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Abstract—This paper investigates an uplink multi-cell process-
ing (MCP) model where the cell sites are linked to a central
processor (CP) via noiseless backhaul links with limited capacity.
A simple compress-and-forward scheme is employed, where
the base-stations (BSs) quantize the received signals and send
the quantized signals to the CP using distributed Wyner-Ziv
compression. The CP decodes the quantization codewords first,
then decodes the user messages as if the users and the CP
form a virtual multiple-access channel. This paper formulates
the problem of maximizing the overall sum rate under a sum
backhaul constraint for such a setting. It is shown that setting the
quantization noise levels to be uniform across the BSs maximizes
the achievable sum rate under high signal-to-noise ratio (SNR).
Further, for general SNR a low-complexity fixed-point iteration
algorithm is proposed to optimize the quantization noise levels.
This paper further shows that with uniform quantization noise
levels, the compress-and-forward scheme with Wyner-Ziv com-
pression already achieves a sum rate that is within a constant gap
to the sum capacity of the uplink MCP model. The gap depends
linearly on the number of BSs in the network but is independent
of the SNR and the channel matrix.

I. INTRODUCTION

Inter-cell interference is a fundamental bottleneck in wire-
less cellular networks. A promising technique for inter-cell
interference mitigation is joint multi-cell processing (MCP) in
which the transmitted and received signals and the channel
state information are shared among the base-stations (BSs).
By taking advantage of the high-capacity backhaul links,
a network employing MCP can jointly encode or decode
messages from multiple cells [1], [2].

This paper studies the uplink of a MCP model where the
BSs are connected to a central processor (CP) via noiseless
backhaul links with finite sum capacity C as shown in Fig. 1.
This uplink MCP model can be thought of as a virtual
multiple-access channel (V-MAC) between the users and the
CP, with the BSs acting as relays. This paper utilizes a simple
compress-and-forward strategy, in which the BSs quantize the
received signals using Wyner-Ziv coding and then forward the
quantized bits to the CP. The CP first obtains the quantized sig-
nals from the quantized bits, then decodes the user messages
based on the quantized signals. Our contributions are two-fold:
First, we show that this simple version of the compress-and-
forward scheme already achieves the sum capacity of uplink
MCP under a sum backhaul constraint to within a constant
gap, thereby leading to a simple receiver architecture for the
uplink MCP model. Second, we optimize the quantization
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YL : ŶL
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Fig. 1. Uplink multicell joint processing via a central processor

noise levels to maximize the sum rate for this MCP model.
Our main insight is that setting the quantization noise levels
to be uniform across the BSs is asymptotically optimal under
high SNR, and also achieves constant gap to sum capacity
under arbitrary SNR.

The limited backhaul MCP model has been studied in
the literature. Specifically, [3], [4], [5] consider a similar
model in which multiple users (or a single user with multiple
antennas) communicate with a remote destination via multiple
relays and derive achievable rates based on the compress-
and-forward and other relaying schemes. The achievable rate
studied in this paper is similar to that of [3, Theorem 1],
but we go further in explicitly optimizing the quantization
levels, which allows us to characterize the approximate sum
capacity of the overall system. This paper differs from [4], [5]
in that [4], [5] mainly focus on a more general achievability
scheme in which the quantized signals and the transmitted
signals are decoded jointly, while this paper shows that one
can decode the quantized signals and the transmitted signals
successively without loss of approximate optimality in sum
capacity. Our result depends on the fact that we consider a
sum-capacity constraint in the backhaul, as opposed to the
individual backhaul constraints considered in [3], [4], [5]. The
proof relies on a judicious choice of quantization noise levels
and a comparison with a cut-set like upper bound.

It is worth noting that the achievability schemes of [4],
[5] and [3, Corollary 1] can be thought of as a particular
instance of the noisy network coding scheme [6], [7], and
the uplink MCP model is an example of a multi-message
multicast relay network. Noisy network coding achieves the



capacity region of arbitrary multicast relay networks to within
a constant gap. Consequently, the achievability scheme of [4],
[5] and [3, Corollary 1] must already achieve the capacity
region of the uplink MCP model to within a constant gap.
However, the constant-gap results of [6], [7] are possible only
if the quantization noise levels are set to be at the background
noise level, and only if joint decoding of the quantized signals
and the transmitted signals is performed. Such joint decoding
is prohibitively complex. In fact, even a mere evaluation of the
rate region that is achievable by noisy network coding already
involves 2L − 1 constraints, each of which is a minimization
over 2L terms. One of the main points of this paper is that
such an exponential complexity can be avoided and successive
decoding is already optimal to within a constant gap, if we
focus on the sum capacity under a sum backhaul constraint.

A main focus of this paper is the optimization of the
quantization noise levels at the BSs. Such an optimization
is recognized as a difficult nonconvex problem. Various algo-
rithms have been proposed in the literature from, e.g., capacity
maximization [8] and robustness [9] points of view. This paper
focuses on the case where each BS is equipped with only a
single antenna, (in contrast to the MIMO case treated in [8].)
We point out that to maximize the achievable sum rate under a
sum backhaul constraint, the quantization noise levels can be
set to be uniform. This can be justified both under a high SNR
assumption, and by examining the sum capacity outer bound.
This paper further proposes a fixed-point iteration algorithm
to find the optimal quantization noise levels across all the
BSs at practical SNRs. The proposed technique optimizes the
quantization noise levels across all the BSs jointly, whereas in
[8] the optimization is done sequentially for each BS.

II. CHANNEL MODEL

We consider the uplink of a multi-cell network where L
single-antenna mobile users send independent messages to L
single-antenna BSs, as shown in Fig. 1. The BSs are connected
to a CP through noiseless backhaul links of capacities Ci,
i = 1, . . . , L. The Ci’s need to satisfy a sum capacity
constraint:

∑L
i=1 Ci ≤ C. This sum backhaul constraint can

model the case where the backhaul is implemented by wireless
links operating in a time- or frequency-division multiplexing
basis and under power spectrum density constraint. The user
messages need to be eventually decoded at the CP.

The uplink MCP model can be thought of as a virtual
multiple-access channel between the users and the CP with
the BSs serving as relay nodes. Let Xi denote the signal
transmitted by the i-th user. Then the signal received at the
i-th BS can be expressed as

Yi =
L∑

j=1

hijXj + Zi for i = 1, 2, . . . , L,

where Zi ∼ N (0, σ2) is independent and identically dis-
tributed (i.i.d.) over time, and hij denotes the real channel
from the j-th user to the i-th BS. In this paper, we assume
that Xi’s are real-valued Gaussian signals at fixed average
powers Pi, for i = 1, . . . , L.

The notation used in this paper is as follows. Let X =
[X1, X2, . . . , XL]

T , Y = [Y1, Y2, . . . , YL]
T . We use Ŷ =

[Ŷ1, Ŷ2, . . . , ŶL]
T to denote the quantized signal vector. Let

H be the L × L channel matrix with entries hij , and let
KX = E[XXT ] denote the covariance matrix of the trans-
mitted signal vector. Let S ⊆ {1, 2, . . . , L}. We use X(S) to
denote the subset of X with elements whose indices are the
elements of S. Let qi = E(Ŷi − Yi)

2 be the average squared-
error distortion between Yi and Ŷi. The distortion level qi is
also referred to as the quantization noise level in this paper.

III. V-MAC SCHEME WITH WYNER-ZIV COMPRESSION

A. Achievable Rate Region
This paper uses the compress-and-forward scheme for the

uplink MCP model under a sum backhaul constraint. As a
BS cannot decode the transmitted messages by itself, it must
quantize the received signal and transmit the quantization bits
through its backhaul link to the CP. Because the received
signals {Yi}Li=1 at different BSs are statistically correlated,
Wyner-Ziv compression can be employed to improve the
efficiency of quantization. Further, this paper adopts a two-
stage strategy in which the CP first decodes the quantization
codewords, and then decodes the user messages. More specif-
ically, the Yi’s are first quantized at each BS using Wyner-Ziv
compression. The compressed bits are sent to the CP through
the noiseless links. The CP obtains the quantized signals Ŷ
using the quantized bits. The user messages are then decoded
based on the quantized signals Ŷ. This scheme is referred to
as the V-MAC-WZ scheme in this paper, because the users and
the CP essentially form a virtual multiple-access channel. Note
that this successive decoding scheme may in general achieve
lower rates as compared to the approach of jointly decoding
Ŷ and X as in [4], [5] and [3, Corollary 1], but as shown later,
successive decoding is already approximately optimal for sum
capacity under the uplink MCP model considered in this paper.

Theorem 1: For the uplink MCP model with backhaul sum
capacity constraint C as shown in Fig. 1, the rate tuples
(R1, R2, . . . , RL) that satisfy the following set of constraints
are achievable using the V-MAC-WZ scheme:∑

i∈S

Ri ≤
1

2
log

∣∣HSKX(S)H
T
S + Λq + σ2I

∣∣
|Λq + σ2I|

(1)

subject to

1

2
log

∣∣HKXHT + Λq + σ2I
∣∣

|Λq|
≤ C (2)

for all S ⊆ {1, 2, . . . , L}, where KX(S) = E[X(S)X(S)T ]
is the covariance matrix of X(S), Λq = diag(q1, q2, . . . , qL),
and HS denotes the channel matrix from X(S) to Y.

Proof: This theorem is a generalization of [3, Theorem
1], which treats the case of a single transmitter with multiple
relays under individual backhaul capacity constraints. In [3,
Theorem 1], it has been shown that R < I(X; Ŷ) is achievable
subject to

I(Y(S); Ŷ(S)|Ŷ(Sc)) ≤
∑
i∈S

Ci, ∀S ⊆ {1, 2, . . . , L} (3)



under a product distribution p(ŷ|y) = ΠL
i=1p(ŷi|yi). Note

that under the sum backhaul constraint
∑L

i=1 Ci ≤ C, the
constraint (3) simply becomes I(Y; Ŷ) ≤ C.

Now, with multiple users and considering the sum rate over
any subset S, we likewise have∑

i∈S

Ri ≤ I(X(S); Ŷ|X(Sc)), ∀S ⊆ {1, 2, . . . , L} (4)

subject to
I(Y; Ŷ) ≤ C. (5)

Let p(ŷi|yi) be defined by the test channel Ŷi = Yi+Qi where
Qi ∼ N (0, qi) and is independent of everything else. The
achievable rate region (1) subject to (2) can now be derived
by evaluating the mutual information expressions (4) and (5)
using Gaussian distribution for the transmit signal Xi.

Note that the achievable rate in Theorem 1 depends on the
transmit powers of the users. If users can dynamically change
their transmit power levels, it is possible to further optimize
the achievable rate over all possible transmit power levels. In
this paper we assume that the transmit powers are fixed.

B. Optimizing Quantization Noise Levels

The achievable rate region (1)-(2) for the V-MAC-WZ
scheme has an intuitive interpretation. The quantization pro-
cess adds quantization noise to the overall multiple-access
channel. Finer quantization results in higher overall rate,
but also leads to higher backhaul capacity requirements. To
characterize the tradeoff between the achievable rate and the
backhaul constraint, it is important to optimize the achievable
rate over the quantization noise levels {q1, . . . , qL}.

In the following, we focus on the maximization of the
overall sum rate under the sum backhaul capacity constraint.
From Theorem 1, the optimization problem is

maximize
1

2
log

∣∣HKXHT + σ2I + Λq

∣∣
|σ2I + Λq|

(6)

subject to
1

2
log

∣∣HKXHT + σ2I + Λq

∣∣
|Λq|

≤ C

Λq(i, j) = 0, for i ̸= j

Λq(i, i) > 0

where Λq(i, j) is the (i, j)-th entry of matrix Λq . Note that
Λq is diagonal because each BS quantizes its received signal
independently.

The above optimization problem is nonconvex, thus finding
its global optimum is challenging. However, the Karush-Kuhn-
Tucker (KKT) condition of the problem is still a necessary
condition for optimality. To derive the KKT condition, we
form the Lagrangian as follows:

L(Λq, λ,Ψ) = (1− λ) log
∣∣HKXHT + σ2I + Λq

∣∣
− log

∣∣σ2I + Λq

∣∣+ λ log |Λq|+ tr(ΨΛq) (7)

where Ψ is a matrix whose diagonal entries are zeros and
the off-diagonal entries are the dual variables associated the
constraint Λq(i, j) = 0 for i ̸= j, and λ is the Lagrangian dual

variable associated with the backhaul sum-capacity constraint.
The coefficient 1

2 is omitted for simplicity.
By setting ∂L/∂Λq to zero, we obtain the optimality

condition

(1− λ)(HKXHT + σ2I + Λq)
−1 − (σ2I + Λq)

−1

+ λΛ−1
q +Ψ = 0 (8)

Recall that Ψ has zeros on the diagonal, but can have arbitrary
off-diagonal entries. Thus, the above optimality condition can
be simplified as

(1− λ)diag(HKXHT + σ2I + Λq)
−1 − (σ2I + Λq)

−1

+ λΛ−1
q = 0 (9)

We are now ready to derive the optimal quantization noise
levels based on the above condition. Below, we first treat the
high SNR case, then develop optimization algorithms for the
general SNR case.

1) Optimal Quantization Noise Levels at High SNR: First,
it is easy to verify that the optimality condition can only be
satisfied if 0 ≤ λ < 1. Second, since (Λq + σ2I) is the
combined quantization and background noise, if the overall
system is to operate at reasonably high spectral efficiency,
we must have HKXHT ≫ σ2I + Λq . Under this high SNR
condition, we have

(1− λ)diag(HKXHT + σ2I + Λq)
−1 ≪ (σ2I + Λq)

−1

in which case the optimality condition becomes (σ2I +
Λq)

−1 = λΛ−1
q , or

q∗i =
λ

1− λ
σ2 (10)

where λ ∈ [0, 1) is chosen to satisfy the backhaul sum-capacity

constraint 1
2 log

|HKXHT+σ2I+Λq|
|Λq| = C. Note that λ = 0

corresponds to the infinite backhaul case where q∗i = 0. As
λ increases, the sum backhaul capacity becomes increasingly
constrained, and the optimal quantization noise level q∗i would
also need to increase accordingly.

The main observation here is that under high SNR the
quantization noise levels at different BSs should be chosen
to be equal, regardless of the transmit power and the channel
matrix. Uniform quantization noise levels are desirable in a
practical implementation, because no adaptation to the channel
condition is needed. This is especially advantageous in a fast
fading environment.

2) Optimizing the Quantization Noise Levels under General
SNR: In the general case where the SNR may not be high
either because the background noise is comparable to the
received signal, or because the sum backhaul capacity is
severely constrained so that the entries of Λq are large, we
can still work with the optimality condition (9) to find the
appropriate quantization noise levels.

Let Aii be the i-th diagonal element of the matrix(
HKXHT + σ2I + Λq

)−1
. The optimality condition (9)

states that
(1− λ)Aii +

λ

qi
=

1

σ2 + qi
. (11)



We can think of (11) as a fixed-point equation in qi. In par-
ticular, we can ignore the dependence of Aii on {q1, . . . , qL},
treat Aii as a constant, then solve the equation (11) for qi.
The fixed-point equation is quadratic in qi, so it can be easily
solved. In the event that multiple positive roots exist, we can
select the qi that maximizes the Lagrangian (7).

The algorithm details are provided below, where Λ
(j)
q and

A
(j)
ii denote the values of Λq and Aii in the j-th iteration,

respectively.

Algorithm 1 Fixed-point iterative method

1: Initialize Λ
(0)
q = βI and select a small number ε > 0.

2: Set qi, the i-th diagonal element of Λ(j)
q , to be the root of

the following equation

(1− λ)A
(j−1)
ii +

λ

qi
=

1

σ2 + qi
.

If multiple positive roots exist, choose the one that maxi-
mizes the Lagrangian (7).

3: Update A
(j)
ii by setting it to be equal to the i-th diagonal

element of
(
HKXHT + σ2I + Λ

(j)
q

)−1

. Increment j and

repeat Step 2 until ∥Λ(j)
q − Λ

(j−1)
q ∥ ≤ ε∥Λ(j)

q ∥.

The above algorithm is found to converge faster than the
algorithms in [8] for the single-antenna case considered in
this papper. As the point of convergence satisfies the KKT
condition, if the algorithm converges, it must reach a stationary
point of problem (6). Although the stationary point is not
guaranteed to be the globally optimum, simulation results
suggest that the fixed-point algorithm works well in practice.

The dual variable λ plays the role of constraining the back-
haul sum capacity. In practice where a specific backhaul sum-
capacity constraint must be met, it is possible to implement
an efficient search over λ in an outer loop.

The optimization of the quantization noise levels in this
paper has the same flavor as the algorithms presented in
[8], but with the key difference that this paper optimizes the
quantization noise levels across all BSs jointly with a single
objective of maximizing the sum rate, while the approaches in
[8] iteratively optimize the quantization noise level of one BS
at a time in a coordinated fashion, where the objective function
in each step is the maximization of the achievable rate for one
BS only. For this reason, the joint optimization algorithm in
this paper is better suited for the sum-rate maximization.

C. Sum Capacity to Within a Constant Gap
One of the key insights from the previous section is that

the quantization noise levels across the BSs should be set to
be approximately uniform. In this section, we further justify
this choice of uniform quantization noise levels by showing
that doing so in fact achieves the sum capacity of the uplink
MCP model with sum backhaul capacity constraint to within
a constant gap. The gap depends on the number of BSs in
the network but is independent of the channel matrix and the
SNRs. The main result of this section is the following:

Theorem 2: For the uplink MCP model with L base-stations
and sum backhaul capacity C shown in Fig. 1, the V-MAC-
WZ scheme with uniform quantization noise levels across the
BSs (i.e., qi = q) achieves the sum capacity to within L

2 bits.
Proof: The idea is to choose qi = ασ2, i = 1, 2, . . . , L

where α > 0 is an appropriately chosen constant, then
compare the achievable rate of V-MAC-WZ with the following
cut-set like sum-capacity upper bound [4]

C̄ = min

{
1

2
log

∣∣HKXHT + σ2I
∣∣

|σ2I|
, C

}
(12)

where the first term is the cut from the users to the base-
stations, and the second term is the cut across the backhaul.

We choose the quantization level α depending on C as

follows: When C ≥ 1
2 log

|HKXHT+2σ2I|
|σ2I| , we choose α = 1,

i.e., the quantization levels are set to be at the background
noise level. Since α = 1, it can be verified that

I(Y; Ŷ) =
1

2
log

∣∣HKXHT + 2σ2I
∣∣

|σ2I|
. (13)

Thus, we have C ≥ I(Y; Ŷ). This implies that the sum
backhaul constraint (2) is satisfied. Therefore, the sum rate

Rsum = I(X; Ŷ) =
1

2
log

∣∣HKXHT + 2σ2I
∣∣

|2σ2I|
(14)

is achievable. In this case, the gap between C̄ and Rsum can
be bounded by

C̄ −Rsum ≤ 1

2
log

∣∣HKXHT + σ2I
∣∣

|σ2I|

−1

2
log

∣∣HKXHT + 2σ2I
∣∣

|2σ2I|
<

L

2

When C < 1
2 log

|HKXHT+2σ2I|
|σ2I| , we choose α so that

I(Y; Ŷ) = C. First, note that for such a choice of α the
sum rate Rsum = I(X; Ŷ) is achievable. Next, observe that

I(Y; Ŷ) =
1

2
log

∣∣HKXHT + σ2I + ασ2I
∣∣

|ασ2I|
(15)

is a monotonically decreasing function of α. Since C =

I(Y; Ŷ) < 1
2 log

|HKXHT+2σ2I|
|σ2I| , we have α > 1. Now, we

use C = I(Y; Ŷ) as an upper bound. The gap between C̄ and
Rsum can now be bounded by

C̄ −Rsum ≤ I(Y; Ŷ)− I(X; Ŷ)

=
1

2
log

∣∣HKXHT + (1 + α)σ2I
∣∣

|ασ2I|

−1

2
log

∣∣HKXHT + (1 + α)σ2I
∣∣

|(1 + α)σ2I|

=
L

2
log

(
1 +

1

α

)
<

L

2

where the last inequality follows from the fact that α > 1.
Combining the two cases, we see that the gap to the

sum capacity for the V-MAC-WZ scheme with appropriately



chosen quantization noise levels (which are uniform across the
BSs) is always less than L

2 .
Theorem 2 demonstrates that when C is sufficiently large,

the quantization noise levels can essentially be set to be at the
background noise level, resulting in a gap to the cut-set bound
of at most 1/2 bits per dimension per user. When C is small,
the quantization noise levels across all the BSs can be scaled
uniformly, while maintaining the same gap. The constant gap-
to-optimality result depends on the particular feature of the
sum-capacity constrained backhaul, and it does not hold in
the case of individual backhaul constraints [3], [4].

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed quanti-
zation noise level optimization algorithm, we evaluate the
achievable sum rates of the uplink MCP model using different
choices of qi in a realistic 7-cell wireless network with one
user per cell. Standard cellular network parameters are used
in the numerical evaluation: the noise power spectral density
(PSD) is set to be −169dBm/Hz; the users’ transmit power is
set to be 23dBm; frequency selective channels are used accord-
ing to a pedestrian multi-path time delay profile, a distance-
dependent path-loss model L = 128.1+37.6·log10(d), (where
d is the distance in km), and with 8dB log normal shadowing
and a Rayleigh component. The distance between neighboring
base-stations is set to be 0.5 km.

The numerical results are shown in Fig. 2, where
• the uniform quantization noise levels refer to qi = λ/(1−

λ)σ2 as given by (10) assuming high SNR;
• the approximately optimal quantization noise levels are

those used in the proof of Theorem 2;
• the optimized quantization noise levels are the qi’s pro-

duced by the fixed-point iteration algorithm.
It is verified that the achievable sum rate per cell when using
the approximately optimal quantization noise levels is indeed
less than L

2 = 7
2 bits away from the sum-capacity upper bound.

However, it is a poor choice of quantization noise levels when
C is large, because the quantization noise levels are set to be
at the background noise level, and are not reduced further as
the available sum backhaul capacity C grows.

Moreover, for all values of C, using uniform quantization
noise levels is almost as good as using the optimized quanti-
zation noise levels produced by the fixed-point iteration algo-
rithm. Both the uniform and the optimized quantization noise
levels produce a graceful tradeoff between the sum backhaul
capacity and the achievable sum rate. Overall, the numerical
simulation demonstrates that choosing uniform quantization
noise levels is near optimal.

V. CONCLUSION

This paper studies an uplink MCP model where the BSs are
connected to a CP through noiseless backhaul links of limited
sum capacity. We utilize a so-called V-MAC-WZ scheme,
where the quantization codewords are first decoded at the CP;
subsequently the users are treated as if they form a virtual
multiple-access channel. This paper shows that under the
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Fig. 2. Achievable sum rates of the V-MAC-WZ scheme with different
choices of quantization noise levels for a 7-cell wireless network.

proposed model, choosing uniform quantization levels across
all the BSs is near optimal at high SNR. We further develop
a numerical algorithm for optimizing the quantization noise
levels. Finally, we show that the V-MAC-WZ scheme achieves
the sum capacity of the uplink MCP model to within a constant
gap that only depends on the number of BSs.

The results of this paper demonstrate several key advantages
of the V-MAC-WZ scheme: the quantization noise levels can
be readily optimized, and it avoids the complexity of joint
decoding by performing successive decoding, while providing
near optimal performance over a range of channel conditions
and backhaul constraints.
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