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1.1 Introduction

The cellular structure is a central concept in wireless network deployment. A
wireless cellular network is comprised of base-stations geographically located at
the centre of each cell serving users within its cell boundary. The assignment of
users to base-stations depends on the relative channel propagation characteris-
tics. As a mobile device can usually observe signals from multiple base-stations,
the mobile is typically assigned to the base-station with the strongest signal;
signals from all other base-stations are then regarded as intercell interference.
However, at the cell edge, it is often the case that the propagation path losses
from two or more base-stations are similar. In this case, the signal-to-noise-and-
interference ratio (SINR) would have been close to 0dB, even if the mobile is
assigned to the strongest base-station. To avoid excess intercell interference in
these cases, traditional cellular networks employ a fixed frequency reuse pattern
so that neighbouring base-stations do not share the same frequency. In this man-
ner, neighbouring cells are separated in frequency so that cell-edge users do not
interfere with each other.

The traditional fixed frequency reuse patterns are effective in minimizing inter-
cell interference, but it is also resource intensive in the sense that each cell
requires substantial amount of nonoverlapping bandwidth, so that only a frac-
tion of the total bandwidth can be made available for each cell. Consequently,
many standards for future wireless systems have targeted on maximal frequency
reuse, where all cells use the same frequency everywhere. In these systems, it is
crucial to manage intercell interference using dynamic power control, frequency
allocation, and rate allocation methods.

Wireless channels are fundamentally impaired by fading, by propagation loss,
and by interference. In the past decade, intense research has focused on the
mitigation of short-term fading, where spatial, temporal and frequency diversity
techniques have been devised to combat the short-term variation of the channel
over time. Large-scale fading, propagation loss and intercell interference, how-
ever, call for different approaches. As large-scale channel and noise characteristics
can often be estimated at the receivers and made available at the transmitter,
rather than combating large-scale fading the right approach is to adapt to it.
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Toward this end, cooperative communication has emerged as a promising
future technology for dealing with the large-scale channel impairments. This
chapter considers two types of cooperative networks that specifically address the
issues of intercell interference and path loss.

� Base-station Cooperation: This type of cooperative network explores the pos-
sibility of coordinating multiple base-stations. In a traditional cellular net-
work, each base-station operate independently. In particular, each base-station
adapts to the channel propagation condition within each cell without con-
sidering its intercell interference onto the neighbouring cells. The intercell
interference is always treated as a part of the background noise. A network
with base-station cooperation is a network in which the transmission strate-
gies among the multiple base-stations is designed jointly. In particular, the
base-stations may cooperate in their power, frequency, and rate allocations
in order to jointly mitigate the effect of intercell interference for users at the
cell edge. Such a cooperative network can also be thought of as an adaptive
frequency reuse scheme where the frequency usage and transmission power
spectrum are designed specifically according to the mobile locations and user
traffic patterns.

� Relay Cooperation: This type of cooperative network explores the use of relays
to aid the direct communication between the base-station and the remote sub-
scribers. The path loss is a fundamental characteristic of the wireless medium.
The path loss exponent, which is determined by the physics of electromagnetic
wave propagation environment, typically ranges from 2 to 6. Consequently,
propagation distance is the most crucial factor that affects the capacity of
the wireless channel. The use of cooperative relays in a cellular network can
be thought of as a method for reducing the propagation distance. Instead
of adding more base-stations to the network (which is costly), the idea of
a cooperative relay network is to deploy relay stations within each cell so
that the mobile users may connect to the nearest relay, rather than the base-
station which may be far away. Relay deployment substantially improves the
area-spectral efficiency of the network by improving the network topology.

In both types of cooperative networks, resource allocation is expected to be
a crucial issue. In a network with base-station cooperation, base-stations must
jointly determine their respective power and bandwidth allocation for the pur-
pose of minimizing intercell interference. In a cooperative relay network, power
and bandwidth assignments need to be made for each of the base-station-to-relay
and relay-to-mobile links. The optimal allocation of these network resources has
a significant impact in the overall network performance.

This chapter provides an optimization framework for power, bandwidth and
rate allocation in cooperative cellular networks. The network is assumed to
employ orthogonal frequency-division multiple-access (OFDMA) which provides
flexibility in power, subchannel, and rate assignment for each link. This chap-
ter covers both the theory and the practice of cooperative network design, and



Adaptive Resource Allocation in Cooperative Cellular Networks 3

makes a case that cooperative communication is a key future technology that
could improve the overall capacity of wireless networks.

Throughout this chapter, it is assume that the network employs an initial
channel estimation phase so that the frequency selective channel gain between
any arbitrary pair of transmitter and receiver can be estimated and made known
throughout the network. The assumption of channel knowledge is necessary in
order to optimize the allocation of power, bandwidth and rate in the network.
This chapter further assumes that channel estimation is perfect. In practical sit-
uations where channel estimation error exists, robust optimization design would
be needed. The impact of imperfect channel knowledge on the resource allocation
of cooperative cellular networks has been dealt with in [1, 2], but is not directly
addressed in this chapter.

It should be noted that this chapter considers cooperative networks in which
transmitting nodes cooperate in their transmission strategies (i.e. power, band-
width) only, but not in actual signals. It is possible to envision a network-wide
cooperative system where all the antennas from all the base-stations are pooled
together as a single antenna array. Such a network multi-input multi-output
(MIMO) system is capable of achieving the ultimate area-spectral efficiency limit
of the network, but is outside of the scope of this chapter.

1.2 System Model

This chapter considers wireless cellular networks employing an OFDMA scheme,
where the total bandwidth is divided into a large number of subchannels, and
where arbitrary scheduling, as well as power, frequency and rate allocation may
be made for any transmitter-receiver pairs throughout the network. The flexibil-
ity of OFDMA system in assigning resources throughout the network is one of its
a key advantages, but it also presents challenge in resource optimization, as the
total number of dimensions (and therefore optimization variables) is typically
quite large in a realistic network. This section presents a system model for an
OFDMA network and formulate an optimization problem at the network level.

1.2.1 Orthogonal Frequency-Division Multiple Access

The OFDM system is originally conceived as a solution to combat the multipath
or frequency-selective nature of the wireless channel. By utilizing an N -point
Inverse Fast Fourier Transform (IFFT) at the transmitter and an N -point Fast
Fourier Transform (FFT) at the receiver, the available frequency band is divided
into N orthogonal subchannels onto which independent data transmissions take
place. The orthogonalization of frequency dimensions relies on the use of cyclic
prefix, and on the assumption that the channel is stationary within each OFDM
symbol, which is assumed throughout this chapter.
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Figure 1.1 In an OFDMA system, the time and frequency dimensions are partitioned
can be assigned arbitrarily to multiple users in the cell.

The OFDM system can also be thought of as a multiple-access scheme, in which
multiple users may occupy orthogonal frequency subchannels without interfering
with each other. For example, in a cellular network, different mobile users may
communicate with the base-station on nonoverlapping sets of frequency tones, so
that different users’ signals are separated in frequency. This is known as OFDMA.
The idea of OFDMA can also be extended to a cooperative relay network scenario
in which different transmitter-receiver pairs in the network use nonoverlapping
sets of frequency tones to communicate.

Orthogonalization within each cell is in general a good idea, as whenever a
receiver is close in range to a non-intended transmitter, orthogonalization is
needed to avoid mutual interference. The use of OFDM enables the orthogonal-
ization in the frequency domain, which along with scheduling (which is essentially
orthogonalization in the time domain) allows an arbitrary division of orthogonal
dimensions among users within each cell. The assignment of dimensions can be
visualized in a time-frequency map as shown in Figure 1.1.

It is implicitly assumed in the preceding discussion that when multiple
transmitter-receivers pairs use OFDMA, the FFT at each receiver not only
orthogonalizes the intended transmit signal, but also all the interfering signals.
For this to happen, the received OFDM symbols from all transmitters must be
symbol synchronized, as otherwise, a leakage would occur from one tone to its
neighbouring tones [3]. For the downlink cellular setting, symbol synchronization
is automatic. For the uplink, transmit timing offset can be introduced to ensure
synchronization at the receiver. A more challenging case is the relay cooperative
network, where it is possible to have one relay communicating with a mobile on
one set of frequency tones, while another relay communicates with a different
mobile on adjacent tones. In this case, simultaneous symbol synchronization at
two different receivers becomes difficult. While it is possible to use advanced
techniques (such as a cyclic suffix in addition to a cyclic prefix [4]) to correct for
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these effects, for simplicity, the rest of this chapter assumes that leakage of this
type is sufficiently small, so that its effect can be ignored.

1.2.2 Adaptive Power, Spectrum and Rate Allocation

An OFDM system allows arbitrary assignment of power, modulation format and
rates across the frequency domain for each transmitter-receiver pair. Assuming
a fixed type of modulation, e.g. quadrature amplitude modulation (QAM), and
a fixed target probability of error, the maximum bit rate in each OFDM tone is
a function of the SINR on that tone. The overall achievable rate of the link is
the sum of the bit rates across the tones, which can be expressed as follows:

R =
N∑

n=1

log
(

1 +
SINR(n)

Γ

)
(1.1)

where SINR(n) is the ratio of the received signal power to the noise and inter-
ference at the receiver in tone n, and Γ is the SNR gap, which is a measure of
the efficiency of the particular modulation and coding scheme employed. With
strong coding, Γ can be made to be close to the information-theoretical limit of
0dB, but in practical wireless system, Γ can range around 6dB-12dB. The exact
value of Γ depends on the modulation scheme, coding gain, and the probability
of error target.

The use of SNR gap to relate SINR with transmission rate is an approximation
which is accurate for moderate and high SNRs. The exact relation between SINR
and rate depends on a detailed probability of error analysis, and would give rise
to complex functional forms. The value of the SNR gap approximation is that
the resulting functional relation is amenable to analytic optimization, and that it
closely resembles the Shannon capacity formula for the additive white Gaussian
noise channel.

Note that because of the presence of intercell and intracell interference within
the network, the SINRs of different links in a cellular network are interdependent.
For this reason, the optimization of achievable rates over all users across the
network is in general a nontrivial problem.

1.2.3 Cooperative Networks

This chapter considers two types of cooperative cellular networks: networks
where multiple base-stations from different cells may cooperatively set their
power allocation across the frequency tones, and networks where relay stations
may be deployed to transmit and receive information from the mobile users. It is
assumed that an OFDMA scheme is used within each cell, so that no two links
within each cell can use the same frequency tone and at the same time. This
eliminates intracell interference. Intercell interference is still present especially
for cell-edge users. Given a fixed frequency and power allocation for all trans-
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mitters, the SINR for each link in every frequency tone can be easily computed
as a function of the transmit powers and the direct and interfering channel path
looses. The network optimization problem is then that of coordinating the allo-
cation of frequency tones and time slots to different links within each cell and the
allocation of power in each time/frequency dimension subject to total and peak
power constraints, so that an overall network objective function is maximized.

1.3 Network Optimization

1.3.1 Single-User Water-filling

The OFDM transmit power optimization problem for a single link case has a
classic solution known as water-filling. In this section, we briefly review the opti-
mization principle behind water-filling, and set the stage for subsequent develop-
ment for multiuser network optimization. For the single-link problem where the
noise and interference are assumed to be fixed, the optimization of the achievable
rate subject to a total power constraint can be formulated as

maximize
N∑

n=1

log
(

1 +
|h(n)|2P (n)

Γσ2(n)

)

subject to
N∑

n=1

P (n) ≤ Ptotal

0 ≤ P (n) ≤ Pmax (1.2)

where the optimization is over P (n), the transmit power on the frequency tone
n. The channel path loss |h(n)|2 and the combined noise and interference σ2(n)
are assumed to be fixed. The optimization is subject to a total power constraint
Ptotal and a per-tone maximum power-spectral-density constraint Pmax.

The water-filling solution arises from solving the above optimization problem
via its dual. Let λ be the dual variable associated with the total power constraint,
the Lagrangian of the above optimization problem is:

L(P (n), λ) =
N∑

n=1

log
(

1 +
|h(n)|2P (n)

Γσ2(n)

)
− λ

(
N∑

n=1

P (n) − Ptotal

)
(1.3)

The constrained optimization problem is now reduced to a unconstrained one
where λ can be interpreted as the power price. Optimizing the above Lagrangian
subject to peak power constraints by setting its derivative to be zero gives the
following:

P (n) =
[

1
λ
− Γσ2(n)

|h(n)|2
]Pmax

0

(1.4)

where [·]ba denotes a limiting operation with lower bound a and upper bound b.
The optimal λ can then be found based on the total power constraint, either by a
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Figure 1.2 Single-user water-filling solution.

bisection or by using algorithms based on the sorting of the subchannels by their
effective noises. Eq. (1.4) is the celebrated water-filling solution for transmit
power optimization over a single link. The name waterfilling comes from the
interpretation that the effective noise and interference Γσ2(n)/|h(n)|2 can be
thought of as the bottom of a bowl, 1/λ can be thought of as the water level,
and the power allocation process can be thought of as that of pouring water
into the bowl, as illustrated in Figure 1.2. The optimal power is the difference
between the water level and the bottom of the bowl.

The fundamental reason that an (almost) analytic and exact solution exits for
this problem is that the objective function of the optimization problem (1.2) is
a concave function of the optimization variables and the constraints are linear.
Therefore, convex optimization techniques such as Lagrangian dual optimization
can be applied.

Modern wireless communication systems often implement adaptive power con-
trol and adaptive modulation schemes that emulate the optimal water-filling
solution. It should be noted that the exact shape of the optimal power alloca-
tion is not important. If one approximates the optimal solution by a constant
power allocation where all subchannels that would receive positive power in the
optimal solution receive equal power in this approximate solution, the value of
the objective function would be close to the optimum [5, 6]. This is because the
water-filling relation, i.e. Eq. (1.4), operates on a linear scale on P (n), while the
rate expression, i.e. Eq. (1.2), is a logarithmic function of P (n), which is not
sensitive to the exact value of P (n) for large value of P (n). Thus, in the imple-
mentation of water-filling in practice, while it is important to identify the min-
imum channel-gain-to-noise ratio beyond which transmission should take place,
the exact value of P (n) is not as important.

In a cellular setting, whenever a particular cell implements water-filling, it
changes its interference pattern on its neighbours. Thus, when every cell imple-
ments water-filling at the same time, the entire network effectively reaches a
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simultaneous water-filling solution, where the optimal power allocation in each
cell is the water-filling solution against the combined noise and interference from
all other cells. Such simultaneous water-filling solution can typically be reached
via an iterative water-filling algorithm in a system-level simulation where the
water-filling operation is performed on a per-cell basis iteratively [7]. Mathemat-
ically, the most general condition for convergence of such iterative algorithm is
not yet known, but iterative water-filling has been observed to converge in most
practical situations.

1.3.2 Network Utility Maximization

In a network with multiple users, the transmit power, bandwidth and rate allo-
cation problem becomes considerably more complicated. This is because the
achievable rates of various users become in general interdependent.

There are two consequences of this interdependency. First, the improvement
in the rate of one user would in general come at the expense of other users in the
network. For example, in a multicell OFDMA setup, to improve the rate of one
user, one has to either increase its frequency allocation or increase its transmit
power. The former case comes at the expense of the bandwidth allocation for
other users within the cell. The latter comes at the expense of more interference
for users in adjacent cells. In both cases, there exists a tradeoff between the
rates of various users. The concept of rate region is often used to characterize
such a tradeoff between the rates of various users as a function of their power
and bandwidth allocations. This is often considered as a tradeoff in the physical
layer.

Secondly, a fixed amount of rate improvement brings different amount of ben-
efit to different users, depending on the application layer rate requirement. For
example, a rate improvement could result in either higher video quality for one
user engaged in a video-on-demand service, or a faster file transfer by a differ-
ent user. The network must decide which of the two alternatives above is more
preferable. Such a choice not only depends on the nature of the application, but
can also depends on revenue considerations. This is often considered as a tradeoff
in the application layer.

Network utility maximization (NUM) is an optimization framework that cap-
tures both the physical-layer and the application-layer tradeoffs [8]. In this frame-
work, each user has an associated utility, which is a function of its (windowed)
average rate, denoted as Ui(R̄i). The utility function is increasing and assumed
to be concave; it captures the desirability of having the rate R̄i. The network
utility maximization problem is that of maximizing the sum utility subject to
the achievability of these rates in the physical layer, i.e.

maximize
K∑

i=1

Ui(R̄i)

subject to (R1, R2, · · · , RK) ∈ R (1.5)
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where the constraint is that each instantaneous rate tuple must be inside R, the
achievable rate region at each time instance, which is defined as the convex hull
of the union of all achieveable rate-tuples.

It is implicitly assumed in the above problem formulation that the utility
function for all the users in the network is separable. This is a realistic assumption
for the case where each user runs a separate application. In a specialized network,
such a sensor network, where users collaborate in a specific task, it is conceivable
that the utility of the network could depend jointly on all the rates, i.e. the
objective is to maximize U(R̄1, R̄2, · · · , R̄K). A generalization of NUM in this
setting has been treated in [9].

1.3.3 Proportional Fairness

A common choice of the utility function is the logarithm function. The choice
of log-utility leads to a proportional fair rate allocation, which is described in
detail below.

The network’s objective is to maximize the sum utility of the average rates
of different users in the network. The averaging is typically done in a windowed
fashion or more commonly, exponentially weighted as below:

R̄i = (1 − α)R̄i + αRi (1.6)

where 0 < α < 1 is the forgetting factor. Assuming that αRi is small, the new
contribution of the instantaneous rate Ri to the overall utility can be approxi-
mated as:

Ui

(
(1 − α)R̄i + αRi

) ≈ Ui

(
(1 − α)R̄i

)
+

∂Ui

∂Ri

∣∣∣∣
Ri=R̄i

(αRi) (1.7)

Under this approximation, the maximization of the sum utility, which is equiv-
alent to the maximization of the incremental utility, becomes the maximization
of weighted sum rate, where the weights are determined by the derivative of the
utility function at the present rate. When the utility function is the logarithm
function, the equivalent maximization problem reduces to

maximize
K∑

i=1

wiRi

subject to (R1, R2, · · · , RK) ∈ R (1.8)

where wi = 1
R̄i

. This is a weighted rate sum maximization problem for instante-
nous rates with weights equal to the inverse of the rate average. As these weights
change over time, and as the rate region R changes over time (due to user mobil-
ity and the fading characteristics of the underlying fading channel), the above
optimization problem needs to be solved repeatedly.

The proportional fair rate allocation is originally devised in the context of user
scheduling [10]. The above discussion shows that this is also applicable to the
power allocation problem. The use of proportional fairness utility is not the only
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way to reduce the network utility maximization to a weighted rate maximization
problem. Alternatively, one may consider a system in which each user has an
associated input queue, and where weights of the rate maximization problem are
set as a function of the input queue length of each respective user [11, 12]. The
important point is that both approaches decouples the application layer demand
for rates (expressed either in the utility function or in queue length) from the
physical layer provision of rates. In both cases, the physical-layer problem is
reduced to a weighted rate sum maximization problem.

1.3.4 Rate Region Maximization

The reduction of the network utility maximization problem to a weighted sum
rate maximization problem is a crucial step for OFDM based networks. The net-
work utility is in general a nonlinear function of the rate of each link, which is
the sum of bit rates over the frequency tones. As shown later in this section, the
reduction of the utility maximization problem to a weighted sum rate maximiza-
tion linearizes the objective function, which decouples the objective function on
a per-tone basis and simplifies the problem significantly.

The rate region maximization problem also often has constraints that couple
across the frequency tones. For example, each user may have a power constraint
across the frequency. In addition, there is typically a constraint that no two users
should occupy the same frequency tone within each cell. To solve the rate region
maximization problem efficiently, it is important to decouple these constraints
across the frequency tones as well.

A key technique to achieve such decoupling is to utilize the Lagrangian duality
theory in optimization. For example, consider the case where

Ri =
N∑

n=1

log

(
1 +

|hii(n)|2Pi(n)
Γ(
∑

j �=i |hji(n)|2Pj(n) + σ2(n))

)
(1.9)

subject to a power constraint

N∑
n=1

Pi(n) ≤ Pi,total (1.10)

where Pi(n) denote the transmit power of user i in tone n, and hij(n) is the
complex channel gain from the transmitter of user i to the receiver of the user j.
The weighted rate sum maximization problem subject to the power constraint
can be alternatively solve by dualizing with respect to the power constraint. This
results in a dual function g(λi) defined as follows:

g(λi) = max
Pi(n)

{
wiRi − λi

(
N∑

n=1

Pi(n) − Pi,total

)}
. (1.11)

The point is that when the objective function is a weighted rate sum and the
constraint is linearized via the use of Lagrangian dual variable λ, the above
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optimization problem reduces to N per-tone problems:

max
Pi(n)

{
wi log

(
1 +

|hii(n)|2Pi(n)
Γ(
∑

j �=i |hji(n)|2Pj(n) + σ2(n))

)
− λiPi(n)

}
(1.12)

Just as in single-user water-filling, where the solution to a convex optimization
problem reduces to solving the problem for each λ, then finding the optimal λ,
a similar algorithm based on λ-search is applicable here. The reduction to N

per-tone optimization problem ensures that the computational complexity for
each step of this optimization problem with fixed λi is linear in the number of
tones.

The theoretical justification for the above duality approach is convexity. For
convex optimization problems where the feasible set has a non-empty interior
(which is almost always true in engineering applications), the maximum value of
the original objective is equal to the minimum of the dual optimization problem

min
λi≥0

g(λi). (1.13)

The optimum λi can be found using search based on the ellipsoid method (which
is a generalization of bisection search to higher dimensions.)

An interesting fact is that this duality technique remains applicable even when
the functional form of the rate expression is nonconvex as is the case in Eq. (1.9),
as long as the OFDM system has a large number of dimensions in the frequency
domain, which allows an effective convexification of the achievable rate region
as a function of the power allocation. A rigorous proof of this statement can be
found in [13, 14]. This fact allows the duality technique to be used in a wide
variety of applications.

To summarize, under the network utility maximization framework, the network
optimization problem for an OFDMA network under per-user power constraints
reduces to a per-tone weighted sum rate maximization problem with a linear
power penalty term. The weights in weighted rate sum maximization are deter-
mined by the utility function. The power penalty weighting can be found using a
generalization of bisection. The rest of this chapter is devoted to two examples of
cooperative networks where the adaptive scheduling, and power, frequency and
rate allocation problem can be solved efficiently in OFDMA networks.

1.4 Network with Base-Station Cooperation

1.4.1 Problem Formulation

Consider an OFDMA-based cellular network as shown in Figure 1.3 in which
base-stations cooperate in setting their downlink transmit power and the mobiles
likewise jointly set their uplink transmit power in order to avoid excessive inter-
ference between the neighbouring cells. The optimal design of this multicell coop-
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Figure 1.3 A cellular network in which the base-stations cooperate in user scheduling
and power allocation across the frequency spectrum.

erative network becomes that of designing a joint scheduling and power allocation
scheme that decides in each frequency tone:

� Which user should be served in each cell?
� What is the appropriate uplink and downlink transmit power levels?

Scheduling can be thought of either as the optimal partitioning of the frequency
among the users within each time, or as the optimal assignment of users in each
time slot for each frequency tone. Scheduling and power allocation need to be
considered jointly to reach an optimal solution for the entire network.

Assuming a proportional fairness objective function, the network optimization
problem for the downlink is a weighted rate sum maximization problem

max
L∑

l=1

K∑
k=1

wD,lkRD,lk (1.14)

where RD,lk is the instantaneous downlink rate of kth user in lth cell in a network
consisted of L cells with K users per cell. The weights wD,lk = 1

R̄D,lk
are the

proportional fairness variable determined by the exponentially weighted average
rate. Let k = fD(l, n) be the downlink scheduling function, which assigns a user
k to the nth frequency tone in the lth base-station. The downlink rate expression
RD,lk is then

RD,lk =
∑

n∈Dlk

log

(
1 +

Pn
D,l|hn

llk|2
Γ(σ2 +

∑
j �=l Pn

D,j |hn
jlk|2)

)
(1.15)

where the summation is over frequency tones assigned to the kth user in the
lth cell, i.e. Dlk = {n|k = fD(l, n)}. Here hn

jlk is the channel transfer function
from the jth base-station to the kth user in the lth cell and the nth tone, and
Pn

D,l is the downlink power allocation for the lth base-station in nth tone. The
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optimization is over Pn
D,l. The weighted rate maximization problem is to be

solved under the per base-station power constraint for the downlink

N∑
n=1

Pl(n) ≤ Pl,total (1.16)

as well as possibly peak power constraints:

0 ≤ Pn
D,l ≤ Smax

D . (1.17)

In addition, there is the OFDMA constraint that no two users should occupy the
same frequency tone within each cell. Finally, note that a similar optimization
problem with corresponding rate and power expressions can be written down for
the uplink.

The joint scheduling and power allocation problem formulated above has been
studied in several recent works [15, 16, 17], where key ideas such as iterative opti-
mization of scheduling and power allocation and numerical methods for power
adaptation have been proposed. The following section outlines the approach
based on these recent works and provides a performance projection for networks
with base-station power cooperation.

1.4.2 Joint Scheduling and Power Allocation

The dual decomposition technique outlined in the previous section can be used to
tackle the joint scheduling and power allocation above. The key fact is that after
dualizing with respect to the total power constraint, the optimization problem
decouples on a tone-by-tone basis:

maximize
∑

l

wD,lk log

(
1 +

Pn
D,l|hn

llk|2
Γ(σ2 +

∑
j �=l Pn

D,j |hn
jlk|2)

)
− λD,lP

n
D,l

subject to 0 ≤ Pn
D,l ≤ Smax

D ∀l. (1.18)

where the optimization is over both the power variables Pn
D,l as well as the

scheduling function k = fD(l, n) across the L base-stations for a fixed tone n.
The duality theory for OFDMA networks states that if the above per-tone

optimization problem can be solved exactly for each set of fixed λD,l’s, an ellip-
soid or subgradient search over λD,l in an outer loop can be carried out to find
the optimal λD,l, which then leads to the global optimum of the overall network
optimization problem.

The optimization problem (1.18) is a mixed integer programming problem with
nonconvex objective function. Finding the global optimum for such an optimiza-
tion problem is known to be a difficult task. However, many approximation algo-
rithms exist that can reach at least a local optimum. Although strictly speaking,
the duality theory for OFDMA networks requires the global optimum solution
of the per-tone optimization problem, the local optimum solution already works
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quite well in practice. The rest of this section focuses on solving (1.18) using
local optimal approaches.

Observe first that for the downlink, the scheduling step and the power alloca-
tion step can be carried out separately. This is because the scheduling choices at
each cell does not affect the amount of intercell interference on its neighbours.
The intercell interference is a function of the power allocation only. Thus, an
iterative algorithm can be devised so that one can find the best schedule for a
fixed power allocation, then find the best power allocation for the fixed schedule
[15]. The iteration always increases the objective function monotonically, so it is
guaranteed to converge to at least a local optimum of the joint scheduling and
power allocation problem.

For the downlink, because the intercell interference is independent of the
scheduling decisions at each cell, finding the best schedule for a fixed power
allocation is a per-cell optimization problem. In other words, each base-station
only needs to find the user in each tone that maximizes the weighted rate. This
amounts to a simple search among the K users.

For a fixed user schedule, the optimal power allocation problem becomes that
of solving (1.18) for fixed k’s. This is a nonconvex problem with potentially
multiple local optima. The first-order condition for this optimization problem
can be found by taking the derivative of the objective function and setting it to
be zero:

wD,lk|hn
llk|2

Pn
D,l|hn

llk|2 + Γ(σ2 +
∑

j �=l Pn
D,j |hn

jlk|2)
=
∑
j �=l

tnD,jl + λD,l, (1.19)

where k = fD(l, n) for l = 1, · · · , L, and

tnD,jl = wD,jk′
Γ|hn

ljk′ |2
Pn

D,j |hn
jjk′ |2

(
(SINRn

D,j)2

1 + SINRn
D,j

)
, (1.20)

and

SINRn
D,j =

Pn
D,j |hn

jjk′ |2
Γ(σ2 +

∑
i�=j Pn

D,i|hn
ijk′ |2) , (1.21)

with k′ = fD(j, n).
The first-order condition gives a water-filling like condition if the terms tnD,jl

are considered to be fixed. In this case, (1.19) suggests that the following power
allocation is a local optimum of the per-tone optimization problem:

Pn
D,l =

[
wD,lk∑

j �=l tnD,jl + λD,l
− Γ(σ2 +

∑
j �=l Pn

D,j |hn
jlk|2)

|hn
llk|2

]Smax
D

0

(1.22)

where k = fD(l, n). Note that this is similar to the single-user water-filling power
allocation (1.4), except that the power is allocated with respect to the combined
noise and interference, and that the water-filling level λD,l is modified by the



Adaptive Resource Allocation in Cooperative Cellular Networks 15

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�

�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Frequency

wD,lk∑
j �=l t

n
D,jl + λD,l

P n
D,l

n

Γ(σ2 +
∑

j �=l P
n
D,j|hn

jlk|2)
|hn

llk|2

Figure 1.4 Water-filling where the water-filling level is modified by the tn
D,jl pricing

terms.

additional tnD,jl terms. This process is called modified water-filling [18] and is
illustrated in Figure 1.4.

The tnD,jl term can be interpreted as the summary of the effect of allocating
additional power at the lth base-station on the downlink rate at the neighbouring
jth cell. A larger value of tnD,jl signals a larger effect of interference from the lth
cell to the jth cell. The multiuser water-filling condition in (1.22) implies that
when interference is present, the water-filling level needs to be modified. The
water-filling level should decrease if the effect of interference is strong, which
suggests that the power allocation should be reduced. Note that the water-filling
level is also affected by the proportional fairness weights wD,lk. A larger weight
suggests a higher water-filling level.

The terms tnD,jl also have a pricing interpretation [19, 20, 21, 22], which comes
from the fact that tnD,jl is the derivative of the jth base-station’s data rate with
respect to the lth base-station’s power, weighted by the proportional fairness
variable. A higher value of tnD,jl suggests that the lth base-station must pay a
high price for allocation its power in tone n, which is reflected in the modification
of the water-filling level.

The water-filling condition (1.22) suggests that one way to coordinate mul-
tiple base-stations in a cooperative cellular network is to allow base-stations
to exchange values of tnD,jl with their neighbours. Note that the value of tnD,jl

depends on the ratio of the direct and the interfering channel gains, which can
be easily estimation using pilot signals.

Knowing tnD,jl, each base-station may use (1.22) to update its power allocation.
This results in an iterative process. When it converges, it will reach a local
optimum of the weighted rate sum maximization problem (1.18). This procedure
is known as the modified iterative water-filling algorithm [18]. In practice, it may
be necessary to damp the iteration to ensure convergence [17].
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Alternatively, one may resort to a direct numerical optimization of (1.18) [17,
16]. Starting from an initial power allocation, one may compute a gradient or
Newton’s increment direction for the optimization objective, then successively
improve the objective function until a local optimum is reached. The gradient
can again be computed located at each base-station based on the pricing terms
tnD,jl.

To summarize for the downlink, the coordination of base-stations can be
efficiently implemented using an approach that iterates between coordinated
scheduling and coordinated power allocation. The scheduling step for the down-
link can be efficiently implemented on a per-cell bases; the power allocation step
can be implemented if certain exchange of pricing information is allowed among
the base-stations. This iterative process, together with an outer loop that finds
the optimal power prices λD,l, finds a local optimum of the weighted rate sum
maximization problem.

Much of the discussion in this section is also applicable to the uplink, except
that optimal scheduling is no longer a per-cell problem. In the uplink, the assign-
ment of users in each cell directly affects the interference in neighbouring cells,
so an optimal uplink scheduler needs to consider the effect of the interference as
well. However, there is evidence suggesting that if one uses identical schedulers
for both the uplink and the downlink, the network often already performs very
well [17]. This can be justified in part by the fact that there is a duality between
uplink and downlink channels. The capacity regions of the uplink and downlink
channels are identical under the same power constraint.

1.4.3 Performance Evaluation

To illustrate the performance of the proportionally fair joint scheduling and
power allocation method described in the previous section, this section presents
simulation results on a multicell network with base-station cooperation. The
simulated network consists of 19 cells hexagonally tiled with 40 users per cell,
occupying a total bandwidth of 10 MHz partitioned into 256 subchannels using
OFDMA. For simplicity, a maximum transmit power spectral density (PSD) of
-27 dBm/Hz is imposed at both the base-stations and the remote users, but no
total power constraint is imposed. A multipath fading channel model is used with
8dB of log-normal shadowing. The channel path loss is modelled as a function of
distance d as 128.1 + 37.6 log10(d) (in dB). The background noise level is assumed
to be -169 dBm/Hz.

The joint proportionally fair scheduling and adaptive power allocation is
expected to provide the largest performance improvement for users at the cell
edge where intercell interference is dominant. To illustrate the performance gain
for cell-edge users, in the simulation below users are placed at the cell edge on
purpose. Table 1.1 illustrates a comparison of the achievable sum rates over all
users in 19 cells for the adaptive power allocation algorithm vs. the constant
transmit PSD scheme with proportionally fair scheduling. These results have
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Table 1.1. Uplink (UL) and downlink (DL) sum rates over 19 cells with 40 cell-edge
users per cell with proportional fairness joint scheduling and cooperative power
allocation among the base-stations [17].

Base-to-base 2.8km 1.4km
Distance UL DL UL DL

Fixed Power Spectrum 125 Mbps 129 Mbps 137 Mbps 142 Mbps

Adaptive Power Spectrum 185 Mbps 181 Mbps 228 Mbps 227 Mbps

Improvement 48% 40% 66% 60%
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Figure 1.5 Convergence of downlink sum rates in each of the 19 cells using modified
iterative water-filling with proportional fairness joint scheduling and power allocation.

been reported in [17] and are consistent with other studies in this area [16].
It can be seen that depending on the base-station to base-station distance, a
sum rate improvement between 40%-60% is possible. The improvement is larger
when base-stations are closer, because in this case the intercell interference is
also larger. It is worth emphasizing that the sum rate improvement reported in
Table 1.1 is for cell-edge users. If averaged over all users uniformly placed over
the cell, the sum rate improvement would have been about 15%-20%.

Figure 1.5 illustrates the convergence behaviour of the joint proportional fair
scheduling and power allocation algorithm. Each iteration here consists of either
an adaptive power allocation step or a scheduling step. Up to 10 sub-iterations
are performance within each power allocation step. The sum rates of each of the
19 cells are plotted. Note that the proportional fairness weights are also updated
in each iteration. These weights ensure that rates are allocated to all users with
fairness.

The simulation results clearly illustrate the value of coordinating base-station
power spectral densities in an interference limited multicell environment. The
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projected performance improvement is obtained by allowing base-stations to
exchange pricing information with each other, and by iteratively converging to
a joint network-wide optimum.

1.5 Cooperative Relay Network

Base-station cooperation addresses the intercell interference for cell-edge users in
a cellular network, but the cell-edge users’ performances are also fundamentally
affected by the path loss, which is distance dependent. A viable approach to deal
with the path loss is to deploy relay stations throughout the cell, so that a mobile
user may connect to the base-station via the relay, thereby reducing the effective
path distance. This section addresses the network optimization problem for the
cooperative relay network.

The resource allocation problem for the cooperative relay network has
attracted much attention in the wireless cellular communication literature (e.g.
[23, 24, 25, 26]). There are many different ways in which a relay may help the
communication between a pair of transmitter and receiver (also known as the
source and the destination in the relay literature). In a decode-and-forward pro-
tocol, the relay decodes the message from the source then reencode and transmit
to the destination. Alternatively, a relay may amplify and forward, or quantize
its observation and forward to the destination.

In general, decode-and-forward is a sensible strategy when the relay is located
closer to the source than to the destination, while amplify-and-forward and
quantize-and-forward are more suitable when the relay is closer to the desti-
nation. However, the question of which strategy is the most suitable is a com-
plicated one, as it also depends on the power allocation at the source and at the
relay, as well as the end-user’s rate requirement or its utility function. An opti-
mization framework for choosing the best cooperation strategy has been dealt
with for a single-relay link in [27], but the general optimization of relay strategies
for a cellular network is likely to be computationally complex.

The chapter focuses instead on a simplified model where only the decode-
and-forward protocol is used. This is done for the following reasons. First, the
primary focus of this chapter is the use of relay for enhancing cellular cover-
age at the cell edge, in which case a sensible relay location within the cell is
somewhere close to the half-way point between the base-station and the cell
edge. In this case, for both uplink and downlink transmissions, the distances of
both the source-relay and the relay-destination paths are about the same, making
decode-and-forward a suitable strategy. Second, decode-and-forward offers a dig-
ital approach to relaying. It eliminates the noise enhancement problem inherent
in amplify, or quantize-and-forward. Third, this chapter considers the deploy-
ment of fixed infrastructure-based relay stations. These relay stations typically
have the computational resources to perform decoding and reencoding.



Adaptive Resource Allocation in Cooperative Cellular Networks 19

h(3,2)

h(1,1)

h(0,1)h(2,0)

h(0,3)h(0,2)

h(5,0)

h(5,2)

h(4,2)

Figure 1.6 A cooperative relay network in which the mobiles may connect directly to
the base-station or through the relays.

Further, as the primary focus here is the use of relay to combat distance-
dependent path loss, this chapter restricts attention to a two-hop relay strategy,
where the direct path from the source to the destination is ignored (as it is
typically very weak), and the relay is a simple repeater. In the first hop, the
source transmits information to the relay. In the second hop, the relay decodes
and retransmits the same information to the destination.

Under these assumptions, the capacity of a single source-relay-destination link
is simply the minimum of the source-relay and the relay-destination link capaci-
ties. The characterization of capacity becomes more involved if one considers the
possibility that a single relay deployed in a cellular network may help multiple
mobiles at the same time. Further, each mobile has a choice of either connecting
to the base-station direction, or through relays. The mobile may even choose to
use different mobiles for different frequency tones. These possibilities are coupled
with the problem of bandwidth and power allocation across the frequency tones.

The rest of this section uses a network optimization framework introduced ear-
lier and provides a solution based on the duality theory to solve the bandwidth,
rate and power allocation problem for OFDMA relay networks. This methodol-
ogy used here is the one as first proposed in [23] and also in [26].

1.5.1 Problem Formulation

Consider a wireless cellular network in which each cell is equipped with M relay
stations located at the midpoint between the base-station and the cell edge and
at angles 360/M degrees apart from each other. There are K mobiles in each
cell. Each mobile may either connect directly to the base-station or through one
of the relays in each frequency tone, (but the mobile can possibly use different
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relays in different tones.) There are a total of M + 1 links emanating from each
mobile. These mobile-originated links, plus the M links connecting the relays
to the base-station, gives a total of K(M + 1) + M links in the entire cellular
network.

Label the base-station as node 0, and the mobiles as nodes k = 1, · · · , K. Label
the links by a pair of indices as follows: the base-station to relay links are labelled
as (0, m), with m = 1, · · · , M ; the mobile to base-station links are labelled as
(k, 0) and the mobile to relay links are labelled as (k, m) with k = 1, · · · , K and
m = 1, · · · , M . This labelling convention is illustrated in Figure 1.6.

This chapter considers a setup in which each cell employs an OFDMA scheme.
Further, it is assumed that in each frequency tone, at most one link may be active
at any given time. This assumption allows the intracell interference to be avoided
completely, and simplifies the numerical solution considerably. For simplicity, the
chapter also assumes that scheduling and power allocation are done on a per-cell
basis (i.e. without base-station cooperation). The problem formulation presented
here can be extended to a more general setting where spatial reuse is eabled
within each cell, or where intercell cooperation is enabled across the cells, but
the resulting optimization problem would become considerably more complex.

Consider now the uplink scenario. Define the scheduling function as a mapping
from the frequency tone to the link index, i.e., fU (n) = (i, j). With the assump-
tions stated above, the achievable rate for each link (i, j), denoted as rU,(i,j) can
be expressed as

rU,(i,j) =
∑

n∈U(i,j)

log

(
1 +

Pn
U,(i,j)|hn

(i,j)|2
Γσ2

n

)
(1.23)

where the summation is over all frequency tones assigned to that link, i.e. U(i,j) =
{n|(i, j) = fU (n)}, Pn

(i,j) denotes the transmit power and |hn
(i,j)|2 denotes the

channel gain for the link (i, j) at tone n, σ2
n denotes the combined intercell

interference and noise.
The achievable rate for each user, denoted as Rk, is the sum of achievable rates

of all links emanating from the mobile, i.e.

RU,k =
M∑

j=0

rU,(k,j). (1.24)

At each relay, a flow conservation constraint must be satisfied so that all the
incoming traffic can be forwarded to the base-station. This results in M con-
straints as follows:

K∑
k=1

rU,(k,m) ≤ rU,(0,m). (1.25)

The above equation is an example of the general flow conservation formulation
[28, 23].
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It is now straightforward to write down the uplink per-cell optimization prob-
lem for the cooperative relay network, which consists of both the allocation of
power and bandwidth for each link, and the routing of the information within
each cell. Under the network utility maximization framework, the optimization
problem can be reduced to a weighted rate sum maximization problem across
the K users with weights wU,k = 1

R̄U,k
:

maximize
K∑

k=1

wU,k

(
M∑

m=0

rU,(k,m)

)

subject to
K∑

k=1

rU,(k,m) ≤ rU,(0,m), ∀m = 1 · · ·M

N∑
n=1

pn
U,(0,m) ≤ Pmax

U,R,m, ∀m

M∑
m=0

N∑
n=1

pn
U,(k,m) ≤ Pmax

U,M,k, ∀m

0 ≤ pn
U,(k,m) ≤ Smax

U,(k,m), ∀k, m, ∀n

pn
U,(k,m)p

n
U,(k′,m′) = 0 ∀(k, m) �= (k′, m′), ∀n (1.26)

where rU,(k,m) is as expressed in (1.23), and the optimization is over power
allocations pn

U,(k,m), which is subject to the per-mobile total power constraint
Pmax

U,M,k, the per-relay total power constraint Pmax
U,R,m, as well as the peak power-

spectral-density constraints at both the mobiles and the relays Smax
U,(k,m). The last

constraint ensures that no two links share the same frequency tone within each
cell. Note that the downlink problem can be formulated in a similar fashion.

1.5.2 Joint Routing and Power Allocation

The network utility maximization problem for the cooperative relay network is
essentially a joint routing and power allocation problem, as each mobile has the
option of either transmitting its information bits directly to the base-station or
routing through one or more of the relays.

One way to solve this problem is to dualize with respect to the flow conser-
vation constraint so that the objective function becomes a new weighted rate
sum maximization problem over all link rates (rather than the end-user rates in
(1.26)). The new objective function is now

K∑
k=1

wU,k

(
M∑

m=0

rU,(k,m)

)
−

M∑
m=1

μm

(
K∑

k=1

rU,(k,m) − rU,(0,m)

)

=
M∑

m=1

μmrU,(0,m) +
K∑

k=1

M∑
m=0

(wU,k − μm)rU,(k,m) (1.27)
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subject to the peak and total power constraints in (1.26). Let g(μ1, · · · , μM )
denote the maximum value of (1.27) subject to power constraints for any fixed
set of μm’s. Because of the zero-duality-gap property of the OFDMA sys-
tem, the solution to the original problem then reduces to the maximization of
g(μ1, · · · , μM ) over all μm’s.

The dual variables μm’s enter the new objective function as weights to the
weighted rate sum maximization problem over link rates. Roughly speaking, a
higher value for μm indicates congestion in the link between the base-station
and the mth relay, and that more rate should be allocated to that link to release
congestion. Similarly, a lower value of μm indicates the opposite.

The weighted link rate sum maximization problem subject to power constraints
can itself be solved by yet another dual decomposition step with respect to
the total power constraints, as treated earlier in this chapter. In this case, the
optimization problem is completely decoupled on a tone-by-tone basis. Because
of the assumption that only one link may be active in any given time slot and
frequency tone, the weighted rate sum maximization then reduces to the selection
of the best link for each frequency tone, which involves a simple search.

Finally, the optimization of g(μ1, · · · , μM ) over all μm’s can be handled by
either an outer loop using the ellipsoid or the subgradient method. The search
over the optimal set of μm’s balances the incoming and outgoing flows at each
relay.

1.5.3 Performance Evaluation

The optimization framework described above is used to evaluate the effectiveness
of deploying relay stations in a cellular network. To take into account the cost
of relay deployment, the performance of a baseline system with cell diameter
of 1.4km is compared with a relay network in which the cell area is doubled
(with diameter 1.98km), but with 3, 4 or 5 relays deployed within each cell. The
rationale is that if a relay station costs roughly 1/3 to 1/5 of a base-station,
then the deployment cost of both systems would be approximately the same.
In both cases, the achievable uplink transmission throughput is computed for a
7-cell system with users uniformly placed within the area. The user densities in
both cases are the same. When the relays are deployed, they are located between
1
3r to 2

3r from the base-station, symmetrically in the angular direction. Again,
standard cellular channel models are used with both distance-dependent path
loss and log-normal shadowing components. These simulation results have been
presented in [26].

The simulation results presented in this section are based on the weighted rate-
sum maximization formulation. However, instead of maximizing a proportionally
fair utility function, the results here pertains to a maximization of the minimum
rate over all users in the system (similar to [23]), which requires a slight modifi-
cation of the optimization problem (1.26). First, additional constraints that each
user must have a rate larger than some minimal rate Rmin are added, where Rmin
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Table 1.2. The achievable minimum and sum rates for a 7-cell network:
the baseline vs. relay scenarios (RS) with varying number of relays per cell
and relay locations [26].

Scenario Baseline RS 1 RS 2 RS 3 RS 4

Relays Per Cell 0 3 4 5 3

Relay Distance n/a 2
3
r 2

3
r 2

3
r 1

3
r

Mobiles Per Cell 9 18 20 20 18

Cell Diameter (km) 1.4 1.98 1.98 1.98 1.98

Cell Area (km2) 1.54 3.08 3.08 3.08 3.08

Mininum Rate (Mbps) 0.193 0.583 0.972 0.705 0.578

Sum Rate (Mpbs) 96.4 75.4 80.2 72.7 87.2

is a constant. Then, the resulting optimization problem is solved with succes-
sively larger Rmin’s until the problem becomes infeasible. The largest such Rmin

is the maximum minimal rate. In practice, the maximum Rmin can be found
efficiently using a bisection.

For simplicity, the adaptive scheduling, and power and rate allocation here is
implemented on a per-cell basis. For simulation purposes, the network through-
put is computed using an iterative approach, in which the intercell interference
is updated in each iteration, and the cellular network eventually reaches an equi-
librium.

Table 1.2 shows the maximum minimal rate for the baseline network without
relays and a number of relay scenarios. These are the results as first presented
in [26]. The most interesting feature here is that the addition of relays to the
infrastructure improves the minimal rate dramatically, however it does not make
much a difference in the sum rate at all. This illustrates that the benefit of relays
concentrates on users at the cell-edge. As far as the sum rate is concerned, when
the users are uniformly distributed throughout the cell, the sum rate would be
dominated by the rate of those users closest to the base-station, which are not
helped by the relays.

1.6 Conclusions

This chapter presents a network utility maximization framework for cooperative
networks employing OFDMA. It is shown that the objective of maximizing the
utility function of multiple users in a multicell network can be efficiently carried
out using various techniques, including proportional fairness scheduling, dual
optimization, descent method for local optimization, and the network flow con-
servation principle. A central observation here that because the OFDM scheme
partitions the frequency domain into many parallel subchannels, the network
utility maximization problem often decomposes into a tone-by-tone optimiza-
tion problem, which is considerably easier to solve.
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This chapter focuses on two types of cooperative networks, and formulates the
corresponding joint scheduling, power adaptive and rate allocation problems in
each case. For networks with base-station cooperation, it is shown that adaptively
adjusting power allocation across the base-stations has the effect of reducing
intercell interference, hence improving the overall throughput of the network.
Intercell interference can also be reduced by deploying relays throughout the
cells. The relays have the effect of enhancing the coverage at the cell edge, which
improves the minimal service rate within each cell.

Base-station cooperation and relay deployment are technologies with the
potential to significantly enhance the performance of traditional wireless cellu-
lar network structure, especially at the cell edge. The benefits brought by these
cooperative techniques are particularly valuable to network service providers,
because cell-edge users are the bottleneck in the current generation of wireless
networks.
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