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Abstract—This paper studies the effectiveness of compress-and-
forward (CF) relaying scheme for a multiple-input multiple-output
(MIMO) Gaussian relay channel with an out-of-band finite-capacity
relay-to-destination link in which noises at the relay and destination
are correlated due to common sources of interference. This scenario
is motivated by the possibility of using device-to-device links
for inter-cell interference mitigation in cellular networks. We
characterize the necessary and sufficient conditions on the number
of antennas under which the relay link rate can result in a near one-
to-one improvement to the overall throughput in the high signal-
to-noise-ratio and interference-to-noise-ratio regime. We show that
these conditions coincide with the necessary and sufficient condition
under which full cooperation between relay and destination can
improve the degrees of freedom of the relay channel. Simultaneous
diagonalization by *congruence enables this characterization.

I. INTRODUCTION

This paper studies the effectiveness of compress-and-forward

(CF) relaying strategy for interference mitigation in cellular

networks. The scenario consists of a Gaussian multiple-input

multiple-output (MIMO) relay channel with an out-of-band

relay-to-destination link of finite capacity C0, where the noises

at the relay and destination are correlated due to common

sources of interference. The idea is that cooperative relaying

using device-to-device link between the mobile users can enable

interference rejection for cell-edge users.

We measure the performance of CF in two different ways.

First, we study the slope of CF achievable rate as a function of

C0 at C0 = 0, and characterize the necessary and sufficient

condition on the number of antennas in the network under

which this slope approaches its maximum value of 1 in the high

signal-to-noise ratio (SNR) and interference-to-noise ratio (INR)

regime. Second, we study the possibility of improving degrees

of freedom (DoF) due to relaying at C0 = ∞. Interestingly, the

condition on the number of antennas under which the aforemen-

tioned slope approaches one is exactly the same condition under

which relaying with C0 = ∞ improves DoF.

For the MIMO relay channel with independent noises, CF

is studied in [1] [2]. This paper focuses on MIMO relaying

in presence of noise correlation due to common interference

sources, and follows our previous work [3] in using a simul-

taneous diagonalization by *congruence approach to find the

optimal compression strategy at the relay. The optimization of

quantization scheme in MIMO CF with correlated noises is

connected to certain source coding problem in [4]. Although the

solutions in [4] and [3] can be shown to be the same, the simul-

taneous diagonalization technique of [3] is simpler and provides

more insight on the performance of MIMO CF for interference

management. Specifically, this diagonalization enables the char-

acterization of slope of CF rate as a function of the maximal

generalized eigenvalue of two conditional covariance matrices,

and reveals that relaying is most effective whenever there is

a deterministic component in the underlying vector Gaussian

relay channel. The determinism here refers to the condition that

the observation of the relay is a deterministic function of the

input of the channel and the observation at the destination. As

shown in [5], CF achieves the cut-set bound in this case. This

paper illustrates that this type of determinism happens for the

MIMO relay channel with correlated interference in the high

SNR and INR regime, and this is the fundamental reason that

CF relaying can be effective in improving the overall throughput

in an interference limited regime.

II. SYSTEM MODEL AND MAIN RESULTS

The system model under study is depicted in Fig. 1. The

number of antennas at the source, relay, and destination is

denoted by s, r, and d, respectively. The relay and destination

observe interference from common interference sources with

total number of antennas equal to t. This channel is modeled

mathematically as:

Yr = HsrX+HtrXt +N1, (1)

Yd = HsdX+HtdXt +N2, (2)

where Hsr ∈ C
r×s and Hsd ∈ C

d×s are source-relay

and source-destination channel matrices respectively; Htr ∈
C

r×t and Htd ∈ C
d×t are the interferers-to-relay and

interferers-to-destination channel matrices respectively; N1 ∼
CN (0r×1, σ

2Ir) and N2 ∼ CN (0d×1, σ
2Id) are additive and

independent background noises at the relay and the destination

respectively. It is assumed that all channel matrices are full rank.

The transmit vector from the source is X ∈ C
s×1 and

is assumed to have a fixed Gaussian distribution X ∼
CN (0s×1, SX). The interference signal is denoted by Xt ∈
C

t×1 with a fixed Gaussian distribution Xt ∼ CN (0t×1, SXt),
which is independent of other variables and is treated as noise.

The matrices SX and SXt
are assumed to be full rank.

When the input distribution is fixed, the achievable rate of CF

relaying scheme [6, Theorem 6] is:

RCF (C0) = max
p(ŷr|yr)

I(X; Ŷr,Yd)

s.t. I(Yr; Ŷr|Yd) ≤ C0 (3)
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Fig. 1. A wireless cellular network with a base-station and two cell-edge users
connected with a finite-capacity device-to-device cooperative relay link. The two
users experience correlated noises due to common sources of interference.

In [4] it has been shown that when input distribution is Gaussian,

Gaussian quantization is optimal. Thus, this paper restricts

attention to Gaussian quantization, which is modeled as:

Ŷr = Yr +Q, (4)

where Q ∼ CN (0r×1, SQ) is the quantization noise and is

statistically independent of other variables in the network. In

this case, the CF achievable rate can be characterized as:

RCF (C0) = max
SQ�0

log

∣∣SYr|Yd
+ SQ

∣∣∣∣SYr|Yd,X + SQ

∣∣ + I(X;Yd)

s.t. log

∣∣SYr|Yd
+ SQ

∣∣
|SQ| ≤ C0 (5)

where the expressions of the conditional covariances SYr|Yd

and SYr|Yd,X can be found in [3], and I(X;Yd) is a constant.

Cut-set bound provides an upper bound on the capacity of the

relay channel [6, Theorem 4], which is denoted by C:

C(C0) ≤ min{I(X;Yr,Yd), I(X;Yd) + C0}, (6)

under a fixed distribution p(x)p(yd,yr|x).
A. The Main Result

We consider two measures of performance for relaying: the

possibility of improving DoF by relaying with C0 = ∞, and the

slope of RCF (C0) at C0 = 0.

At C0 = ∞ the decoder at the destination has access to the

relay’s observations. This is equivalent to a genie that provides

the destination with r more antennas. The direct transmission ca-

pacity is RCF (0) = I(X;Yd); the genie-aided relaying capacity

is RCF (∞) = I(X;Yr,Yd). The DoF of the system with and

without genie-aided relaying can be obtained by counting the

number of antennas, i.e.,

DoFR = lim
σ2→0

RCF (∞)

− log(σ2)
= min(s, (r + d− t)+), (7)

and

DoFD = lim
σ2→0

RCF (0)

− log(σ2)
= min(s, (d− t)+). (8)

A simple analysis reveals that DoFR > DoFD if and only if:

d < s+ t and r + d > t. (9)

To interpret the above conditions, we note that in order to

improve DoF by genie-aided relaying, destination by itself must

have less antennas than that deeded for canceling all of the

interference while still having enough dimensions left for the

intended signal. Thus, d < s + t is required. Furthermore,

to improve DoF with genie-aided relaying, the relay and the

destination together must have enough antennas to cancel all of

the interference. Thus, we need r+d > t. Otherwise genie-aided

relaying cannot improve the spatial DoF.

At C0 = 0, we study dRCF

dC0
|C0=0. Note that RCF (C0) is

concave in C0. Therefore, its maximum slope occurs at C0 =
0. Since RCF (0) = I(X;Yd) and RCF (C0) is bounded by

I(X;Yd) + C0 in (6), the slope cannot exceed 1.

The main result of this paper is the following theorem which

relates (9) to the conditions under which dRCF

dC0
|C0=0 approaches

1. The proof is presented in the following section.

Theorem 1 We have

lim
σ2→0

dRCF

dC0

∣∣∣∣
C0=0

= 1 (10)

if and only if DoFR > DoFD, i.e., d < s+ t and r + d > t.

III. OPTIMIZATION OF SQ

To characterize the slope in Theorem 1, we need to solve

the optimization problem (5). As shown in [3], the optimal SQ

can be found in closed form. The key tool is the simultaneous

diagonalization of two conditional covariance matrices SYr|Yd

and SYr|Yd,X. According to [3, Lemma 2], we can find a full

rank matrix C ∈ C
r×r such that C†SYr|Yd,XC = Ir and

C†SYr|Yd
C = Λ, where Λ is a diagonal matrix with diagonal

elements λi ≥ 1 for i = 1, ..., r, and λi is the ith largest

eigenvalue of the matrix SYr|Yd
S−1
Yr|Yd,X

.

After simultaneous diagonalization of SYr|Yd,X and SYr|Yd

the optimization of SQ in (5) can be written as:

max
ΣQ�0

log
|Λ + ΣQ|
|Ir +ΣQ|

s.t. log
|Λ + ΣQ|
|ΣQ| ≤ C0, (11)

where ΣQ = C†SQC. Using [2, Lemma 5] it can be shown that

ΣQ can be chosen to be diagonal without loss of optimality.

Denote the diagonal elements of ΣQ by Σii
Q. We can now use

a change of variable, introduced in [1]:

ci = log

(
1 +

λi

Σii
Q

)
, i = 1, ..., r (12)

to reformulate (11) as:

max
ci≥0

r∑
i=1

(ci − log(
2ci

λi
+ 1− 1

λi
))

s.t.

r∑
i=1

ci ≤ C0. (13)

Here ci is the portion of the available capacity C0 to be assigned

for quantization of the ith element of CYr. For λi ≥ 1, it



can readily be checked that (13) is a convex problem, and a

globally optimal solution can be found by solving its Karush-

Kuhn-Tucker (KKT) system. The global optimum solution of

(13) is:

c∗i =

[
log

(1− μ∗)(λi − 1)

μ∗

]+
(14)

where μ∗ is selected such that
∑r

i=1 c
∗
i = C0. Then we have

Σii,∗
Q = λi

2c
∗
i −1

, and the globally optimal quantization noise

covariance is given by S∗
Q = C−†Σ∗

QC−1.

IV. SLOPE OF RCF (C0) AT C0 = 0

In this section, we use the optimal S∗
Q found above to prove

Theorem 1, i.e., to characterize the necessary and sufficient

conditions on the structure of correlation between relay’s and

destination’s noises for CF to approach cut-set-bound asymptot-

ically. The two lemmas below directly imply Theorem 1.

Lemma 2 The slope of RCF (C0) at C0 = 0 is equal to 1 −
1
λ1

, where λ1 is the largest generalized eigenvalue obtained by
simultaneous diagonalization of SYr|Yd

and SYr|Yd,X.

Proof: The optimal dual variable that satisfies the KKT condi-

tions for a given C̄0 in (13), denoted by μ∗(C̄0), characterizes

the slope of RCF (C0) at C̄0. At C̄0 = 0 using the KKT solution

(14), we have:

log
(1− μ∗(0))(λ1 − 1)

μ∗(0)
= C̄0 = 0.

Therefore,

dRCF (C0)

dC0

∣∣∣∣
C0=0

= μ∗(0) = 1− 1

λ1(SYr|Yd
S−1
Yr|Yd,X

)
(15)

Lemma 3 We have limσ2→0 λ1(SYr|Yd
S−1
Yr|Yd,X

) = +∞ if
and only if d < s+ t and r + d > t.

Proof: We take the limit of the maximal generalized eigenvalue

through the squeeze theorem using the following bounds [7]:

max
1≤i≤r

λi(SYr|Yd
)

λi(SYr|Yd,X)
≤ λ1(SYr|Yd

S−1
Yr|Yd,X

) ≤ λ1(SYr|Yd
)

λr(SYr|Yd,X)
.

(16)

Furthermore, define:

Ȳr � HsrX+HtrXt (17)

Ȳd � HsdX+HtdXt (18)

as the received signal of the relay and destination without the

background noise. Now, we use rank additivity formula for

generalized Schur complement [8, Theorem 1] to relate the

rank of SȲr|Ȳd,X and SȲr|Ȳd
to the number of antennas in

the network.
Assuming SX and SXt

are full rank, it is easy to see that:

rank(SȲr,Ȳd
) = min(r + d, s+ t) (19)

rank(SȲd
) = min(d, s+ t) (20)

rank(SȲr,Ȳd,X) = s+min(r + d, t) (21)

rank(SȲd,X) = s+min(d, t) (22)

Now, we calculate the rank of SȲr|Ȳd,X. Note that if d < t,
then SȲd,X is full rank. If d ≥ t, we have:

Ȳr = HsrX+Htr(H
†
tdHtd)

−1H†
td(Ȳd −HsdX) � A

[
Ȳd

X

]
.

(23)

Therefore, S
(1,2)

Ȳr,Ȳd,X
= ASȲd,X. In either case, the null space

of SȲd,X is a subset of the null space of S
(1,2)

Ȳr,Ȳd,X
. Therefore,

we have:

rank(SȲr|Ȳd,X) = rank(SȲr,Ȳd,X)− rank(SȲd,X). (24)

Further, we calculate the rank of SȲr|Ȳd
. Note that if d <

s+ t, then SȲd
is full rank. If d ≥ s+ t, we have:

Ȳr = [Hsr Htr](H
†
dHd)

−1H†
dȲd � BȲd, (25)

where Hd � [Hsd Htd]. Therefore, S
(1,2)

Ȳr,Ȳd
= BSȲd

. In either

case, the null space of SȲd
is a subset of the null space of

S
(1,2)

Ȳr,Ȳd
. Therefore, we have:

rank(SȲr|Ȳd
) = rank(SȲr,Ȳd

)− rank(SȲd
). (26)

To prove the lemma, we consider three different cases: 1)

d < t, 2) t ≤ d < s+ t, and 3) d ≥ s+ t.
Case 1) When d < t, using (21), (22), and (24):

rank(SȲr|Ȳd,X) =

{
r r + d ≤ t

t− d r + d ≥ t

Similarly, using (19), (20), and (26):

rank(SȲr|Ȳd
) =

{
r r + d ≤ s+ t

s+ t− d r + d ≥ s+ t

When r + d ≤ t, both SȲr|Ȳd
and SȲr|Ȳd,X are full rank.

Therefore, by the upper bound in (16) we have:

lim
σ2→0

λ1 ≤ lim
σ2→0

λ1(SYr|Yd
)

λr(SYr|Yd,X)
< ∞, (27)

When r+d > t, the number of zero eigenvalues of SȲr|Ȳd,X

is more than that of SȲr|Ȳd
. Therefore, at least for one i ∈

{1, ..., r}, the limit of the lower bound in (16)

lim
σ2→0

λi(SYr|Yd
)

λi(SYr|Yd,X)
(28)

is equal to infinity. Therefore, limσ2→0 λ1 = +∞. To summa-

rize, when d < t, we have limσ2→0 λ1 = +∞ if and only if

r + d > t.
Case 2) When t ≤ d < s + t, using (21), (22), and (24) we

have rank(SȲr|Ȳd,X) = 0, and using (19), (20), and (26) we

have rank(SȲr|Ȳd
) > 0. Therefore, similar to (28), we have

limσ2→0 λ1 = +∞.

Case 3) When d ≥ s+ t, using (21), (22), and (24) we have

rank(SȲr|Ȳd,X) = 0, and using (19), (20), and (26) we have

rank(SȲr|Ȳd
) = 0. To handle this case we can show that at

small σ2, we have SYr|Yd
≈ σ2S and SYr|YdX ≈ σ2S′, where



S and S′ are positive definite matrices. Therefore, for some

m,n ∈ {1, ..., r} we have:

lim
σ2→0

λ1(SYr|Yd
S−1
Yr|Yd,X

) ≤ lim
σ2→0

λ1(SYr|Yd
)

λr(SYr|Yd,X)
(29)

=
σ2λm(S)

σ2λn(S′)
< ∞.

V. CONNECTION WITH DETERMINISTIC RELAY CHANNEL

In [5] it has been shown that for a relay channel with a digital

link between relay and destination, whenever the observation

of the relay is a deterministic function of the observation of

destination and the input to the channel, CF is able to achieve

the cut-set bound in (6). In this case, observe that as long as

I(X;Yr,Yd) > I(X;Yd) we have
dC(C0)
dC0

|C0=0 = 1. However,

when I(X;Yr,Yd) = I(X;Yd), e.g., when Yr is a function

of Yd, the relay channel is reversely degraded and the direct

transmission achieves the capacity [6]. In this case the slope of

interest is 0.

One can show that, in the high SNR and INR limit, the

Gaussian MIMO relay channel considered in this paper has a

deterministic component which is not reversely degraded if and

only if r + d > t and d < s + t. By investing the available

capacity C0 for quantization of that component, one can achieve

the slope of 1 at C0 = 0. This explains the main result of this

paper, i.e., limσ2→0
dRCF (C0)

dC0
|C0=0 = 1 if and only if r+d > t

and d < s+ t.
To see this more crearly, observe that Ȳr is a function of Ȳd

and X if and only if d ≥ t in (23); also Ȳr is a function of Ȳd if

and only if d ≥ t+s in (25). Therefore, when t ≤ d < t+s, the

channel defined in (17)-(18) is deterministic, but not reversely

degraded. In this case we have SȲr|ȲdX = 0 and SȲr|Ȳd
� 0.

Thus, limσ2→0
dRCF (C0)

dC0
|C0=0 = 1.

Outside of the range t ≤ d < t + s, it turns out that

limσ2→0
dRCF (C0)

dC0
|C0=0 = 1 can still be achieved if the channel

defined in (17)-(18) has a deterministic component that is not

reversely degraded. This happens when d < t and r + d > t.
Note that under these conditions SȲr|ȲdX has singularities and

its rank is always smaller than the rank of SȲr|Ȳd
. The deter-

ministic component is revealed by simultaneous diagonalization

of SYr|Yd,X and SYr|Yd
.

If the conditions r + d > t and d < t + s are not satisfied,

the limit of the slope of interest is strictly less than 1. To see

this, note that when r ≤ t − d, the interference signal makes

both SȲr|ȲdX and SȲr|Ȳd
full rank; thus, the channel (17)-(18)

cannot have a deterministic component. When d ≥ s+ t, Ȳr is

a function of Ȳd; therefore, the channel (17)-(18) is reversely

degraded. In both cases, limσ2→0
dRCF (C0)

dC0
|C0=0 < 1.

VI. NUMERICAL EXAMPLE

In this section we numerically evaluate the slope of RCF (C0)
as a function of (r, d, s, t) in a practical scenario. Consider

a picocell deployment with a pico-base-station with s = 4
antennas transmitting 1Watt of power over 10MHz to a user
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Fig. 2. The average value of RCF (1Mbps)−RCF (0) in Mbps as number of
antennas at the destination and relay varies with s = 4 antennas at source and
18 single-antenna interference sources t = 18

distance 100m away. We include 18 single-antenna pico-base-

stations 200m away from each other on a hexagonal grid at

the same power level. A second user located nearby acts as a

relay as shown in Fig. 1. The background noise power spectral

density is assumed to be −170dBm/Hz. A channel model with

pathloss exponent of 3.76 and 8dB shadowing is used. Fig. 2

illustrates the average improvement in achievable rate by CF

with C0 = 1Mbps as a function of r and d. Fig. 2 shows that

this slope is close to 1 when approximately r + d > 18 and

d < 22, as predicted by Theorem 1.

VII. CONCLUSION

This paper characterizes the slope of CF rate versus C0 at

C0 = 0 for the Gaussian MIMO relay channel with correlated

noises. We show that this slope asymptotically approaches its

maximum value of 1 at high SNR and INR, if and only if the

number of antennas in the network is such that full cooperation

between relay and destination improves the maximum spatial

DoF of the channel.
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