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Abstract—This paper studies single-user compression for the
uplink multi-cell processing (MCP) model where multiple base-
stations are connected to a central processor via noiseless
backhaul links with a sum capacity constraint. The proposed
scheme is based on the virtual multiple-access channel (V-MAC)
architecture, where the base-stations quantize the received signals
and send the quantized bits to the central processor, and at the
decoder side the central processor first recovers the quantized
signals then decodes the user messages in a successive manner.
This paper focuses on the use of single-user compression in the
V-MAC architecture, which is significantly simpler to implement
than Wyner-Ziv compression. The main result of this paper is
that single-user compression can achieve the sum capacity of the
MCP model to within a constant gap under two specific scenarios.
First, we define a diagonally dominant channel criterion and
show the constant-gap result for the case when the covariance
matrix of the received signals across the base-stations is κ-strictly
diagonally dominant for some constant κ > 1. Second, we show
that the constant-gap result holds for a special class of Wyner
channel models in the weak interference regime.

I. INTRODUCTION

Joint multi-cell processing (MCP) is a novel network archi-
tecture, in which the base-stations (BSs) can share information
such as the transmitted and received signals and the channel
state information with a centralized processor (CP) through
high-capacity backhaul links. Under the MCP architecture,
joint transmission in the downlink and joint reception in the
uplink can be performed to effectively mitigate inter-cell inter-
ference. The MCP architecture has the potential to significantly
improve the overall performance of wireless networks [1], [2].

This paper studies an uplink MCP architecture, known as
the virtual multiple-access channel model (V-MAC) [3], in
which the BSs act as relay terminals by first quantizing the
received signals, then forwarding quantized bits to the CP. In
the decoding procedure, the CP first decodes the quantized
signals, then decodes the user messages successively based
on the quantized signals. The design of quantization schemes
in such an architecture is crucial. This paper investigates the
approximate optimality of single-user compression for the
MCP model under a sum backhaul capacity constraint. Our
contributions are two-fold: First, we show that single-user
compression achieves the sum capacity of the MCP model to
within a constant gap when the channel satisfies a diagonally
dominant channel criterion. Second, we show that the constant
gap-to-optimality result still holds for the Wyner soft-handoff
model in the weak interference regime.

This paper is an extension of [3], where Wyner-Ziv com-
pression is employed to quantize the signals received at the
BSs. Since the received signals at different BSs are statistically
correlated, Wyner-Ziv compression achieves higher coding
efficiency than single-user compression. In fact, it has been
shown in [3] that Wyner-Ziv compression can achieve the
sum capacity of the MCP model to within a constant gap
under a backhaul sum capacity constraint. However, Wyner-
Ziv compression is complex to implement in practice. In
addition, it requires each BS to have global channel state
information. For this reason, this paper chooses to replace
Wyner-Ziv compression by single-user compression, and aims
to show that single-user compression retains the constant-gap
optimality in sum capacity under certain scenarios.

Achievability schemes for uplink MCP model under the
individual backhaul capacity constraint have been studied
extensively in the literature [4], [5], [6], [7], [8]. However,
most existing schemes require joint decoding of the transmit-
ted signals and the quantized signals, which is prohibitively
complex to implement; the resulting rate region itself is also
complex to evaluate. The main point of the current paper is
that under a sum backhaul constraint, and roughly speaking
for the channels with weakly correlated received signals, such
complexity can be avoided by single-user compression and
successive decoding without losing the approximate optimality
in the sum capacity.

II. CHANNEL MODEL

Fig. 1 illustrates the network topology considered in this
paper, where L mobile users communicate with a CP via
L BSs. The BSs are connected to the CP through noiseless
backhaul links under a sum capacity constraint C. The users
and the BSs are each equipped with a single antenna. BSs do
not perform local decoding; all the user messages have to be
decoded at the CP.

Defining hij as the real channel gain between the jth user
and the ith BS, and let Xi ∼ N (0, Pi) be the transmitted
signal of the ith user, then the ith BS receives

Yi =
L∑

j=1

hijXj + Zi for i = 1, 2, . . . , L,

where the additive noise Zi ∼ N (0, σ2) is independent
and identically distributed (i.i.d.) over time. In this paper,
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Fig. 1. Uplink multicell joint processing via a central processor

we assume that the average transmit powers Pi’s are fixed.
The received signal-to-noise ratio (SNR) at the ith BS and
interference-to-noise ratio (INR) from the jth user to the ith
BS are defined as follows:

SNRi =
h2
iiPi

σ2
, INRi,j =

h2
ijPj

σ2
, for i, j = 1, 2, . . . , L.

The notations used in this paper are as follows. Let X =
[X1, X2, . . . , XL]

T denote the transmitted signal vector. Let
Y = [Y1, Y2, . . . , YL]

T denote the received signal vector. Let
Ŷ = [Ŷ1, Ŷ2, . . . , ŶL]

T represent the quantized signal vector
at the BSs. Let qi = E(Ŷi − Yi)

2 be the average squared-
error distortion between Yi and Ŷi. The distortion level qi is
also referred to as the quantization noise level in this paper.
We use H to denote the L × L channel matrix with entries
hij , and KX = E[XXT ] to denote the covariance matrix
of the transmitted signal vector. If S ⊆ {1, 2, . . . , L}, then
X(S) is the subset of X with elements whose indices are the
elements of S. Suppose that K is a matrix, diag(K) denotes
the diagonal matrix formed by the diagonal entries of K.

III. V-MAC SCHEME WITH SINGLE-USER COMPRESSION

A. Achievable Rate Region

This paper proposes a scheme in which each BS quantizes
the received signals using single-user compression. By single-
user compression, we mean that the compression process does
not take advantage of the statistical correlations between the
received signals at different BSs. At the decoder side, the CP
first decodes the quantized signals Ŷ, then decodes the user
messages based on Ŷ. This coding scheme is referred to as the
V-MAC-SU scheme in this paper, because the channel from
X to Ŷ forms a virtual multiple-access channel, and single-
user compression (SU) is used. This scheme differs from [3]
only in the quantization part, where Wyner-Ziv compression
is employed to fully explore the statistical correlation between
the received signals across the BSs. As compared to Wyner-Ziv
compression, single-user is more desirable in the wireless envi-
ronment, since it only needs local channel state information at
each BS. The following theorem characterizes the achievable
rate region given by the V-MAC-SU scheme.

Theorem 1: For the uplink MCP model with L BSs and
sum backhaul capacity C shown in Fig. 1, the following rate
tuple (R1, R2, . . . , RL) is achievable using the V-MAC-SU
scheme: ∑

i∈S

Ri ≤
1

2
log

∣∣HSKX(S)H
T
S + Λq + σ2I

∣∣
|Λq + σ2I|

(1)

subject to

1

2
log

∣∣diag(HKXHT ) + Λq + σ2I
∣∣

|Λq|
≤ C (2)

where KX(S) = E[X(S)X(S)T ] is the transmit signal co-
variance matrix, Λq = diag(q1, q2, . . . , qL) is the covariance
matrix of the quantization noise, and HS denotes the channel
gain matrix from X(S) to Y.

This theorem is a straightforward extension of [3, Theorem
1], where the rate expression (1) is given by the achievable
sum rate I(X(S); Ŷ) and the constraint (2) follows from the
backhaul constraint

∑L
i=1 I(Yi; Ŷi) ≤ C. The rate expression

implicitly assumes the successive decoding of the quantization
codewords first, then the transmitted signals.

IV. MAIN RESULTS

In this section, we demonstrate that the V-MAC-SU scheme
is approximately optimal for sum capacity for the MCP model
under certain scenarios. Intuitively, Wyner-Ziv compression is
beneficial only when the received signals at the BSs are highly
correlated. This paper makes this intuition precise by defining
a diagonally dominant channel criterion, and shows that if
the interference channel in the MCP model satisfies such a
criterion, single-user compression can already achieve the sum
capacity to within a constant gap. In addition, we show that
single-user compression also gives a constant-gap result for
the Wyner model in the weak interference regime.

A. Approximate Sum Capacity for the Diagonally Dominant
Channel

For realistic wireless cellular networks, the received signal
covariance matrix E[YYT ] = HKXHT + σ2I across the
BSs is often diagonally dominant. This is because in cellular
communication the path losses from one mobile user to
different BSs are distance dependent, and each mobile user
is associated with the closest BS. In the following, we define
a diagonally dominant criterion for matrices, and bound the
determinant of a diagonally dominant matrix in term of its
diagonal entries.

Definition 1: For a fixed constant κ > 1, a n×n matrix Ψ
is said to be κ-strictly diagonally dominant if

|Ψ(i, i)| ≥ κ
n∑

j ̸=i

|Ψ(i, j)| for all i = 1, . . . , L,

where Ψ(i, j) is the (i, j)-th entry of matrix Ψ.
Lemma 1: For fixed κ > 1, suppose that a n× n matrix Ψ

is κ-strictly diagonally dominant, then

|Ψ| ≥
(
1− 1

κ

)n n∏
i=1

|Ψ(i, i)|. (3)



Proof: The proof follows from the lower bound given in
[9], which shows that if Ψ is strictly diagonally dominant, i.e.

|Ψ(i, i)| >
n∑

j ̸=i

|Ψ(i, j)| for i = 1, . . . , n, then the determinant

of Ψ can be bounded from below as follows,

|Ψ| ≥
n∏

i=1

|Ψ(i, i)| −
n∑

j ̸=i

|Ψ(i, j)|

 . (4)

Under the condition that Ψ is κ-strictly diagonally dominant,
i.e.

∑n
j ̸=i |Ψ(i, j)| ≤ |Ψ(i,i)|

κ we further bound |Ψ| by

|Ψ| ≥
n∏

i=1

(
|Ψ(i, i)| − |Ψ(i, i)|

κ

)
=

(
1− 1

κ

)n n∏
i=1

|Ψ(i, i)|, (5)

which completes the proof.
Theorem 2: For the uplink MCP model with L BSs and

sum backhaul capacity C shown in Fig. 1, if the received signal
covariance matrix HKXHT + σ2I is κ-strictly diagonally
dominant for a given constant κ > 1, the V-MAC-SU scheme
achieves the sum capacity to within L

2

(
1 + log κ

κ−1

)
bits.

Proof: The proof uses the same technique as in [3].
We first choose the quantization noise levels qi = ασ2,
i = 1, 2, . . . , L, where α > 0 is a constant depending on C,
then compare the achievable rate of the V-MAC-SU scheme
with the following cut-set like upper bound [5]

C̄ = min

{
1

2
log

∣∣HKXHT + σ2I
∣∣

|σ2I|
, C

}
. (6)

We consider two different cases as follows: when C ≥
1
2 log

|diag(HKXHT )+2σ2I|
|σ2I| , i.e. the sum backhaul capacity is

large enough to support the choice of qi = σ2, we choose
α = 1. In this case, the gap between C̄ and Rsum can be
bounded by

C̄ −Rsum ≤ 1

2
log

∣∣HKXHT + σ2I
∣∣

|σ2I|

−1

2
log

∣∣HKXHT + 2σ2I
∣∣

|2σ2I|
<

L

2
.

When C < 1
2 log

|diag(HKXHT )+2σ2I|
|σ2I| , we choose α so that∑L

i=1 I(Yi; Ŷi) = C. First, notice that

L∑
i=1

I(Yi; Ŷi) =
1

2
log

∣∣diag(HKXHT ) + (1 + α)σ2I
∣∣

|ασ2I|

is a monotonically decreasing function of α. Since C =∑L
i=1 I(Yi; Ŷi) <

1
2 log

|diag(HKXHT )+2σ2I|
|σ2I| , we have α > 1.

Now, we use C =
∑L

i=1 I(Yi; Ŷi) as an upper bound. Let
Ω = HKXHT + (1 + α)σ2I and note that Ω(i, i) ≥ 0. The
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Fig. 2. Uplink multi-cell processing under Wyner soft-handoff model

gap between C̄ and Rsum is bounded by

C̄ −Rsum ≤
L∑

i=1

I(Yi; Ŷi)− I(X; Ŷ)

=
1

2
log

∣∣diag(HKXHT ) + (1 + α)σ2I
∣∣

|ασ2I|

−1

2
log

∣∣HKXHT + (1 + α)σ2I
∣∣

|(1 + α)σ2I|

=
1

2
log

(1 + 1

α

)L

L∏
i=1

Ω(i, i)

|Ω|

 .

Since matrix HKXHT + σ2I is κ-strictly diagonally domi-
nant, Ω is also κ-strictly diagonally dominant. Following the
result of Lemma 1, we further bound the gap as follows,

C̄ −Rsum ≤ L

2
log

(
1 +

1

α

)
+

L∑
i=1

1

2
log

κ

κ− 1

<
L

2

(
1 + log

κ

κ− 1

)
,

where the last inequality follows from the fact that α > 1.
Combining the two cases, we see that the gap to sum capac-

ity for the V-MAC-SU scheme with uniform quantization noise
levels across the BSs is always less than L

2

(
1 + log κ

κ−1

)
.

Theorem 2 demonstrates that when C is sufficiently large,
setting the quantization noise levels to be at the background
noise level results in at most 1/2 bits gap per dimension per
user to the cut-set bound. It is not hard to further verify that,
in this case, the V-MAC-SU scheme is actually approximately
optimal for the entire capacity region of the MCP model. When
C is small, an extra condition on HKXHT + σ2I , which
requires the received signals across the BSs to be weakly
correlated, is needed to preserve the constant-gap-to-optimality
result.

B. Approximate Sum Capacity for Wyner model

In the following, we demonstrate the approximate optimality
of the V-MAC-SU scheme in the case where the interference
channel is partially connected. More specifically, we consider



the Wyner soft-handoff model [10], where each transmitter-
receiver pair interferes only one of its neighboring receivers
and gets interfered by only one of its other neighboring trans-
mitters, as shown in Fig. 2. Despite its simplicity, the Wyner
model captures the essential structure of cellular networks, and
it is widely adopted in theoretical analysis. The constant-gap-
to-optimality result of the V-MAC-SU scheme for the Wyner
model is stated as follows

Theorem 3: For the uplink multi-cell processing Wyner
model with sum backhaul capacity C shown in Fig. 2, in
the weak interference regime where INRi,i+1 ≤ SNRi, i =
1, 2, . . . , L − 1, the V-MAC-SU scheme achieves a sum rate
that is within L bits to the sum capacity.

Proof: Under the Wyner model, the channel can be
written as

Yi = hiiXi + hi,i+1Xi+1 + Zi, for i = 1, . . . , L− 1

YL = hLLXL + ZL

Let quantization noise levels qi = ασ2, for i = 1, . . . , L,
we have the sum rate

Rsum =

L∑
i=1

I(Xi; Ŷ1, . . . , ŶL|XL
i+1) ≥

L∑
i=1

I(Xi; Ŷi|XL
i+1)

=
L∑

i=1

I(Xi; Ŷi|Xi+1) =
L∑

i=1

1

2
log

SNRi + 1 + α

1 + α

and C ≥
∑L

i=1 I(Yi; Ŷi) =
∑L

i=1
1
2 log

SNRi+INRi,i+1+1+α
α .

We choose α using the same strategy as in Theorem 2 and
also use the same upper bound (6). When the sum backhaul
capacity C is large enough to support the quantization noise
levels to be at the background noise level, we choose α = 1,
i.e., if C ≥

∑L
i=1

1
2 log (2 + SNRi + INRi,i+1), set qi = σ2.

Similar to what is shown in the proof of Theorem 2, the gap
between the upper bound I(X;Y) and the achievable sum rate
I(X; Ŷ) in this case is bounded by L

2 .
When C <

∑L
i=1

1
2 log (2 + SNRi + INRi,i+1), we choose

qi = ασ2, where α is chosen to make C =∑L
i=1

1
2 log

SNRi+INRi,i+1+1+α
α . Again, based on the fact that

L∑
i=1

I(Yi; Ŷi) =
L∑

i=1

1

2
log

SNRi + INRi,i+1 + 1 + α

α

is a monotonically decreasing function of α, we have α > 1.
Now the gap between C̄ and Rsum is bounded by

C̄ −Rsum ≤
L∑

i=1

1

2
log

SNRi + INRi,i+1 + 1 + α

α

−
L∑

i=1

1

2
log

SNRi + 1 + α

1 + α

<
L

2
+

L∑
i=1

1

2
log

(
1 +

1

α

)
< L

where the second inequality bases on the fact that INRi,i+1 ≤
SNRi, and the last inequality follows from the fact that α > 1.

Combining the two cases, we conclude that the gap to
the sum capacity for the V-MAC-SU scheme with uniform
quantization noise levels is always less than L.

It is worthy to note that the conclusion of Theorem 3 does
not follow from Theorem 2. For instance, consider a Wyner
soft-handoff model with two BSs, where h11 = h22 = 1,
h12 = γ, P1 = P2 = 1, and σ2 is close to 0. If γ2 ≤ 1,
then the weak interference condition in Theorem 3, i.e.,
INRi,i+1 ≤ SNRi, is satisfied, thus the V-MAC-SU scheme
achieves a sum rate which is at most 2 bits away from the
sum capacity regardless of the value of SNR. However, in this
model,

HKXHT + σ2I ≈
[

1 + γ2 γ
γ 1

]
.

To satisfy the condition that HKXHT + σ2I is κ-strictly
diagonally dominant, we have to choose a constant κ = 1.
For this choice of κ, we cannot get a bounded gap to the sum
capacity based on Theorem 2.

V. CONCLUSION

This paper studies an uplink MCP model where the cell
sites are linked to a CP via noiseless backhaul links with a
finite sum capacity. We propose a V-MAC-SU scheme, where
the received signals are first quantized at the BSs by single-
user compression, then transmitted to the CP. It is shown that
the V-MAC-SU scheme achieves the sum capacity of the MCP
model to within a constant gap, when either the received signal
covariance matrix HKXHT + σ2I is κ-strictly diagonally
dominant for some constant κ > 1 or the channel can be
modeled under the Wyner soft-handoff model in the weak
interference regime.

REFERENCES

[1] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu,
“Multi-cell MIMO cooperative networks: A new look at interference,”
IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

[2] P. Marsch and G. Fettweis, “Uplink CoMP under a constrained backhaul
and imperfect channel knowledge,” IEEE Trans. Wireless Commun.,
vol. 10, no. 6, pp. 1730–1742, June 2011.

[3] Y. Zhou, W. Yu, and D. Toumpakaris, “Uplink multi-cell processing:
Approximate sum capacity under a sum backhaul constraint,” Submitted
to IEEE Information Theory Workshop (ITW), 2013. [Online]. Available:
http://arxiv.org/abs/1304.7509

[4] A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communi-
cation via decentralized processing,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3008–3023, July 2008.

[5] A. Sanderovich, O. Somekh, H. V. Poor, and S. Shamai, “Uplink macro
diversity of limited backhaul cellular network,” IEEE Trans. Inf. Theory,
vol. 55, no. 8, pp. 3457–3478, Aug. 2009.

[6] A. Sanderovich, S. Shamai, and Y. Steinberg, “Distributed MIMO
receiver – Achievable rates and upper bounds,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4419–4438, Oct. 2009.

[7] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information
flow: A deterministic approach,” IEEE Trans. Inf. Theory, vol. 57, no. 4,
pp. 1872–1905, Apr. 2011.

[8] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132–3152, May
2011.

[9] A. M. Ostrowski, “Note on bounds for determinants with dominant
principal diagonal,” Proc. Amer. Math. Soc., vol. 3, no. 1, pp. 26–30,
1952.

[10] A. Wyner, “Shannon-theoretic approach to a Gaussian cellular multiple-
access channel,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1713–1727,
Nov. 1994.


