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ABSTRACT

This paper proposes an algorithm to compute the transmit
beamformers for linear interference alignment for the MIMO
interference channel and the MIMO interfering multiple-
access/broadcast channel without symbol extensions. We
first formulate the interference alignment problem as a rank
minimization problem with linear constraints, then approxi-
mate the matrix rank by the nuclear norm. We further propose
the use of an iterative reweighted nuclear norm approach and
show that adaptive reweighting can significantly improve
the algorithm’s ability to find aligned beamformers. Sim-
ulation results show that the proposed algorithm is able to
provide more interference-free dimensions and also con-
verges faster than a previously proposed rank-constrained
rank-minimization approach for interference alignment.

Index Terms— Interference alignment, interference mit-
igation, rank minimization, nuclear norm minimization,
reweighting.

1. INTRODUCTION

Since the landmark development of interference alignment in
[1, 2], there have been significant interests in applying align-
ment techniques for various practical networks such as the
MIMO cellular networks [3]. While the original work on
interference alignment was based on asymptotic symbol ex-
tension, alignment schemes where only finite extensions over
time or frequency are allowed are of practical interest. With
the current trend in cellular networks to move towards smaller
cells and to enable cooperation among multiple base-stations,
managing interference through linear interference alignment
holds significant promise.

While it is straightforward to compute the transmit and
receive beamformers for interference alignment when closed
form expressions are available (e.g. the 3-user N × N in-
terference channel [1] and the 2-cell broadcast channel [3]),
iterative algorithms are typically used when such solutions
are not readily available [4–8]. In [4], an iterative algorithm
for the MIMO interference channel based on minimizing the
sum of interference power at all the receivers was proposed.
In [6], the algorithm of [4] is extended to the MIMO interfer-

ing cellular networks. While algorithms of [4, 6] are known
to converge, they typically need several thousand iterations.

This paper is based on a rank minimization approach to
finding linear beamformers for linear interference alignment,
similar to the approach taken in [7]. In [7] the problem of find-
ing beamformers for interference alignment was posed as a
matrix rank minimization problem subject to rank constraints.
The algorithm of [7] involves iteratively solving two semidef-
inite programs with the objective of minimizing the nuclear
norm of a matrix. This algorithm was shown to be better than
the algorithm of [4] for systems with time/frequency exten-
sions.

In [7], the authors further show that the algorithm pro-
posed in [4] is equivalent to minimizing the Frobenius norm
(matrix analogue of the ℓ2-norm for vectors) of the same ma-
trix. Since minimizing the ℓ2-norm or the Frobenius norm
is known to result in many small singular values as opposed
to few non-zero singular values, this provides a plausible ex-
planation for the slow convergence of algorithms presented
in [4,6]. While the nuclear norm minimization approach taken
in [7] is better suited for inducing sparsity, the impact of the
convex constraint that is used in lieu of the rank constraint
on the optimization problem is difficult to assess. Further,
nuclear norm has known drawbacks in inducing sparsity [9]
and better approximations to rank are needed to generate the
maximum possible interference-free dimensions.

In this work, we focus on linear interference alignment
without symbol extensions for generic channels and formu-
late the problem of finding aligned beamformers as a rank
minimization problem subject to linear constraints. While the
formulation is similar in spirit to [7], there are significant dif-
ferences. First, we only optimize over transmit beamformers
to align interference at the receivers; the receive beamform-
ers are chosen subsequently to zero-out the aligned interfer-
ence. This approach does not require alternating between the
forward and backward channels and reduces the total num-
ber of variables to optimize over. Second, we avoid imposing
rank constraints on the transmit beamformers by enforcing
the transmit beamformers to be in reduced row echelon form,
where all superfluous variables subject to the rank constraint
are eliminated. Third, rather than approximating the rank of
a matrix by its nuclear norm, we use an iterative approach
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where rank is approximated using a series of weighted nu-
clear norms. This approach is motivated by recent works in
matrix rank minimization [9, 10] that suggest that the nuclear
norm might not be as effective in inducing sparsity as previ-
ously thought and that an iterative reweighting procedure [10]
can significantly improve upon the solution provided by direct
nuclear norm minimization. Throughout this paper, we make
significant use of these reweighting heuristics developed for
matrix rank minimization [11–14].

2. SYSTEM MODEL

We consider a K-user MIMO interference channel with Mt

transmit antennas at each transmitter and Mr receive anten-
nas at each receiver. Each transmitter is assumed to be send-
ing d data streams to its receiver. The channel from the ith

transmitter to the jth receiver is denoted by the Mr×Mt ma-
trix Hij . The channel matrices are assumed to be generic.
Assuming perfect synchronization at all the transmitters, the
received signal at the ith receiver after appropriate sampling
is given by

yi =

K
∑

j=1

HjiVjsj + ni, (1)

where sj is the d × 1 symbol vector transmitted by the jth

transmitter, Vj is the Mt × d linear precoding matrix, yi is
the Mr×1 received signal vector at the ith receiver, and ni is
the additive white Gaussian noise vector with covariance σ2I.

The received signal at the ith receiver is processed using
a linear zero-forcing filter denoted by the Mr × d matrix Ui.
After linear processing at the receiver, the signal can be writ-
ten as

UH
i yi = UH

i HiiVisi +

K
∑

j=1,j 6=i

UH
i HjiVjsj +UH

i ni. (2)

We denote the space occupied by interference at the ith

receiver as the range of the following matrix

Ri = [H1iV1, . . . ,H(i−1)iVi−1,H(i+1)iVi+1,

. . . ,HKiVK ]. (3)

3. RANK MINIMIZATION APPROACH

For the system described above, the conditions for linear in-
terference alignment when symbol extensions over time or
frequency are not allowed can be stated as follows:

UH
i HjiVj = 0 ∀ i 6= j, (4)

rank(UH
i HiiVi) = d ∀ i. (5)

For a given system, it is not always possible to satisfy the
conditions in (4) and (5). A preliminary check on feasibility

is to make sure that the given system is proper [15]. A K-
user Mt × Mr interference channel is said to be proper if
(Mr +Mt)/(K + 1) ≤ d. While not all proper systems are
feasible [16], improper systems have been shown to be almost
surely infeasible [17]. In this paper, we only consider proper
systems that are known to be feasible.

Assuming channels to be generic allows us to restate the
conditions in (4) and (5) in a manner that directly leads to
the rank minimization approach. Since direct channels do not
play a role in (4), the condition in (5) is automatically sat-
isfied whenever Ui and Vi have rank d and whenever the
channels are generic [15]. As a further consequence of chan-
nels being generic, satisfying (4) is equivalent to the condi-
tion that the set of transmit precoders {Vi}

K
i=1 (henceforth

denoted as V) is such that there are at least d interference-
free dimensions at each receiver before any linear processing.
In essence, generic channels ensure that the intersection be-
tween useful signal subspace (span(HiiVi)) and interference
subspace (span(Ri)) is almost surely zero dimensional, pro-
vided that the rank(Ri) ≤ (Mr − d) ∀i. Thus the require-
ments for interference alignment can be alternately stated as

rank(Ri) ≤ Mr − d ∀ i, (6)

rank(Vi) = d ∀ i. (7)

Given a set of transmit precoders V that satisfy the above
conditions, designing the receive filters is straightforward.

Using (6) and (7) we reframe the requirements for inter-
ference alignment as an optimization problem to minimize the
rank of a matrix. First, we note that the condition (7) is im-
mediately satisfied by restricting VT

i to be of the row reduced
echelon form [Id×d ṼT

i ]. Note that there is no loss of gener-
ality in requiring Vi to be of this form as any set of d linearly
independent vectors can be written in this form through col-
umn transformations. Thus, the interference alignment condi-
tions can be posed as the following rank minimization prob-
lem subject to linear constraints:

minimize
K
∑

i=1

rank(Ri)

subject to Ai(Vi) = bi, Ci(V) = vec(Ri) ∀i,

(8)

where Ai(Vi) = bi represents the collection of all linear
constraints that need to be satisfied by the transmit precoders,
e.g. Vi(1 : d, 1: d) = Id×d, and Ci(V) = vec(Ri) repre-
sents the relationship between the entries in Ri and the trans-
mit precoders, as given in (3). This is a rank minimization
problem subject to linear constraints and differs from the rank
minimization subject to rank constraint formulation presented
in [7] in two key aspects. The formulation presented in [7] is
as given below:

minimize
K
∑

i=1

rank(UH
i Ri)

subject to λmin(U
H
i HiiVi)≥ ǫ, Ci(V) = vec(Ri) ∀i,

(9)
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where ǫ > 0. The constraint on the minimum eigenvalue of
the received signal space UH

i HiiVi ensures that (a) all trans-
mit and receive beamformer matrices have rank d and (b) the
received signal space UH

i HiiVi is not rank deficient. In our
formulation, while (a) is addressed by imposing the row re-
duced echelon form on VT

i , (b) is assured by assuming chan-
nels to be generic, allowing us to only impose linear equal-
ity constraints in our formulation. Further, for any choice
of ǫ > 0, the constraint on the smallest eigenvalue places a
restriction on the received signal space and the optimization
is no longer a pure pursuit to align interference. While this
is a necessary constraint when channels are not generic, this
constraint can be dropped for generic channels. Since direct
channels and the received signal space play no part in (8), this
formulation is not hindered by any constraints on the received
signal space. Finally, the proposed methodology to solve (9)
approximates rank using the nuclear norm and involves alter-
nating between two semidefinite programs, one to optimize
the receive beamformers and the other to optimize the trans-
mit beamformers. Since we only optimize the transmit beam-
formers, our approach involves iteratively solving only one
set of semidefinite programs.

4. REWEIGHTED NUCLEAR NORM
MINIMIZATION

The rank minimization formulation in (8) has been exten-
sively studied in parallel in the investigations of ℓ1-norm min-
imization problem for compressed sensing [11–13]. Typi-
cally, rank is approximated using the nuclear norm of the ma-
trix, which is the matrix counterpart of ℓ1-norm for vectors.
Nuclear norm is the sum of the singular values of a matrix
and is known to be the convex envelope of rank [18]. Using
this approximation for rank, the rank minimization problem
(8) can be posed as:

minimize ‖R‖∗

subject to Ai(Vi) = bi, Ci(V) = vec(Ri) ∀i,
(10)

where we denote the block diagonal matrix consisting of the
matrices {Ri}

K
i=1 as R. Note that

∑K

i=1 ‖(Ri)‖∗ = ‖R‖∗.
While nuclear norm is well known for inducing sparsity,

further improvement is possible using an iterative reweighting
procedure. Such a reweighting procedure was proposed in [9]
for ℓ1-norm minimization and was extended to nuclear norm
minimization in [10]. We use the reweighted nuclear norm
minimization procedure outlined in [10] to solve (8). This
procedure reformulates the rank minimization in (8) as

minimize ‖W1RW2‖∗

subject to Ai(Vi) = bi, Ci(V) = vec(Ri) ∀i,
(11)

where W1 and W2 are two positive definite matrices that
are interpreted to reweight the nuclear norm of R. The itera-
tive procedure involves solving one instance of (11) for fixed

W1 and W2 per iteration, then updating the weights for the
next iteration. The choice of the weight update rule affects
the overall performance and needs to be chosen carefully.
It has been shown in [9] that some of the heuristic weight
updates can be interpreted to be equivalent to minimizing a
concave surrogate function of rank through a majorization-
minimization procedure [9, 10, 13]. In this paper, we con-
sider two weight update rules, one corresponding to minimiz-
ing the surrogate function of log det(.) and the other corre-
sponding to the surrogate function of −tr(inv(.)). The iter-
ative reweighted nuclear norm minimization to solve (8) can
be summarized as

1. Initialize W1
1 = I, W1

2 = I, δ.

2. Iterate over k:

(a) Solve 11 using weights Wk
1 and Wk

2 . Let Ropt

be the optimal matrix.

(b) Compute the reduced SVD of Wk
1RoptW

k
2 , and

denote it as PΣQH .

(c) Set
Wk+1

1 =
(

(Wk
1 )

−1PΣPH(Wk
1 )

−1 + δI
)−α

,

Wk+1
2 =

(

(Wk
2 )

−1QΣQH(Wk
2 )

−1 + δI
)−α

.

The parameter δ > 0 is a regularization constant to make
sure that the weighting matrices are positive definite. When
α = 1/2, the update rule corresponds to the log det(.) ap-
proximation and when α = 1, the update rule corresponds to
the −tr(inv(.)) approximation. It is worth noting that the first
step in this iterative procedure (k = 1) is identical to solving
(10) and every subsequent step tries to further improve the
solution obtained in the previous iteration.

This routine can be shown to converge and at the con-
verged point, we obtain the transmit beamformers Vopt. The
receive beamformers at receiver k can then be chosen to be
the left-singular vectors corresponding to the d smallest sin-
gular values of the matrix Rk computed using Vopt. Since
the proposed algorithm only converges to a local optimum,
it might not always yield a sufficiently low rank solution so
that, even for a proper system known to be feasible, interfer-
ence cannot be completely nulled out at all the receivers. In
such cases, some residual interference leaks into the signal
space resulting in fewer degrees of freedom.

Finally, we would like to point out that the formulation in
(8) also extends to interfering MIMO multiple-access chan-
nel. However, for the interfering MIMO broadcast channel,
decomposition of the transmit precoders into the reduced row
echelon form is not guaranteed because the transmitted data
streams are intended for different users. Hence, for the inter-
fering broadcast channel, we invoke the channel reciprocity
argument [4] and solve (8) for the interfering MIMO multiple
access channel corresponding to the uplink channel.
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Fig. 1. Interference-free dimensions as a function of iterations
for a 4 user 2× 3 interference channel with 1 data stream per
user.

5. SIMULATION RESULTS

In order to test our algorithm, we consider a 4-user 2 × 3 in-
terference channel with 1 data stream per user — a proper and
feasible system [15]. For perfect interference alignment, we
need interfering vectors to occupy 2 or fewer dimensions at
every receiver. We run reweighted nuclear norm minimiza-
tion (RNNM) for 20 iterations, with δ set to 1. The con-
vex optimization problem in (11) was solved using CVX, a
package for specifying and solving convex programs [19,20].
We compare our algorithm with the interference leakage min-
imization (ILM) algorithm [4] and the rank constrained rank
minimization algorithm(RCRM) [7] with ǫ set to 10−3. An
iteration of RCRM involves solving 2 semidefinite programs
and one iteration of the algorithm in [4] involves computing 2
eigen decompositions per user. The algorithms are tested over
200 channel realizations with channel coefficients drawn from
a real zero-mean unit-variance Gaussian distribution. The
algorithms are run for a fixed number of iterations, and the
interference-free dimensions at receiver k are counted as the
number of singular values of UH

k HkkVk > 10−3 minus the
number of singular values of UH

k Rk > 10−6.
The simulation results are plotted in Fig. 1, where the

number of interference-free dimensions for the overall net-
work averaged over all the channel realizations are plotted as
a function of the number of iterations. For the ILM algorithm
alone, one iteration in the plot corresponds to 500 actual iter-
ations. This scaling is purely for visual purposes and is not to
be taken to suggest a matching of complexities between the
different algorithms. It is clearly seen that while none of the
three algorithms are able to provide the 4 interference-free di-
mensions possible for such a system, the −tr(inv(.))-RNNM
heuristic is able to provide close to 3 interference-free di-

mensions. While the performance of the −tr(inv(.))-RNNM
heuristic is better than the performance of the log(det(.))-
RNNM heuristic, both heuristics perform significantly better
than the RCRM algorithm.

We also note that the performance of the RNNM heuristic
after the first iteration corresponds to unweighted nuclear
norm minimization. The fact that the performance of the
RNNM heuristic after the first iteration is better than the
RCRM heuristic after one iteration shows that the gain over
the RCRM heuristic is not just due to the reweighting of the
nuclear norm and that there is a clear advantage of using the
proposed rank minimization formulation. The subsequent
improvement in the performance of the RNNM heuristic after
the first iteration highlights the gains due to the reweighting
procedure.

Due to the significant difference in the per iteration com-
plexities, comparison to the ILM algorithm is not straightfor-
ward. We can however note that the performance of the ILM
algorithm after about 2500 iterations, falls between the per-
formance of the two proposed heuristics (after 10 iterations)
with further iterations yielding negligible performance gain.

To understand the better performance of the −tr(inv(.))
-RNNM heuristic, we draw parallels to reweighted ℓ1-norm
minimization to provide an intuitive explanation similar
to [9]. Rank minimization and nuclear norm minimiza-
tion of a matrix are equivalent to minimizing the ℓ0 and ℓ1
norm of its singular values respectively. While ℓ0-norm im-
poses a constant penalty for non-zero singular values, the
ℓ1-norm imposes a linear penalty. While the linear penalty
is sparsity inducing, it also unnecessarily incentivizes the
reduction of large singular values. The goal of reweighted ℓ1-
norm/nuclear norm minimization is to minimize a weighted
sum of singular values such that the large singular values
now have small weights. When the weights are chosen to
be inversely proportional to the singular values, the result-
ing RNNM heuristic can be shown to be equivalent to using
the log det(.) surrogate function for rank. Similarly, choos-
ing weights to be inversely proportional to the square of
the singular values can be shown to be equivalent to using
the −tr(inv(.)) surrogate function for rank. This increased
weighting of very small singular values while suppressing the
penalty due large singular values explains the performance
difference between the two RNNM heuristics.

6. CONCLUSION

In this paper we proposed a rank minimization formulation
with linear constraints for linear interference alignment with-
out symbol extensions. The heuristic uses the reweighted
nuclear norm minimization framework to solve the resulting
optimization problem. Through simulations we established
that the proposed algorithm is quick to converge and yields a
higher number of interference-free dimensions than the previ-
ously proposed rank constrained rank minimization approach.
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