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Degrees of Freedom in Wireless Multiuser Spatial
Multiplex Systems With Multiple Antennas
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Abstract—This letter investigates the structure of the optimal
spatial multiplex scheme in a multiuser multiantenna wireless
fading environment. Based on a sum-capacity criterion, this letter
shows that the optimal transmission strategy in an uplink or
downlink channel with n antennas at the base-station involves
more than n users at the same time. In particular, when remote
users are equipped with m antennas each, the maximum number
of data streams is shown to be upper bounded by n2, with each
user transmitting or receiving up to m2 data streams. This gives
a dimension-counting interpretation for multiuser diversity.
Multiple antennas at the base-station increases the total number
of dimensions, thus allowing more users to transmit and receive
at the same time. By contrast, multiple antennas at the remote
terminal allow a single user to occupy multiple dimensions, which
increases its transmission rate, but also has the potential effect of
precluding simultaneous transmission by other users.

Index Terms—Broadcast channel, multiple-access channel, mul-
tiple-input multiple-output (MIMO) system, multiuser diversity,
spatial diversity, spatial multiplex.

I. INTRODUCTION

THE emergence of multiuser transmission techniques for
wireless multiantenna systems has opened up the possi-

bility of allowing multiple users to access the base-station at the
same frequency and at the same time. The design of such a mul-
tiuser multiple-input multiple-output (MIMO) system demands
not only multiuser detection and multiuser precoding techniques
at the signal-processing level, but also the implementation of
multiuser scheduling algorithms at the system level. The focus
of this letter is on the optimal structure of multiuser scheduling
and power control in a multiantenna wireless system.

Multiple antennas enhance the performance of wireless sys-
tems by creating multiple dimensions in the spatial domain. Spa-
tial dimensions can be used to provide diversity and/or opportu-
nities for spatial multiplex. Consider a cellular system with one
base-station and many remote terminals geographically scat-
tered in a single cell. Diversity and spatial multiplex can be un-
derstood as follows: As not all remote terminals are likely to
experience deep fades at the same time, the total throughput of
the multiuser system can be made resilient to channel fading by
intelligently selecting a best subset of users. Thus, diversity in
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a multiuser system occurs not only across the antennas within
each user, but also across the set of all users. This notion is often
referred to as multiuser diversity. Multiuser diversity was first
introduced by Knopp and Humblet [1] and has since been ex-
plored by various authors (e.g., [2]–[4]). Note that multiuser di-
versity differs from single-user spatial diversity in one aspect.
In a single-user system, spatial diversity refers to the ability for
the multiple antennas to transmit or receive the same informa-
tion across several paths, while in a multiuser system, indepen-
dent information is transmitted and received by different users.
Thus, a system that uses multiuser diversity may also operate in
a spatial multiplex mode whenever more than one user are ac-
tive at the same time.

The notion of multiuser diversity opens up the following set
of questions. In a spatial multiplex system with multiple an-
tennas at the base-station, how many users should be active at
any given time? How should the optimal set of users be chosen?
What are the appropriate power level and data rate for each
user? The answers to these questions would provide useful in-
sights to the design of both the physical layer and the medium-
access-control layer in a wireless network. This letter tackles
these questions by investigating the structure of the sum-ca-
pacity-achieving power-allocation strategy in uplink and down-
link channels. The optimal power-allocation strategy not only
gives a solution to the optimal multiuser scheduling problem,
but also sheds light on the interaction between spatial diversity
and multiuser diversity.

II. MULTIUSER MULTIANTENNA FADING CHANNEL

A. Uplink Channel Model

Consider a cellular wireless environment with a base-station
equipped with antennas and remote users, each equipped
with antennas. The remote-to-base-station transmission can
be modeled as follows:

(1)

where is the user index, and is the time index. The input sig-
nals are -dimensional vectors; the received signal
is an -dimensional vector; is the independent, identically
distributed (i.i.d.) complex Gaussian noise. The user ’s channel
at time instant is represented by , which is an
matrix with complex entries. This letter assumes an i.i.d. fading
model with instantaneous channel state information (CSI) avail-
able to all the transmitters and the receiver. The availability of
CSI is crucial for power control; in practice, it must be estimated
at the receiver and transmitted back to the transmitter by a reli-
able feedback mechanism. For simplicity, the entries of are
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assumed to be i.i.d. complex Gaussian random variables. This
corresponds to a Rayleigh channel model with rich scatterers.

The capacity of a -user multiple-access channel is a -di-
mensional convex region whose boundary points characterize
the tradeoff among data rates for various users. The focus of
this letter is the maximum -user sum rate. Although it ignores
the issue of fairness, the sum-capacity measure is an effective
overall figure of merit for the system. It has an efficient numer-
ical characterization [5] and has been the subject of many pre-
vious studies.

Ergodic capacity is the channel capacity in the traditional
Shannon sense. In this case, channel coding is done over a block
length sufficiently large to cover all fading states. The capacity
for the multiple-access channel is

(2)

where the expectation is over the joint channel distribution. The
mutual information here is a random variable, which depends
on the channel in two ways. First, the explicit computation of

depends on the channel. Second, because
of the perfect transmitter side-information assumption, the op-
timal input distribution for is also a function of

. The maximization is over all such input distri-
butions, which are called power-allocation policies.

Gaussian signaling is optimal in the i.i.d. fading multiple-ac-
cess channel. Let be the signal co-
variance matrix for user at the given channel realization. An
uplink power-allocation policy for user is a mapping

(3)

The average power constraint for user is satisfied when

(4)

where “tr” denotes matrix trace. The optimal sum-capacity point
is the solution to the following optimization problem:

(5)

subject to the average power (or trace) constraints
on .

B. Downlink Channel Model

The power-control problem for downlink transmission can
likewise be defined as follows. The base-station-to-remote-ter-
minal channel is modeled as

(6)

where is an -dimensional vector representing the trans-
mitted signal from the base-station, is an -dimensional
vector representing the received signal for the th user, and

is the i.i.d. complex Gaussian noise. Again, is an
matrix with complex entries, which denotes the channel

for user at time instant . Note that the base-station jointly en-
codes independent information for all users, while remote ter-
minals are scattered geographically and do not cooperate.

Given the instantaneous channel realization , a
downlink power-allocation policy is a mapping

(7)

where is the transmit covariance matrix. The
sum-rate optimum downlink transmission strategy is a power-
control policy that maximizes the sum capacity of the broadcast
channel subject to an average power constraint

(8)

The sum capacity of the broadcast channel is not a simple
mutual-information expression. However, it turns out that via
a so-called uplink–downlink duality, the broadcast channel
problem can be transformed into a multiple-access channel
problem. Further, both uplink and downlink problems have the
same solution.

C. Main Contribution

Intuitively, as each user experiences a different channel-
fading state, the sum-rate maximizing strategy should involve
only a subset of good channels in each time instant. This is true
not only in the downlink, where the base-station is free to allo-
cate power to the best users in each time instant, but also in the
uplink direction, because each user has the freedom to choose
the best time instants to transmit. The objective of this letter
is to give a rigorous analysis of the structure of the optimal
power-control algorithm and to provide a theoretical upper
bound on the maximum number of active users. The main result
of this letter is that in a multiuser multiantenna fading channel
with antennas at the base-station, the sum-capacity-achieving
transmission scheme in both uplink and downlink directions
involves more than data streams at the same time. In partic-
ular, when remote users are equipped with receive antennas
each, the optimal transmission scheme may involve up to
data streams in total, with each remote terminal using up to
data streams.

III. OPTIMAL UPLINK POWER CONTROL

A. Simultaneous Waterfilling

We start the development by considering first the uplink di-
rection. Let be a random variable representing the channel-
fading state with a cumulative density function . Denote
the channel-fading distribution as , and the power-alloca-
tion strategy as . The ergodic sum-capacity maximization
problem (5) can be written down as the following convex opti-
mization problem:

(9)

s.t (10)

(11)
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where denotes matrix determinant, denote matrix conju-
gate transpose, “ ” denotes a matrix positive-semidefiniteness
constraint, the noise covariance matrix is assumed to be an iden-
tity matrix. Equations (10) and (11) need to be satisfied for all

and for all fading states .
In a single-user channel (i.e., ), it is well known that

the optimal transmit-covariance matrix is the waterfilling
covariance over the set of singular values of the channel ,
both in space and in time. A generalization of this idea to the
multiuser setting is that the optimal solution must satisfy
the waterfilling condition over both space and time for every
user simultaneously.

Consider the optimization problem (9). Clearly, the global
optimal solution must be such that each is
a single-user “waterfilling” power allocation against the noise
and the combined interference from all other users, as other-
wise, can be optimized to improve the global objective.
This must be true for for each . Con-
versely, if the single-user waterfilling condition is satisfied for
every user , because the optimization problem is
concave over the positive-semidefinite matrices , the local
optimum is also guaranteed to be globally optimal. Thus, the
set of is the solution to (10) if and only if each is
the single-user waterfilling covariance against combined inter-
ference and noise.

The above discussion can be made rigorous by examining
the Karush–Kuhn–Tucker (KKT) condition for the optimiza-
tion problem. Associate dual variables with each power con-
straint and with each positivity constraint, where is a
scalar, and are matrices. It is clear that the following
set of KKT conditions need to be satisfied for each fading state

and for each user :

(12)

(13)

(14)

(15)
This set of KKT conditions is a straightforward generalization
of a similar result in [5], where the nonfading case is treated.
Note that the power-control strategy is a function of the channel
fading state, but the waterfilling level is a function of the
fading distribution only, which can be precomputed.

In fact, as shown in [5], this simultaneous waterfilling condi-
tion leads to an iterative waterfilling procedure to compute the
optimal . Starting from any initial power allocation, each
step of the iterative procedure consists of a single-user water-
filling for with all other users’ signals regarded as noise.
The set of covariance matrices eventually converges to
the optimum solution to (10).

B. Single-Antenna Case

When there is only one antenna for each transmitter and for
the receiver, [1] showed that the sum-rate maximizing power-

control strategy is a time-division multiple-access (TDMA)-like
strategy where a single user with the best channel transmits at
every moment. This result can be rederived using the simulta-
neous waterfilling interpretation. This sets the stage for subse-
quent development where multiple antennas are introduced.

In the single-antenna case, the KKT condition simplifies con-
siderably. In particular, (12) reduces to a scalar equation with
scalar variables and . Without the term, (12)
is the familiar waterfilling condition with water level equal to

. The variable is used to account for the possibility
that a fading state may be sufficiently weak so that no power is
allocated for that state. In that case, a positive is used to
make up the difference. The slack variable can only be nonzero
when .

Now, if two users and both transmit at a fading state ,
they must both satisfy the single-user waterfilling condition

(16)

(17)

The denominator for the two conditions are the same, so if both
users transmit, then

(18)

In other words, the fading state may not be shared by the two
users unless the channel gains differ by exactly the factor .
Since the channel fading state is assumed to be i.i.d. complex
Gaussian distributed, such an event has zero probability. There-
fore, we have proved the following.

Lemma 1 (Knopp and Humblet [1]): In a single-antenna mul-
tiple-access fading channel with i.i.d. Gaussian fading statistics,
assuming perfect side information at the transmitters and the re-
ceiver, with probability one, the sum capacity is achieved with
a power-control strategy that allows only one user to transmit at
a time.

This same conclusion was reached earlier by Cheng and
Verdu [6] in the context of a multiple-access channel with
intersymbol interference (ISI). The power-allocation problem
for the fading channel is identical to the power- and bit-loading
problem for the ISI channel if the fading statistics is assumed to
be i.i.d., and if the ISI channel is equipped with guard periods
which ensure the orthogonality of subchannels.

C. Multiple-Antenna Case

The intuition for Knopp and Humblet’s result is that a
single-antenna receiver is limited by the single degree of
freedom (DOF) it has. To achieve the sum capacity, only one
user can transmit at a time. With multiple antennas, how-
ever, multiple dimensions may be available. So, the optimal
power-control strategy may involve more than one user trans-
mitting at the same time. Intuitively, one might suspect that
the maximum number of users in this case should be bounded
by the number of base-station antennas. Unfortunately, this
is not the case. With multiple base-station antennas, the best
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upper bound is, in fact, related to the square of the base-station
antennas. We now state the main result of this letter.

Theorem 1: In a multiple-antenna multiple-access fading
channel with i.i.d. complex Gaussian channel matrices, as-
suming perfect channel side information at all the transmitters
and at the receiver, the optimal power-control strategy that
achieves the maximum sum ergodic capacity has the following
property: with antennas for each user and antennas at the
base-station, at any time instant, the rank of transmit signal

for each users must satisfy . In particular, a
maximum of users can transmit simultaneously.

Proof: First, consider the case in which each transmitter
has one antenna and the receiver has antennas, so that the
channel matrix is an vector and the transmitter
covariance is just a scalar , and the slack variable is also a
scalar

The claim is that at any fading state , only a maximum of
users can have and . The rest of the users
must have and . As in the single-antenna
case, the key is to recognize that the matrix inversion in the
expression is common to all users. Recall that is determined
by the channel fading distribution, so it can be considered fixed.
We first ask whether there exists a positive definite Hermitian
matrix such that for more than ’s. The
following lemma answers this question.

Lemma 2: Fixing positive , let be
random vectors whose entries are i.i.d. complex Gaussian

variables. If , then with probability one, there does
not exist a positive definite Hermitian matrix such that

.
Proof: Let . Denote the

entry of by . Since is a Hermitian matrix with com-
plex entries (i.e., ), there are independent
complex variables in the off-diagonal terms of and inde-
pendent real entries on the diagonal. So, there are effectively
independent real variables in . To have , we
need

(19)

for all . Because ’s are i.i.d. Gaussian, with
probability 1, these equations are linearly independent. So a
solution to (19) exists only if .

Lemma 2 shows that the number of users that can transmit si-
multaneously is or fewer. It does not guarantee that exactly

users will transmit, because the existence of a matrix sat-
isfying (19) does not guarantee that such an can be synthe-
sized by , as in (19).

Next, we turn our attention to the case where remote transmit-
ters are equipped with multiple antennas. In this case, the water-
filling level is now an identity matrix, and the transmitter

power spectrum and the slack variables are both positive
semidefinite matrices. The waterfilling condition is

for . Parallel to the previous development, we ask,
does there exist a positive semidefinite matrix that satisfies

? The idea is again to count the
number of independent equations and the number of unknowns.
To satisfy the matrix equation, we need to satisfy one equation
for each matrix entry. By symmetry, there are in-
dependent complex entries for each . However, as the diagonal
entries of the matrix equations are automatically real, the total
number of independent real equations is .

The number of unknown variables is counted as follows.
Again, the matrix introduces DOFs. The number of
unknowns introduced by the slack variable depends
on its rank. are matrices. An complex
Hermitian matrix with real diagonal entries has at most
DOFs. However, if the matrix is restricted to rank , the number
of DOFs decreases to . To see this, recall that a
positive semidefinite Hermitian matrix can be represented by
its Cholesky factorization as , where is triangular. The
number of DOFs can be thought of as the number of indepen-
dent variables in the triangular matrix . The diagonal terms
are always real. The off-diagonal terms are complex. Thus, the
total number of independent entries is

(20)

If an matrix is of rank , its Cholesky factor is an
triangular matrix. Again, the diagonal entries are always
real, and the off-diagonal terms may be complex. So, the number
of DOFs is

(21)

Now, the slack variables need to satisfy the complementary
slackness condition

(22)

So, if the transmit signal is of rank , the rank of
is at most . Therefore, each introduces at most

extra DOFs. The total number of unknown variables is
then coming from the matrix , plus coming from
each of .

The matrix equations involve the channel realization ,
which are Gaussian random matrices. So, with probability one,
these equations are independent. Thus, for a solution to exist,
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there need to be at least as many unknown variables as there are
equations, so

(23)

from which the condition follows.
At any time instant, a user transmits with positive power if the

rank of its transmitted signal is at least 1. Therefore, in a mul-
tiple-access scenario with receive antennas, a total of users
can transmit at the same time. The power-control strategy can be
thought of as choosing the “best” set of at most users, when
transmitting together (using power determined by the fading
state and their respective water levels), provides the highest sum
capacity. This concludes the proof.

Theorem 1 establishes an upper bound on the number of si-
multaneous users that can transmit simultaneously in a mul-
tiple-access channel. Although the theorem does not guarantee
that the bound is tight, simulation results indicate that the max-
imum number of simultaneous users is somewhere between
and . Note that this result is established assuming that has
complex entries. When has real entries, Theorem 1 needs to
be modified as follows. The rank bound becomes

. The maximum number of simultaneous
users becomes . Theorem 1 uses a similar proof tech-
nique as in [7]. In [7], the same technique is used to show the
optimality of transmit beamforming in the multiantenna uplink.
The emphasis in this letter is the structure of the optimal sched-
uling scheme.

IV. OPTIMAL DOWNLINK POWER CONTROL

The preceding result can be generalized to the downlink. The
generalization relies on recent results on the sum capacity of
Gaussian vector broadcast channels [8]–[11] and a key insight
known as the duality of the uplink and downlink channels
[11]–[13].

The duality result can be stated as follows. The sum capacity
of a broadcast channel is exactly the same as the sum capacity
of a dual multiple-access channel with channel matrices trans-
posed and with a sum-power constraint imposed across all the
users. Mathematically, the power-control strategy that
maximizes the sum ergodic capacity for a fading broadcast
channel (6) can also be found by first solving for the KKT
condition of a dual multiple-access channel

(24)

(25)

(26)

(27)

where are the transmit covariance matrices
of the dual channel. Note that the only difference between the

Fig. 1. Number of active users versus the number of base-station antennas over
random realizations of the channel. Both the range and the average number of
active users are shown.

above set of equations and (12)–(15) is that the dual channel
matrices are now and a sum-power constraint is applied
across all ’s. Based on the optimal transmit covariance
matrices of the dual multiple-access channel, the optimal
in the broadcast channel may then be found via

(28)

Further, is precisely the optimal receiver matrix at each
remote user.

Corollary 1: In a multiple-antenna broadcast fading channel
with i.i.d. complex Gaussian channel matrices, the optimal
transmission strategy with perfect channel side information at
the transmitter and at all the receivers that achieves the max-
imum sum ergodic capacity has the following property. With
antennas for each user and antennas at the base-station, at any
time instant, the rank of receiver matrix for each users must
satisfy . In particular, a maximum of receivers
can be active simultaneously.

The proof of the corollary follows the same line of argument
as the proof of Theorem 1. As the waterfilling level is fixed by
the fading distribution, the same dimension-counting argument
can be made for the dual multiple-access channel. The analysis
of the number of variables versus the number of equations re-
veals that the rank of must satisfy . Now, as

is the receiver matrix at the remote user, the rank bound for
the dual multiple-access channel translates directly to the rank
bound for the receiver matrix. In particular, at most receivers
can be active at any given time.

V. SPATIAL DIVERSITY VERSUS MULTIUSER DIVERSITY

In both the multiple-access fading channel and the broad-
cast fading channel, the number of DOFs created by multiple
antennas is bounded by a quadratic function of the number of
antennas. With antennas at the base-station, the maximum
number of DOFs at the base-station is theoretically upper
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Fig. 2. Histograms of the number of active users over 100 random realizations of the channel. Top-left, top-right, bottom-left and bottom-right figures correspond
to the cases of 2, 4, 8, and 16 base-station antennas, respectively. The remote terminals are equipped with one antenna each.

bounded by . These DOFs are to be divided among the re-
mote users. Each remote user, with antennas, can potentially
use up to DOFs. Thus, the number of base-station antennas
has the effect of allowing more users to transmit simultane-
ously, while the number of antennas at the remote users has
the opposite effect. The remote antennas have the potential to
crowd out receiver dimensions, and thus prevent other users
from transmitting at the same time. Such crowding out increases
system sum capacity at the expense of delay and unfairness. It
should be noted that such crowding out, although theoretically
possible, rarely happens in an i.i.d. Gaussian channel. As was
pointed out in [7], the remote users are most likely to employ
a beamforming strategy which effectively reduces each remote
user to a single-dimension transmission or receiving terminal.

VI. SIMULATION RESULTS

Theorem 1 provides a theoretical upper bound on the total
number of active users in a multiuser multiantenna wireless
channel. Simulation results suggest that this upper bound is tight
when the number of antennas at the base-station is small. Al-
though the bound becomes loose as the number of antennas
grows large, simulation results also suggest that the actual max-
imum number of active users appear to grow superlinearly as a
function of the number of base-station antennas.

Figs. 1 and 2 show simulation results on a Rayleigh fading
channel with multiple remote users, each with a single antenna

and a base-station with a varying number of transmit antennas.
The optimization problem for the uplink is solved using the it-
erative waterfilling algorithm [5]. The corresponding downlink
problem is solved using a combination of iterative waterfilling
and a dual-decomposition approach [14]. The number of active
users versus the number of transmit antennas over 100 realiza-
tions of the channel is plotted in Fig. 1. It is seen that the theoret-
ical bound is achieved when the number of base-station antennas
is small. For example, with 2 and 4 antennas at the base-station,
the number of active users is close to 4 and 16, respectively. The
bound, however, does not seem to be tight when the number of
base-station antennas is large.

Fig. 2 shows histograms of the number of active users over
100 random realizations of the channel for the cases of 2–16
base-station antennas. There are substantial variations among
different realizations of the channel. When the number of base-
station antennas is large, the number of active users is almost
always several times higher than the number of antennas.

VII. CONCLUDING REMARKS

When the base-station in a cellular system is equipped with a
single antenna, the sum-rate maximizing transmission strategy
consists of only a single active user. Essentially, only the user
with the best channel is being served at any given time. The
main point of this letter is to show that with multiple antennas
at the base-station, the sum-rate maximizing strategy consists
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of multiple simultaneous active users. The maximum number
of simultaneous users is typically larger than (and is bounded
by the square of) the number of base-station antennas. The
main result of this letter provides a dimension-counting argu-
ment for multiuser multiantenna wireless systems. There is an
interesting interplay between spatial diversity and multiuser
diversity. In a random propagation environment, a downlink
broadcast channel with transmit antennas has up to DOFs.
These dimensions are divided among the remote terminals. A
remote terminal with receive antennas can use up to
dimensions. The dimensions are additive, and the total number
of dimensions is upper bounded by . This same result applies
to both uplink and downlink fading channels.

REFERENCES

[1] R. Knopp and P. A. Humblet, “Information capacity and power con-
trol in single-cell multi-user communications,” in Proc. IEEE Int. Conf.
Commun., 1995, pp. 331–335.

[2] E. F. Chaponniere, P. Black, J. M. Holtzman, and D. Tse, “Transmitter
directed multiple receiver system using path diversity to equitably max-
imize throughput,” U.S. Patent 6449490, Sep. 10, 2002.

[3] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM
system using dynamic subchannel allocation,” in Proc. IEEE Veh.
Technol. Conf., Tokyo, Japan, Spring, 2000, vol. 2, pp. 1085–1089.

[4] X. Qin and R. Berry, “Exploiting multiuser diversity for medium access
control in wireless networks,” in Proc. 22nd Annu. Joint Conf. IEEE
Comput. Commun. Soc., Mar. 2003, vol. 2, pp. 1084–1094.

[5] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
Gaussian vector multiple access channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[6] R. S. Cheng and S. Verdu, “Gaussian multiaccess channels with ISI:
Capacity region and multiuser water-filling,” IEEE Trans. Inf. Theory,
vol. 39, no. 3, pp. 773–785, May 1993.

[7] W. Rhee, W. Yu, and J. M. Cioffi, “The optimality of beam-forming
in uplink multiuser wireless systems,” IEEE Trans. Wireless Commun.,
vol. 3, no. 1, pp. 86–96, Jan. 2004.

[8] G. Caire and S. Shamai, “On the achievable throughput of a multi-
antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49,
no. 7, pp. 1691–1706, Jul. 2003.

[9] W. Yu and J. M. Cioffi, “Sum capacity of Gaussian vector broadcast
channels,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1875–1892, Sep.
2004.

[10] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates
and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[11] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broad-
cast channel and uplink-downlink duality,” IEEE Trans. Inf. Theory,
vol. 49, no. 8, pp. 1912–1921, Aug. 2003.

[12] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of
Gaussian multiple-access and broadcast channels,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 768–783, May 2004.

[13] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans.
Inf. Theory, vol. 52, no. 2, pp. 361–374, Feb. 2006.

[14] W. Yu, “Sum capacity computation for the Gaussian vector broadcast
channel,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 754–759, Feb.
2006.


