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Abstract—This paper studies the ergodic capacity of a multicell
distributed antenna system (DAS), where remote antenna ports
are spread within each cell to cooperatively transmit to user
terminals. Unlike most prior studies which assume the antenna
ports to be deployed at fixed locations, this paper assumes the
antenna ports to be distributed as a spatial Poisson point process
(PPP) to account for the fact that in practice the antenna ports are
randomly placed to cover wherever the dead spots are. We first
model DAS within each cell as a downlink multiple-input single-
output (MISO) channel with per-antenna power constraint while
accounting for inter-cell (inter-cluster) interference. Two DAS
layouts are considered: the “regular” layout where the antenna
ports are randomly deployed within regular cellular boundary
to serve a given user, and the “user-centric” layout where the
antenna ports are distributed over a wide area and the users
choose the surrounding antenna ports to form a “virtual cell”
as its own serving antenna subset. Using the tool of stochastic
geometry, we analytically derive efficiently computable ergodic
capacity expressions for the two layouts of DAS. Using these
expressions, the cell-edge capacity of DAS under the regular
layout is shown to be upper-bounded by α

2
, where α is the

pathloss exponent. Numerical results show that the proposed
analytical model can accurately model the first layout, and can
well approximate the second layout when the serving radius of
users is not large. Compared to the traditional cellular system
where all antennas are co-located at the cell center, DAS has
better cell-edge performance. Further, the user-centric DAS has
higher capacity than the DAS under regular layout.

I. INTRODUCTION

Distributed antenna system (DAS) is a promising future

technology for improving coverage and capacity of wireless

cellular networks. By deploying remote antenna ports in cover-

age holes and connecting them with the home base-stations via

dedicated high-speed backhaul links, DAS can cooperatively

transmit to user terminals, thereby effectively mitigating detri-

mental effects such as shadowing and indoor penetration loss

[1]. The information theoretical ergodic capacity of DAS has

been studied in some recent works. The authors in [2] show

that DAS can significantly improve capacity, particularly for

users near cell boundaries. The capacity distributions under

different number of cooperating antennas are compared in [3].

A placement optimization scheme for DAS is developed in [4]

based on the ergodic capacity and the stochastic approximation

theory. Uplink capacity is analyzed in [5] and [6], which

show that DAS yields a much higher capacity than traditional

cellular systems. However, these studies either ignore the inter-

cell interference or simply assume it to be Gaussian. Explicitly

modeled out-of-cell interference is included in [7], where the

MIMO capacity of DAS under zero-forcing beamforming over

all or a subset of antennas is evaluated.

The above studies on the capacity of DAS are all based

on the assumption that antennas ports are deployed at fixed

locations, e.g., uniformly on concentric circles. However,

practical remote antennas may be placed at arbitrary locations

to cover the dead spots, which can be modeled as a spatial

random process from a birds-eye view of the network. To

account for the randomness in the topology of DAS, this paper

models the antenna ports as a Poisson point process (PPP) with

a certain intensity. This model makes the analysis tractable by

utilizing the theoretical results of stochastic geometry [8], [9].

Prior studies have used this model to analyze the capacity

of multihop networks [10], traditional cellular networks [11],

cellular networks with fractional frequency reuse [12], and

heterogeneous networks [13], [14]. Stochastic geometry has

also been applied to the analysis of DAS in [15] in deriving

the outage probability as a function of the number of antennas.

This paper derives a general downlink ergodic capacity for-

mula for DAS using stochastic geometry to enable numerical

computation without Monte Carlo simulation. We explicitly

model desired signals as well as inter-cell (inter-cluster) inter-

ferences. For DAS where antenna ports are randomly spread

but within regular cellular boundary, we express the ergodic

capacity as a function of the distance between the user and

the cell center, and derive a cell-edge capacity upper bound

which solely depends on the pathloss exponent. Then we

apply the proposed model to the idea of “virtual cell” as

introduced in [5], where users choose surrounding antennas

dynamically to form its serving subset. This user-centric DAS

layout eliminates the cell-edge effect and provides uniform

performance for all users, at the cost of more complex back-

haul management. This paper analyzes the capacity of user-

centric layout under different user serving radii. Further, we

compare the performance of these two layouts as well as that

of the traditional cellular system. Finally, the fully distributed

DAS (one antenna per port) and the partially distributed DAS

(multiple antennas grouped at one port) are compared under

the proposed model while fixing the total number of antennas.

II. ERGODIC CAPACITY OF DAS

This paper assumes that each user is equipped with a

single antenna. Consequently, the link from the distributed
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Fig. 1. DAS topology. (a) Regular layout. (b) User-centric layout.

antennas within the cell to the considered user is modeled as a

multiple-input single-output (MISO) channel. Since distributed

antennas are physically separated, separate rather than joint

power constraint should be imposed. In [16], ergodic MISO

capacity with per-antenna power constraint is proved to be

the same as the ergodic independent multiple-access capacity.

e.g., each antenna sends independent signals with constrained

power. Assuming Gaussian signaling and treating interference

as noise, the ergodic capacity (in nats/s/Hz) of DAS for the

user in cell o (or cluster o) is

C=Eh

[
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where n and m are the antenna indices, o and w are the cell

(cluster) indices, P
(o)
n is the transmit power of antenna n in

cell (cluster) o with a fixed value µ, h
(o)
n is the corresponding

complex channel coefficient with Rayleigh distributed ampli-

tude, {r
(o)
n }−α models the pathloss attenuation where α is the

pathloss exponent (typically α > 2), σ2 is the noise power.

The above expectation is averaged over the channel h and

does not take the random antenna port locations into account.

We now further assume that the distributed antenna ports can

be modeled as a homogeneous Poisson point process (PPP)

ΦA, and denote Φ
(S)
A and Φ

(I)
A as the subsets of points over

R
2 that consist of, respectively, antenna ports in the serving

cell (cluster) o and antenna ports in all the interfering cells

(clusters) w, w 6= o. For general partially distributed case,

assume every K of the antennas are co-located within one

antenna port. Let Ai be the location of antenna port i, rewrite

(1) by dropping the cell (cluster) index o and w as
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For simplicity we let gip = Pip|hip|
2, which is an exponential

random variable with mean Pip = µ to characterize the small-

scale fading from antenna p in port i to the considered user.

Note that the antennas at the same port have the same pathloss

attenuation. The expectation is taken over both the PPP ΦA

and the channel g.

A. DAS under Regular Layout

First we consider DAS in the conventional sense where the

coverage of home base-stations are defined by the cellular

boundary. Different from [11][12] where all cells are derived

from Voronoi tessellation, we adopt a hybrid approach as in

[17]: the serving cell is of fixed size and modeled as a circle

with radius R, while the interfering cells can be arbitrary. Thus

Φ
(S)
A and Φ

(I)
A are within and outside of the cell radius R,

respectively, as depicted in Fig. 1(a). Let the total expected

number of antennas per cell be N , the spatial intensity of the

antenna ports in Φ
(S)
A is therefore

λ
(S)
A =

N

KπR2
. (3)

Assuming homogeneity, we have λA = λ
(S)
A = λ

(I)
A , where

λ
(I)
A is the intensity of the set Φ

(I)
A .

The considered user is randomly placed in the cell. Setting

its location as the origin, we have the following theorem.

Theorem: For DAS with regular cellular boundary, the

downlink ergodic capacity of the user with distance r ≤ R
from the cell center is

C =

∫ ∞

0

{

exp

[

1

2
λA(µs)2/α

∫ 2π

0

∫ ∞

ℓ2(θ)(µs)−2/α

β(u)dudθ

]

− exp

[

πλA(µs)2/α

∫ ∞

0

β(u)du

]}

e−sσ2

s
ds, (4)

where β (u) < 0 has the form of

β (u) = (1 + u−α/2)−K − 1. (5)

The term ℓ(θ) in (4) is the distance from the user to the cell

edge as a function of the angle θ, distance r and cell radius

R, as shown in Fig. 1(a). Specifically,

ℓ(θ) =
√

R2 − r2 cos2 θ + r sin θ. (6)

Proof: The derivation of the ergodic capacity of DAS

with regular layout is shown in (7) on top of next page, where

(a) follows from Lemma 1 in [18]:

ln(1 + x) =

∫ ∞

0

e−z

z

(
1 − e−xz

)
dz, (8)

and (b) follows from a change of variable z =

s
(
∑

j∈Φ
(I)
A

∑K
q=1 gjqr

−α
j + σ2

)

. The expectation and inte-

gration are interchanged in (c) by applying the Fubini theorem

(since the integrand is non-negative), and by recognizing that

the subsets Φ
(S)
A and Φ

(I)
A are disjoint. In (d) we use the i.i.d.

property of the fading channels among antenna ports and their

independence from the PPP ΦA; and (e) results from the fact

that the sum of K independent exponential random variables

with mean µ follows Erlang-K distribution with probability

density function (PDF)

f∑ g(x; K, µ) =
xK−1e−x/µ

µK(K − 1)!
, (9)
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which simplifies to the exponential distribution when K = 1.

Therefore

Eg

(

e−sr−α ∑ g
)

=

∫ ∞

0

f∑ g(x; K, µ)e−sr−αxdx (10a)

=

∫ ∞

0

xK−1e−x/µ

µK(K − 1)!
e−sr−αxdx (10b)

=(1 + µsr−α)−K
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Step (f) follows from the probability generating functional

(p.g.fl.) [8] of a PPP Φ with intensity λ(x) such that

EΦ

[∏

x∈Φ
f(x)

]

= exp

{∫

R2

[f(x) − 1]λ(x)dx

}

. (11)

We apply (11) to both G
Φ

(S)
A

and G
Φ

(I)
A

in (7e), and convert

from Cartesian to polar coordinates. By employing a change

of variables u = v2(µs)−2/α in (7g) we have (4).

The capacity expression (4) can be further simplified if we

consider the special case of K = 1 (corresponding to the

fully distributed antenna deployment), α = 4, σ2 = 0 (thus

the power has no influence on the capacity and we can use

µ = 1). In this case,

C =

∫ ∞

0

1

s
e−

1
2π2λAs1/2

[

e
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where

τ(s) =
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arctan
[

ℓ2(θ)s−1/2
]

dθ. (13)

Fixing λA and r, the capacity expression (4) is an increasing

function of R. (Note that in this case N
K grows as O(R2).) In

addition, the capacity at the cell edge is also an increasing

function of R (i.e., when r = R). This gives the following

capacity upper bound for the cell-edge user:

Corollary: For DAS under regular layout, the downlink cell-

edge ergodic capacity is upper bounded by α
2 .

Proof: Since capacity increases with R, we only need to

consider the limiting case r = R = ∞, where ℓ(θ) is

ℓ(θ)|r=R=∞ =

{
2R sin θ|R=∞ = ∞ θ ∈ [0, π] (14a)

0 θ ∈ [π, 2π].(14b)

Substituting (14) into (4) and ignore the noise (i.e., σ2 = 0),

after some manipulations, the cell-edge ergodic capacity is

upper bounded by

CU
r=R =

∫ ∞

0

1

s

(

e−Ds2/α

− e−2Ds2/α
)

ds (15a)

(a)
=

α

2
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0

e−Dt

t

(
1 − e−Dt

)
dt (15b)

(b)
=

α

2
ln(1 + 1) (15c)

=
α

2
ln(2) nats/s/Hz =

α

2
bit/s/Hz, (15d)

where D = 1
2πλAµ2/α

∫∞

0 β(u)du, (a) follows from a change

of variables t = s2/α, and (b) follows from (8).

The above corollary shows that the cell-edge ergodic ca-

pacity has a limit which is solely determined by the pathloss

exponent and is not a function of the antenna port density. In

such a limit, the cell boundary is locally a straight line, with

the serving and interfering antenna ports on each half-plane.



B. DAS under User-Centric Layout

We turn to an alternative model in which users are randomly

distributed as a PPP ΦU with intensity λU , superpositioned

on the antenna process ΦA, such that λU < λA. A user with

location x forms a disc b(x, R) = {y ∈ R
2 : |y − x| ≤ R},

within which the antennas are activated to serve that user. An-

tennas outside any disc b(x, R) over R
2 are not transmitting.

The activated antenna ports can be thought of as a clustered

process: start with a parent point process ΦU formed by the

users, and replace each point x ∈ ΦU by a finite set of points

Φ
(x)
A within b(x, R), which is the cluster associated with x.

The superposition of all clusters yields the complete process

Φ =
⋃

x∈ΦU
Φ

(x)
A . The topology is shown in Fig. 1(b).

To assure quality of service, we assume that the commu-

nicating users do not have overlapping serving areas, i.e., the

minimum distance between any two neighboring users is 2R.

This can be achieved by proper user scheduling. The daughter

points in the representative clusters are PPP with intensity λA.

The derivation of the user ergodic capacity in the user-

centric layout differs from that of the regular DAS layout in

step (7e) in the computations of G
Φ

(S)
A

and G
Φ

(I)
A

. Assume the

considered user is at the origin, then Φ
(S)
A = Φ

(0)
A is a PPP

with intensity λA within the disc b(0, R). Using (11) we have

G
Φ

(S)
A

= exp

{

2πλA

∫ R

0

[
(1 + µsv−α)−K −1

]
vdv

}

. (16)

Since only the activated antennas within each b(x, R), |x| ≥

2R contribute as interferences, Φ
(I)
A =

⋃

x∈ΦU\{0} Φ
(x)
A is a

clustered process. However, the parent points of the clusters

are not Poisson but the hard-core process with a repel distance

(2R in our case). The p.g.fl. of this process is in general

mathematically formidable. However, we can use the PPP to

approximate the hard-core process of the parent points within

a bounded excess interference ratio relative to Poisson, as

discussed in [19] for the type II Matérn hard-core process. The

compound clustered process, therefore, can be approximated

by the Poisson clustered process (PCP) since both the parent

and daughter points are now PPP. The p.g.fl. is [8][20]:

EΦ

[∏

x∈Φ
f(x)

]

= exp

{∫

R2

[M [f(x)]− 1]λp(x)dx

}

, (17)

where λp(x) is the intensity of the parent PPP and

M [f(x)] = exp

{

c̄

[∫

R2

f(x + y)δ(y)dy − 1

]}

, (18)

where c̄ is the average number of points within each repre-

sentative daughter cluster, and δ(y) is the probability density

function of the daughter cluster. In this case c̄ is the number of

serving antenna ports per user c̄ = λAπR2, and since antenna

ports are uniformly distributed over b(x, R) in 2-dimensional

Poisson model, we have δ(y) = 1/πR2 for ||y|| ≤ R.

Applying (17) to G
Φ

(I)
A

in (7e) and plugging in c̄ and δ(y),

after some manipulations we have

G
Φ

(I)
A

=exp

{

λU

∫ 2π

0

∫ ∞

2R

[exp [λAH (s, v, θ)]−1] vdvdθ

}

, (19)
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Fig. 2. Grid cellular vs. PPP-modeled DAS with regular layout: ergodic
capacity as a function of cell center to user distance r and antenna intensity
(antenna number per cell N ). α = 4, K = 1, R = 1000.

where the integration limits of v are from 2R to ∞ because

the closest parent point (one of other users) is at a distance at

least 2R. The term H (s, v, θ) in (19) is defined as

H (s, v, θ) =

∫ 2π

0

∫ R

0

(1 + µsρ−α)−Kududξ − πR2, (20)

where ρ is the distance from an antenna port in an interfering

cluster to the user under consideration, which satisfies

ρ2 = u2 + v2 + 2uv cos(θ − ξ). (21)

Since θ in (19) only appears in cos(θ− ξ) in the expression

for ρ, using the symmetry of the cos(·) function, (19)-(21) can

be further simplified by removing the θ variable

G
Φ

(I)
A

= exp

{

2πλU

∫ ∞

2R

[exp [λAH (s, v)] − 1] vdv

}

, (22)

where H (s, v, θ) is reduced to H (s, v) since

ρ2 = u2 + v2 + 2uv cos ξ. (23)

Substituting (16) and (22) into (7e), we have the following

proposition.

Proposition: For DAS under user-centric layout, the down-

link user ergodic capacity can be approximated by

C ≈

∫ ∞

0

e−sσ2

s
exp

[

2πλU

∫ ∞

2R

[exp [λAH (s, v)] − 1] vdv

]

×

{

1−exp

[

2πλA

∫ R

0

[
(1+µsv−α)−K−1

]
vdv

]}

ds, (24)

where H (s, v) is the same as in (20), but with ρ from (23).

III. NUMERICAL RESULTS

We present numerical simulations to verify our theoretical

results. First we demonstrate the ergodic capacity of DAS

under regular layout. The total per-cell power is P = 46dBm,

which is evenly divided among antennas in the cell, i.e.,

Pn = P
N . We set the cell radius to R = 1000m and vary the

user-to-cell-center distance r. Compared with the Monte Carlo
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experiments, the analytical integrations can be computed more

efficiently, and its effectiveness is verified with simulation as

shown in Fig. 2. Note that the ergodic capacity drops from the

cell center to the cell edge, and with a stochastic-geometry-

based analysis there is no such “rise-and-drop” effect for

capacity as observed in [2][7] for fixed deployment, i.e., when

user approaches a fixed-location antenna the capacity rises,

and drops otherwise. The simulated results for cellular systems

where all antennas are co-located at the cell center are depicted

as “Grid Cellular” in Fig. 2. As compared to DAS, the capacity

of the centralized cellular architecture is higher in the cell

center but deteriorates at the cell edge, which reflects DAS’s

ability in achieving ubiquitous coverage. Another observation

from Fig. 2 is that the gap between N = 1 and N = 24
is much more significant for DAS than for the co-located

one. This is because unlike the latter layout, more antennas

in DAS means statistically shorter distance between a user

and its closest serving antenna port, and thus much higher

capacity. In Fig. 3, we fix the total number of the antennas and

vary the number of antennas per port, and show that the fully

distributed case (K = 1) outperforms partially distributed case

(K > 1). Fig. 4 shows that greater pathloss exponent leads to

larger capacity, since interferences drop faster than the desired

signal with the rise of the attenuation. We further confirm our

cell-edge capacity upper bound in Fig. 5, the capacity increases

with the antenna intensity and cell radius, but is always upper

bounded by 2 ln 2 nats/s/Hz when α = 4.

For DAS under user-centric layout, we assume the equiva-

lent network parameters as that of the regular DAS layout with

cell radius of 1000m for fair comparison. The average number

of users over an area of π10002 is one, i.e., λU = 1
π10002 . The

antenna port intensity is λA = N
Kπ10002 , and the average sum

power over an area of π10002 is P = 46dBm, which is equally

shared by all antennas within the area. For the simulation,

we adopt the Simple Sequential Inhibition (SSI) model [21]

to represent the hard-core process. Specifically, we generate

users with a specified intensity in a sequential manner; add a
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Fig. 4. DAS with regular layout: ergodic capacity as a function of cell center
to user distance r and pathloss exponent α. N = 6, K = 1, R = 1000.
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Fig. 5. DAS with regular layout: cell-edge ergodic capacity as a function of
antenna intensity (average antenna number per π10002 area) and cell radius
R. α = 4, K = 1, r = R.

random new user to the network only if its distance to any

of the previous added users is greater than 2R. We vary the

user’s serving radius R for the analytical and the simulated

results. Note that the maximum R of the simulated results is

only 700m, since the hard-core process of the users reaches

saturation for R greater than this value and no further active

users can be added. In Fig. 6, it is observed that the analytical

results match the simulated ones when R ≤ 400, but deviate

from the simulation at R > 400. It is because the collision

probability of a newly generated user with the existing ones

is the complement of the void probability of PPP

Pcolli. = 1 − P (No other users within a radius of 2R) (25a)

= 1 − e−4λU πR2

. (25b)

At a smaller serving radius R, the collision probability is low,

thus the SSI model used for the parent point process is close

to the Poisson model, and the clustered process can be well

approximated by PCP. Such approximation is not accurate

when R gets larger, and the analytical capacity is higher than

the simulated one. This is because the Poisson process, as
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Fig. 6. DAS with user-centric layout: ergodic capacity as a function of user
serving radius R and antenna number per antenna port K . α = 4, N = 24.
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Fig. 7. DAS with user-centric layout: ergodic capacity as a function of user
serving radius R and pathloss exponent α. N = 6, K = 1.

we assumed for the user distribution in analysis, yields less

interference than that of the hard-core process of the same

density [19]. In Fig. 7, we vary the pathloss exponent and find

that the maximum capacity is achieved when α = 4 instead of

α = 5, which is different from Fig. 4. This is counter-intuitive

and shows one difference between the regular and the user-

centric layout. In particular, the analytical result is very close

to the Monte Carlo result under α = 5. It is also worth to

note, as observed in Fig. 6 and Fig. 7, that capacity is not a

monotonic function of R in some cases.

Compare the two different DAS layouts (e.g., Fig. 3 vs.

Fig. 6, Fig. 4 vs. Fig. 7), the user-centric layout has a higher

maximum capacity than the regular layout even when the user

of the latter is in the cell center. This is because only the

antennas close to active users are transmitting in the user-

centric layout, which avoids extra interference. However, the

user-centric DAS faces challenges such as dynamic backhaul

management as users’ antenna sets may change over time, and

scheduling issues as how to choose non-conflicting users.

IV. CONCLUSION

In this paper, the downlink ergodic capacity of DAS is

derived in a tractable form by modeling the antennas as a

Poisson point process. We present the capacity results of DAS

under two different layouts, and demonstrate the effectiveness

of the proposed analytical model. Results show that DAS

achieves better cell-edge capacity than the cellular system, and

the user-centric DAS has higher maximum capacity over the

DAS with regular cellular boundary.
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