows the Gaussian vector
broadcast channel to be related to a dual multiple-access
channel, as shown in the next section. This duality relation is
established based on the KKT conditions of the optimization
problem, and it is a particular feature of the Gaussian mutual
information expression.

III. UPLINK–DOWNLINK DUALITY

The main motivation for studying the minimax duality re-
lation is that it arises naturally in the characterization of the
sum capacity of Gaussian vector broadcast channels. As men-
tioned earlier, the sum capacity for the Gaussian vector broad-
cast channel has been solved independently using two seem-
ingly different approaches. In [6], the broadcast channel sum
capacity is shown to be the solution of a minimax mutual in-
formation problem, while in [11], [3], and [2], the broadcast
channel sum capacity is shown to be the capacity of a dual mul-
tiple-access channel with a sum power constraint. The objective
of this section is to unify the two approaches and to show that
the duality between the broadcast channel and the multiple-ac-
cess channel is a special case of minimax duality.

(25)
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A. Gaussian Vector Broadcast Channel Sum Capacity

Consider a Gaussian vector broadcast channel

(26)

where is the transmit signal, is the received signal for
user . is the set of Gaussian noise vec-
tors with covariance matrices equal to identity matrices, and

is the set of channel matrices. A sum power
constraint is imposed on the input. A key in-
gredient in the characterization of the capacity is a connection
between the broadcast channel and channels with side informa-
tion. In a classic result known as “writing on dirty paper,” [7]
Costa showed that if a Gaussian channel is corrupted by an in-
terference signal that is known noncausally to the transmitter
but not to the receiver, i.e.,

(27)

the capacity of the channel is the same as if does not exist.
Thus, in a broadcast channel, if where and

are Gaussian vectors, can transmit information to as
if does not exist, and can transmit to with re-
garded as noise. This precoding strategy turns out to be optimal
for sum capacity in a Gaussian broadcast channel. This is proved
for the two-user two-antenna case by Caire and Shamai [5] and
has since been generalized by several authors [6], [3], [2].

The approach in [6] is based on the observation that inter-
ference presubtraction at the transmitter is identical to deci-
sion-feedback equalization with feedback “moved” to the trans-
mitter. However, while the decision-feedback structure is ca-
pacity achieving for the Gaussian vector channel, it also requires
coordination at the receivers because it has a feedforward ma-
trix that operates on the entire set of . Clearly, such
coordination is not possible in a broadcast channel. But, pre-
cisely because cannot coordinate, they are also ig-
norant of the noise correlation between . Thus, the
sum capacity of the broadcast channel must be bounded by the
cooperative capacity with the least favorable noise correlation

(28)

where is the covariance matrix for , and
the minimization is over all whose block-diagonal terms are
the covariance matrices of . This outer bound is due
to Sato [8].

Now, assume that the transmit signal of the broadcast channel
is a Gaussian signal with a fixed covariance matrix . Then,
the KKT condition associated with the minimization problem is

. . . (29)

where is the dual variable corresponding to the th diagonal
constraint. Interestingly, also
corresponds to the feedforward matrix of the decision-feedback
equalizer. So, if the noise covariance is least favorable, the
feedforward matrix of the decision-feedback equalizer would
be diagonal. Thus, after moving the feedback operation to the

transmitter, the entire equalizer decouples into independent
receivers for each user, and no coordination is needed whatso-
ever. Consequently, the Sato outer bound is achievable. Thus,
assuming Gaussian signaling with a fixed transmit covariance
matrix , the capacity of the broadcast channel is precisely

.
This mutual information minimization problem does not ap-

pear to have a closed-form solution, and it is not necessarily easy
to solve numerically either. However, there is a special case for
which the minimization is easy. This happens when is being
maximized at the same time.

Consider an example in which the input signal is subject to a
power constraint

(30)

In this case, it is not difficult to see that Sato’s bound becomes

(31)

Further, is achievable with any
Gaussian inputs, thus, it can be maximized over all

(32)

Now, the Gaussian mutual information expression is concave
in and convex in , so min-max is equal to max-min. In
addition, the saddle point is Gaussian. Thus, the sum capacity is
precisely the solution to the following problem:

subject to

(33)

where refers to the th block-diagonal term of .
Interestingly, the preceding minimax optimization problem is

considerably easier to solve than the minimization problem (28)
alone. This is because the minimax problem (33) has a dual ex-
pression which allows it to be transformed into a lower dimen-
sional space, as is explained in the next section.

B. Uplink–Downlink Duality Via Minimax Duality

Uplink–downlink duality refers to the observation that the
sum capacity of a multiple-access channel and a broadcast
channel are the same under the same input sum power con-
straint [11], [2], [3]. This uplink–downlink duality relation
has since been generalized to the entire capacity region [4].
The original proofs of uplink–downlink duality are based on
the equivalence of the achievable SINRs in the uplink and
downlink channels. For example, [3] proposed an elaborate
covariance transformation that maps the SINRs of the uplink
channel to the SINRs of the downlink channel, and vice versa.
The main objective of this section is to give a new derivation of
uplink–downlink duality via minimax Lagrangian duality. The
new derivation provides new insights into the structure of the
optimization problem.

The derivation is again simplest with the assumptions that
is square and invertible and that the maximizing and the
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least favorable are both full rank. Further, let us assume
that each receiver in the broadcast channel is equipped with a
single antenna. The following simplified derivation captures the
essence of the problem. The starting point is the KKT condition
for the minimax problem (33). The KKT condition is a sufficient
and necessary characterization of the saddle point, because the
objective function in (33) is concave in and convex in .
The KKT condition is

(34)

(35)

where is the dual variable associated with the power constraint
and is a diagonal matrix of dual variables associated with the
diagonal constraint on the noise covariance matrix. Multiplying
(35) by on the left and on the right and substituting in
(34), we obtain

(36)

The above is equivalent to

(37)

Observe that since is a diagonal matrix, (37) is precisely the
KKT condition for a multiple-access channel with a transmit
covariance matrix and an input constraint of the form

. The above equation also gives an explicit
solution for . Further, substituting (37) into (34), it is not
difficult to see that

(38)

This is an explicit solution for . It is in fact also a least-
favorable-noise condition for the dual problem.

Equations (37) and (38) define a set of KKT conditions for a
dual minimax problem. From (37) and (38), it is clear that the
following problem is a dual of (33):

subject to

(39)

As the original minimax problem (33) and the dual problem (39)
have equivalent KKT conditions, (39) is in fact a Lagrangian
optimization dual of (33). Note that the development so far as-
sumes that and are full rank. These are technical con-
ditions which may be removed using the same technique as in
the proof of Theorem 1.

The main point of this section is to show that the Lagrangian
duality relation between (33) and (39) can be used to establish
uplink–downlink duality as developed in [11], [2], and [3]. This
is because the dual minimax problem may be simplified into a
single maximization problem corresponding to a multiple-ac-
cess channel. Such a simplification enables significant compu-
tational saving in solving the original minimax problem.

The key is to focus on the water-filling condition for the dual
channel (37) and to recognize the following two features. First,
the noise covariance matrix in the dual problem is an identity
matrix scaled by . Second, corresponds to the constraint

in the dual problem. Since has identity matrices on the di-
agonal, the input constraint on is equivalent to a sum
power constraint on

(40)

As stated in the next lemma, after a proper scaling of , it is
possible to show that (37) is precisely the KKT condition for a
single maximization problem

maximize

subject to is block diagonal

(41)

which corresponds to the input optimization problem for a mul-
tiple-access channel. The duality between the broadcast channel
and the multiple-access channel is formally stated as follows.
The statement for the case where is square and invertible is
given first. The general theorem is stated in the next section.

Lemma 1: Consider the Gaussian mutual information min-
imax problem for a broadcast channel (33) and the maximiza-
tion problem for a multiple-access channel (41). Assume that

is square and invertible, the solution of the minimax problem
(33), , is nonsingular, and the solution of the maxi-
mization problem (41), , is nonsingular. Then, the primal-dual
optimal solution of (33) may be obtained from
the primal-dual optimal solution of the multiple-access
channel (41) as follows:

(42)

(43)

(44)

(45)

Conversely, the primal-dual optimal solution of the multiple-ac-
cess channel may be obtained from the dual solution
of the broadcast channel via (44) and (45). Further, the
broadcast channel and the multiple-access channel have the
same sum capacity.

Proof: The development leading to the proof shows
that the primal-dual optimal solution to the minimax problem

are as expressed in (42) and (43). In particular,
they satisfy

(46)

Now, rewrite the multiple-access channel problem as follows:

maximize

subject to (47)

where , . The KKT
condition for the above problem is

(48)
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TABLE II
UPLINK–DOWNLINK DUALITY

for all . Writing it in matrix form, the above is
equivalent to

(49)

where is a matrix whose diagonal entries are identity matrices.
To establish that the sum capacities of the multiple-access

channel and the broadcast channel are the same, we check that
(46) and (49) are identical. This is equivalent to checking that

, , and . First, both and have
identity matrices on their respective diagonal terms, thus, they
can be made equal. Second, the dual variables and only
need to be positive, so they can be made equal also. Third, the
constraint on is , and the constraint associated with
(46) is of the form

For the two constraints to be the same, it remains to verify that
.

In convex optimization, the dual variables and have the
interpretation of being the sensitivities of the saddle point with
respect to the constraints. Let denote the
sum capacity of the Gaussian vector broadcast channel with
power constraint and noise covariance matrix . Then

(50)

and

(51)

Now, consider the following thought experiment. Suppose that
the power constraint of the minimax problem is relaxed from
to

(52)

and the noise covariance matrix in each terminal is also relaxed
from to

(53)

where is a small positive real number. Observe that since
the proportional increases in signal and noise powers are the
same, from the structure of the expression (33), the saddle point

would also be scaled by exactly the same proportion.
Consequently, the capacity would remain unchanged. Now, be-
cause and are the sensitivities of the minimax expression
with respect to the constraints, this implies that

(54)

Therefore,

(55)

This verifies the power constraint on the dual multiple-access
channel.

Finally, it remains to verify that the broadcast channel and
the dual multiple-access channel have the same sum capacity.
Using the dual variable relations (44) and (45), the following
relation (shown in (56) at the bottom of the page) can be seen.
This proves the lemma.

The relation between the multiple-access channel and the
broadcast channel is summarized in Table II. This relationship
shows that the solution to the minimax problem (33) can be
obtained from the solution to a maximization problem (41)
and vice versa. Clearly, (41) is much easier to solve, as it only
involves a single maximization. Further, the optimization vari-
able is block diagonal, therefore, it lies in a lower dimensional
space. Thus, uplink–downlink duality gives an efficient way to
solve the minimax problem (33) numerically.

C. Singular Least Favorable Noise

The Lagrangian interpretation of uplink–downlink duality
suggests that the least favorable noise in the minimax problem
can be computed via a multiple-access channel. In particular,
(43) gives an explicit formula for the covariance matrix of the
least favorable noise. However, (43) is derived assuming that

(56)
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the channel matrix is square and invertible. Also, the least
favorable noise covariance matrix, the maximizing input co-
variance matrix for the broadcast channel, and the maximizing
input covariance matrix for the dual multiple-access channel
are all assumed to be full rank. This is not necessarily true in
general. In practice, it often happens that the maximizing block
diagonal in the dual multiple-access channel does not have
positive definite entries on its diagonal. This is the case, for
example, when has more rows than columns.

Formally, the KKT condition for the multiple-access channel
should have been

(57)

where is a positive semidefinite matrix satisfying the comple-
mentary slackness condition

(58)

If is full rank, then is the zero matrix. This ensures that
the diagonal terms of are all iden-
tity matrices. However, if is low rank, then

does not necessarily have identity matrices on its di-
agonal. Thus, it cannot be a valid choice for a least favorable
noise. Another way to interpret this phenomenon is to note that
the minimax duality relation is established with inequality con-
straints of the type . However, the constraint as-
sociated with the broadcast channel is of the form

(59)

rather than

(60)

Thus, to establish duality, an additional step must be taken to
ensure that the diagonal entries are equal to identity matrices.

It turns out that a least-favorable-noise covariance matrix
can be obtained by adding a positive semidefinite matrix to

so that the sum of the two matrices
has identity matrices on the diagonal. Further, such a positive
semidefinite matrix is not unique, so the least-favorable-noise
covariance matrix is not unique.

Consider the candidate least favorable noise, relabeled as

(61)

The water-filling input covariance matrix with respect to
the channel and the noise is

(62)

Now, may be rank deficient. In this case, the dimension
of must be reduced, and the least favorable noise must be
recomputed using the reduced channel. The recomputed noise
covariance matrix could be lower rank, thus enlarging the class
of positive semidefinite matrices that can be added to its diag-
onal terms. Without loss of generality, it is assumed here that
the channel reduction step has already taken place.

The expression for the least favorable noise (61) has appeared
in [2] as the cost constraint of a dual multiple-access channel,
although the singular noise issue was not specifically dealt with
in [2]. The idea of forcing the diagonal terms to be identity

matrices has appeared in [3]. In [3], in order to prove the sum
capacity result when the least favorable noise is singular, a se-
quence of nonsingular noises is constructed and the result is ob-
tained in the limit. However, the result in [3] does not charac-
terize the entire set of least favorable noises.

The following theorem characterizes the nature of duality and
the class of least favorable noises for the minimax problem ex-
plicitly. The proof is included in Appendix B.

Theorem 2: Consider the Gaussian mutual information min-
imax problem for a broadcast channel (33) and the maximiza-
tion problem for a multiple-access channel (41). The solution

of the broadcast channel problem (33) may be ob-
tained from the primal and dual optimal solutions of the
multiple-access channel (41) as follows:

(63)

(64)

where is any positive semidefinite matrix that makes the di-
agonals of identity matrices. Further, the broadcast channel
and the multiple-access channel have the same sum capacity.

The least favorable noise in a Gaussian minimax mutual in-
formation expression is of the form . The addition of
the term does not change the mutual information .
In some sense, is the “smallest” possible noise within the
class of least favorable noises. The reason is the following. The
first step in the proof of Theorem 2 is a reduction of the channel
matrix to the space spanned by a set of orthogonal vectors. Let

be a matrix whose columns are these orthogonal vectors.
After the channel reduction step, is strictly positive
everywhere in the span of . Thus, for the capacity to be finite,
the noise covariance matrix must also be strictly positive in the
space spanned by . Now, is the only noise covariance
matrix entirely in the space that satisfies the KKT condition.
Thus, must be the “smallest” noise covariance matrix that
satisfies the KKT condition.

The class of least favorable noises has a linear esti-
mation interpretation. Let and be independent Gaussian
noise vectors with covariance matrices and respec-
tively. Consider an orthogonal transformation

and

which takes the form

(65)

Consider two receivers, one has as noise and the other has
as noise. Clearly, the second receiver cannot do better

than the first one. However, the second receiver does as well
as the first receiver if the minimum-mean-squared-error estima-
tion of given is exactly . This relation charac-
terizes the entire set of least favorable noises.1 Mathematically,
the above estimation relation is also related to the proof of The-
orem 2. Since and are independent, the estimation relation

1There is a subtlety in that, strictly speaking,ZZZ needs not be Gaussian. How-
ever, this does not affect the sum capacity. See [12] for a discussion.
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Fig. 1. Generalized uplink–downlink duality.

is equivalent to the condition . But, the covari-
ance matrix of is , where ,
and , are the entries of the covariance matrices . So,

. This relation is crucial in the proof of
Theorem 2.

IV. GENERALIZED DUALITY

A. Duality for Broadcast Channels With an Arbitrary Linear
Constraint

An important benefit of the new Lagrangian interpretation of
uplink–downlink duality is that it allows uplink–downlink du-
ality to be generalized to Gaussian vector broadcast channels
with arbitrary linear constraints. Such a generalization is useful
from a computational perspective, because the multiple-access
channel capacity (41) is considerably easier to compute than the
minimax problem (33). This generalization of uplink–downlink
duality to channels with arbitrary input constraints cannot be ob-
tained directly from the previous proofs of uplink–downlink du-
ality given in [11], [3] and [2]. This is because previous proofs
of uplink–downlink duality depend critically on a transforma-
tion of SINRs which holds only for the sum power constraint.
However, starting from the new Lagrangian interpretation of up-
link–downlink duality the generalization is almost immediate.

Consider a broadcast channel with a linear covariance input
constraint of the form

(66)

In this case, the noise covariance matrix in the dual multiple-
access channel (41) is replaced by the covariance matrix

(67)

The same power constraint applies as before: . Thus,
the broadcast channel capacity with the new constraint may be
computed by simply replacing the noise covariance matrix in
the dual channel by the new input constraint matrix .

There is an interesting interplay between the cost constraint
in the original channel and the noise covariance in the dual
channel. In [2], it is shown that the least-favorable-noise covari-
ance in the Gaussian broadcast channel may be transformed into
a cost constraint for the dual multiple-access channel. The pre-
ceding derivation shows that the same relation holds between the
cost constraint of the broadcast channel and the noise covariance
of the multiple-access channel. Fig. 1 illustrates the transforma-
tion between the input cost constraint of a broadcast channel

and the noise covariance of the dual multiple-access channel.
The relation is summarized in the following theorem.

Theorem 3: The dual of the Gaussian vector broadcast
channel with an input constraint is a mul-
tiple-access channel with a noise covariance matrix . The
optimal solution of the minimax problem corre-
sponding to the broadcast channel may be obtained from the
primal-dual optimal solution of the multiple-access
channel as follows:

(68)

(69)

where is any positive semidefinite matrix that makes the di-
agonals of identity matrices. Further, the broadcast channel
and the multiple-access channel have the same sum capacity.

A key requirement for the duality between the broadcast
channel and the multiple-access channel to hold is the linearity
of the constraint. Without linearity, the dual of the minimax
problem does not reduce to a single maximization problem.
Consider a broadcast channel with an arbitrary convex con-
straint of the form

(70)

Its sum capacity can still be shown to be

(71)

(This is because the following two statements: min-max equals
max-min and saddle point is Gaussian for any convex–concave
function, hold under arbitrary convex input constraints.) The
KKT condition of the minimax problem implies that

(72)

where is the gradient of at the saddle point . It is still
possible to write and to formulate the dual multiple-
access channel problem as

(73)

However, without the linearity of , the power constraint
derivation (50)–(55) does not follow. Further, the dual noise
covariance matrix now depends on the solution of
the minimax problem, which is not known before the minimax
problem (33) is explicitly solved. Therefore, although minimax
duality still exists, it is not useful computationally. In this sense,
the minimax expression (33) is a more fundamental charac-
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terization of the Gaussian vector broadcast channel sum ca-
pacity. The minimax characterization applies to broadcast chan-
nels with any convex input covariance constraints, while up-
link–downlink duality holds only when the input constraint is
linear.

B. Duality for Broadcast Channels With Per-Antenna Power
Constraints

Finally, we discuss the situation in which multiple-input con-
straints are applied at the input. Consider a broadcast channel
with linear input covariance constraints

...

(74)

Clearly, the dual noise is now . Again, the dual noise
is not directly available without solving the original minimax
problem. However, in many practical situations, it may be easier
to solve the dual minimax problem instead. Recall that the KKT
condition associated with the dual problem is

(75)

and

(76)

The dual minimax problem is therefore

subject to

(77)

In the following, we describe one example of practical impor-
tance for which the above dual problem is easier to solve than
the original minimax problem.

In many practical wireless and wireline downlink applica-
tions, individual per-antenna power constraints, rather than a
sum power constraint, are imposed on the transmit antennas.
The computation of capacity for such a channel has been consid-
ered in the past [13], but only suboptimal solutions are known.
The duality relation illustrated in this paper is ideally suited to
handle this case.

The per-antenna power constraints are essentially constraints
on the diagonal terms of

(78)

Thus, each in (74) is a matrix with on its th diagonal
term and zero elsewhere. Define

(79)

The KKT conditions (75) and (76) imply that the dual minimax
problem is

subject to are block diagonal

(80)

Recall that is a diagonal matrix. So, the constraint
reduces to a single trace constraint .

Also, as is diagonal and has on its diagonal terms,
the constraint reduces to , which
is equivalent to where is the th diagonal
term of . The dual minimax problem is computationally much
easier to solve than the original problem. This is because both

and are now diagonal matrices, thus they lie in a lower
dimensional space.

In addition, (80) illustrates that the uplink dual problem in this
case is itself a minimax Gaussian mutual information problem.
This minimax expression can be interpreted as a multiple-ac-
cess channel with an uncertain noise. The transmitter chooses
the best diagonal input covariance to maximize the mutual in-
formation. Nature chooses a least favorable diagonal noise sub-
ject to a linear constraint to minimize the mutual information.

Theorem 4: The sum capacity of a Gaussian multiple-an-
tenna broadcast channel with individual per-antenna transmit
power constraints is the same as the sum ca-
pacity of a dual multiple-access channel with a sum power con-
straint and with an uncertain noise. The sum power constraint
of the dual channel is . The uncertain noise must have a diag-
onal covariance matrix with its diagonal values constrained
by .

V. CONCLUSION

This paper illustrates a Lagrangian duality relation for a
Gaussian mutual information minimax optimization problem.
A central feature of the minimax duality relation is that the cost
constraint in the original problem becomes the noise covariance
in the dual problem and vice versa. This duality relation is
particularly simple for the Gaussian vector broadcast channel
for which a block-diagonal constraint applies to the noise
covariance matrix and a single power constraint applies to the
input covariance matrix. In this case, the dual minimax opti-
mization problem reduces to a single maximization problem,
which corresponds to a multiple-access channel. This approach
shows that the uplink–downlink duality between a broadcast
channel and a multiple-access channel can be derived directly
from the Lagrangian theory, thus unifying several seemingly
unrelated previous proofs of the sum capacity of the Gaussian
vector broadcast channel. The new minimax Lagrangian duality
approach also allows an explicit characterization of the saddle
point in the minimax problem. It shows that the least favorable
noise can be singular and is not unique.

Uplink–downlink duality may be generalized to broadcast
channels with arbitrary linear constraints. In particular, it is
shown that the dual of a Gaussian vector broadcast channel
with individual per-antenna power constraint is a Gaussian
multiple-access channel with an uncertain noise, where the
noise covariance matrix is diagonally constrained. However,
under general nonlinear convex constraints, duality breaks
down. In this sense, the minimax derivation for the broadcast
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channel sum capacity is more general than the derivation based
on uplink–downlink duality.

APPENDIX A
PROOF OF THEOREM 1

The derivation leading to the statement of Theorem 1 gives a
proof of the minimax duality relation for the case where is
square and invertible and is full rank. The goal here
is to show that minimax duality holds in general. Suppose that
the optimal solution for the minimax problem

(81)

subject to (82)

(83)

is not full rank. Write

(84)

where and are full-rank matrices, and and are
matrices consisting of orthonormal column vectors (so that

and ). The idea is to apply minimax
duality to and . Write

(85)

Since is low rank, must also be low rank, and in
particular, must be contained in the space spanned by . Thus,
it is possible to write

(86)

Then, the minimax problem can be reformulated as follows:

(87)

subject to (88)

(89)

First, we claim that and must have the same rank.
The reason is as follows: cannot have a lower rank than

, as otherwise, the minimax expression becomes infi-
nite. But, cannot have a lower rank than , either.
This is because if this happens, it must be possible to further re-
duce the rank of while keeping the objective the same and
reducing the constraint at the same time. (Note,
must be full rank, as otherwise, the minimizing would have
been unbounded.) Since the optimal cannot have slack in
the constraint, a higher rank cannot be optimal.

Second, we claim that and must have the same rank,
and must be square and invertible. The reason is as follows.
The rank of is at least as high as the rank of . How-
ever, if it were strictly higher, it would be possible to reduce the
rank of while keeping the objective the same and reducing
the constraint at the same time. (Again, must be
full rank, as otherwise, the maximizing would have been
unbounded.) Again, since the optimal cannot have slack in
the constraint, a higher rank cannot be optimal. Finally, the
fact that the ranks of and are equal implies that

is square and invertible.

The channel reduction step does not affect the dual variables
and . Now, apply the minimax duality result to the reduced

channel (87). Let and . The dual
minimax problem is of the form

(90)

subject to (91)

(92)

The solution of the dual problem is precisely

(93)

Now, define

(94)

and

(95)

Then, the reduced dual minimax problem may be rewritten as

(96)

subject to (97)

(98)

It is easy to verify that

(99)

and

(100)

and

(101)
Therefore, minimax duality holds even if is low rank and

are singular.

APPENDIX B
PROOF OF THEOREM 2

The first part of the proof is based on an earlier version of the
proof [14] where the case in which each receiver has a single
antenna is presented. The extension to the multiple-antenna case
is presented at the end of this proof. In the rest of the proof,
is denoted as for notational convenience.

Consider first the single-antenna case. The first step of the
proof is to verify that even though the candidate noise covari-
ance matrix (61) may not have diagonal terms that are identity
matrices (or in the single-antenna case, ’s), it satisfies the least
favorable-noise condition for the minimax problem. Assuming
that the channel has already been reduced, the main idea is to
represent in its eigenvalue decomposition

(102)
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where is invertible and columns of are orthonormal vec-
tors. Further, can be rewritten as

(103)

where is invertible. Then, the minimax problem is now re-
duced to

subject to

has 's on the diagonal

(104)

Since the KKT conditions for the reduced problem are

(105)

(106)

The candidate is therefore the least favorable noise for the
reduced problem

(107)

With as the noise covariance matrix, the optimal water-
filling covariance matrix is

(108)

The rest of the proof is devoted to showing that when a pos-
itive semidefinite matrix, denoted as , is added to to
makes its diagonal terms ’s, both the least favorable-noise con-
dition and the water-filling condition remain to be satisfied. In
fact, the entire class of saddle points is precisely

.
The proof is divided into several parts. First, without loss of

generality, the rows of can be rearranged so that the upper
left submatrix of has ’s on its diagonal. This implies that

only has positive entries on its upper left diagonal, and
has nonzero entries only in the lower right corner

(109)

Note that is a full-rank matrix. Let be the number of re-
ceivers in the broadcast channel. So, , and are
matrices. Let the dimension of be . So, the dimension of

is . Also, let the rank of be . Now, ob-
serve that . The reason for this has to do with the channel
reduction step mentioned earlier. Note that from (62) the op-
timal can be expressed as

(110)

Thus, the rank of is the same as the rank of . The
channel reduction step guarantees that is full rank. This
implies that must be full rank. For this to be true, must
have nonzero diagonal entries in at least positions, where

is the rank of . So, . But, after the channel reduction,
the rank of is the same as the rank of . This proves that

.
In general, can be strictly larger than . Physically, this im-

plies that in a broadcast channel, the number of active receivers
can be larger than the number of transmit dimensions. Also, note
that since the rank of is and the rank of is ,
the rank of is at most , which is not full
rank if is strictly larger than .

The next step of the proof involves the decomposition of
along the direction . The strategy is the following.

First, find an matrix of orthonormal column vectors,
denoted as , extending the space spanned by the columns of

, such that can be expressed as

(111)

Recall that contains column vectors and contains
column vectors. So, contains vectors, which
do not necessarily span the whole space. Note also that is a
full-rank square matrix.

Partition and into submatrices

(112)

Two useful facts about and are derived next. First

(113)

This is because

(114)

So, from (111)

(115)

This allows to be solved explicitly

(116)

(117)

Therefore,

(118)

thus proving (113).
The second useful fact is the following:

(119)

The proof is based on (111)

(120)

Multiply out the right-hand side. Using the fact that the upper
right submatrix of the right-hand side is zero, we get

(121)

Substituting in (116) and (117), (121) is equal to

(122)
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Since is full rank and is full rank, the
preceding implies

(123)

thus proving (119).
Finally, we are ready to show that satisfies the least

favorable-noise condition. Starting from (106)

(124)

the objective is to prove that

(125)

The strategy is to simplify the above using Schur’s complement
formula

(126)

where . To evaluate the matrix inversions
in (125), can be simplified using (113)

(127)

Thus, the first matrix inversion in (125) is equal to

(128)

and the second matrix inversion in (125) can be expanded sim-
ilarly in (129) at the bottom of the page. Now, using (124), the
difference between the two can be simplified

(130)

To prove (125), it remains to show that the above is equal to

(131)

Comparing (130) with (131), it is clear that the two are equal if
the following holds:

(132)

Recall that has nonzero entries only in its upper left diagonal.
So, the left-hand side of (132) is

(133)

The right-hand side of (132) is

(134)

By (119), the left-hand side is equal to the right-hand side. This
establishes the least favorable-noise condition (125).

Now, we verify that the broadcast channel and the multiple-
access channel have the same sum capacity. First, the relation
(135) at the bottom of the page can be easily verified. It remains
to prove that substituting for in the above does
not change capacity. With , the capacity is

(136)

Using the relation and the Schur’s com-
plement formula for the determinant

(137)

it is not difficult to see that

(138)
Therefore, the capacity expressions (135) and (136) have the
same value. In fact, this also implies that is the water-filling
covariance matrix for the entire class of noise covariances ma-
trices . This is so because the addition of can
only reduce the minimax capacity. The fact that it does not
shows that must be the maximizing covariance matrix for all

simultaneously. The earlier part of the proof shows
that all satisfy the least favorable-noise condition
with respect to simultaneously. Combining the two results,
we conclude that saddle points of the minimax problem are pre-
cisely the class of covariance matrices . This
proves the theorem for the single receiver antenna case.

(129)

(135)
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To generalize the result to the multiple-antenna case, con-
sider the candidate least favorable noise , with block-di-
agonal terms , which are not necessarily identity ma-
trices. Here, satisfies the saddle-point condition. We
need to show that the saddle-point KKT conditions remain to
be satisfied if a positive semidefinite matrix is added to to
make the diagonal terms identity matrices. The strategy is to
whiten the block-diagonal terms of and to consider a new
broadcast channel with whitening filters at each receiver. Let

(139)

be the eigenvalue decomposition of , where
is a diagonal matrix of eigenvalues. Since , the
eigenvalues are all less than or equal to . The new broadcast
channel is of the form

(140)

Now, if we find the equivalent of for the above new broad-
cast channel, it would have had a diagonal structure with some
diagonal entries being equal to and others being less than .
In such a new broadcast channel, receiver coordination is not
needed within each . Thus, can be split into multiple re-
ceivers each equipped with a single antenna only to which the
previous saddle-point characterization applies. An inverse trans-
formation on recovers the saddle point for the original
problem. This concludes the proof for the general multireceive
antenna case.
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