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1 Cooperative Beamforming and
Resource Optimization in C-RAN

Cloud radio access network (C-RAN) architecture offers two key advantages as
compared to traditional radio access network (RAN) from physical-layer trans-
mission point of view. First, the centralization and virtualization of RAN allow
coordination of base-stations (BSs) across a large geographic area, thereby en-
abling coordinated physical-layer resource allocation across the BSs. The physical-
layer resources here refer to frequency, time, and spatial dimensions that can be
utilized by radio transmission. Second and more importantly, the C-RAN archi-
tecture also opens up the possibility of joint transmission and joint reception
of user signals across multiple BSs, thereby fundamentally addressing the is-
sue of inter-cell interference. As interference is the main bottleneck in modern
densely deployed wireless networks, the C-RAN architecture offers significant
advantage in that it provides the possibility of interference mitigation leading to
performance enhancement without the need for additional site and bandwidth
acquisition.

This chapter provides an optimization framework for cooperative beamforming
and resource allocation in C-RANs. The chapter begins by identifying frequency,
time, and spatial resources in wireless cellular networks, and defining the overall
spectrum allocation, scheduling, and beamforming problem in a cooperative net-
work. This chapter then provides a network model for the C-RAN architecture,
and illustrates typical network objective functions and constraints for network
utility maximization. A key characteristic of the C-RAN architecture is that the
fronthaul connections between the cloud and the BSs may have limited capaci-
ties. One of the main goals of this chapter is to illustrate the impact of limited
fronthaul capacity on the cooperative beamforming and resource allocation in
C-RANs.

The chapter explores the optimization of design variables associated with C-
RANs, depending on the transmission strategies at the cooperative BSs. For the
uplink C-RAN, we illustrate compress-forward as the main strategy at the BSs,
and focus on the impact of the choice of quantization noise levels at the BSs
and possible joint transmit optimization strategies. For the downlink C-RAN,
we compare the compression-based strategy and the data-sharing strategy, and
illustrate the problem formulation and solution strategy in both cases. Through-
out the chapter, key optimization techniques for solving resource allocations
problems in C-RANs are presented.
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Figure 1.1 C-RAN system model.

1.1 C-RAN Model

In the C-RAN architecture, the baseband processing, traditionally performed
locally at each BS, is aggregated and performed centrally at a cloud computing
center. This is enabled by high-speed connections, referred to as fronthaul links,
between the BSs and the cloud. Such centralized signal processing allows for the
possibility of interference cancellation and interference pre-compensation across
all the users in the uplink and downlink, respectively. The C-RAN architecture
thus facilitates the implementation of network multiple-input multiple-output
(network MIMO) [12], also known as coordinated multi-point (CoMP) or multi-
cell processing (MCP) in the literature [6, 26]. The main focus of this chapter
is on the interference mitigation capability enabled by C-RAN architecture. To-
ward this end, we abstract a physical-layer channel model in order to allow an
information-theoretic understanding of the capacity limits of the C-RAN model
as compared to traditional RAN.

1.1.1 System Model

To highlight key benefits of the C-RAN architecture, we focus on the network
topology of one central processor (CP) coordinating a cluster of BSs serving users
over a certain geographic area as illustrated in Fig. 1.1. The BSs in the C-RAN
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architecture are also termed remote radio heads (RRHs) as their functionality is
often restricted to transmission and reception of radio signals. These RRHs are
managed by the cloud-computing based CP that communicates with RRHs via
fronthaul links. The fronthaul connections can be dedicated fiber optic cables, or
they can be wireless links. Although analog transport is a possible option, this
chapter models the fronthaul links as finite-capacity noiseless digital links. Our
aim is to understand the impact of limited fronthaul capacity on the overall sys-
tem performance, and subsequently to design efficient transmission and relaying
strategies that account for the limited available fronthaul capacity.

As a concrete setup, this chapter considers a C-RAN model consisting of a
CP coordinating a total of L RRHs each equipped with M antennas serving K
users each equipped with N antennas. The analysis developed in this chapter
can be easily extended to the case with unequal number of antennas at different
terminals. The main resources in the system are the fronthaul link capacities,
and the power budgets at the users and at the RRHs. We denote the capacity of
the fronthaul link connecting the RRH l to the CP by Cl. The power spectrum
density constraint at the user k in the uplink is denoted as P ul

k , and at the
RRH l in the downlink as P dl

l . The precise uplink and downlink channel models
are abstracted out in the next section for an information-theoretic study of the
C-RAN architecture.

To enable signal level cooperation for joint signal processing, it is crucial to be
able to precisely synchronize the signals of different users. In this chapter, perfect
synchronization among the RRHs in the downlink and among the users in the
uplink is assumed. The impact of synchronization error in the context of uplink
C-RAN is considered in [7]. In addition, instantaneous and perfect channel state
information (CSI) is assumed to be available to all the RRHs and the users,
and also at the CP. In practice, the amount of CSI available is limited by the
coherence time of the channel and the overhead of communicating CSI to the
CP. The effect of partial CSI and channel estimation errors are taken in account
in [22]. The main focus on this chapter is to illustrate different fundamental
transmission strategies in C-RAN and their interference mitigation capabilities.

1.1.2 Information Theoretical Model

From an information theoretical point of view, the C-RAN model is best under-
stood as a relay network. The RRHs can be thought of as relays that facilitate
the communication between the CP and the mobile users. In the uplink, multiple
users communicate with the CP through the RRHs, and thus can be modeled
as an instance of a multiple-access relay channel. In the downlink, the CP com-
municates with multiple users through RRHs. The downlink C-RAN can thus
be modeled as an instance of a broadcast relay channel. We assume frequency-
flat channels for now. The difference with the frequency-selective channels is
discussed later in the section.
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Figure 1.2 Information-theoretic uplink C-RAN model.

Uplink C-RAN
Let xul

k ∈ CN×1 be the transmit signal from user k, and yul
l ∈ CM×1 be the

received radio signal at RRH l. Assuming additive Gaussian noises at the RRH
receivers, the channel response at RRH l can be modeled as:

yul
l =

∑
k

Hul
l,kxul

k + zul
l , (1.1)

where Hul
l,k ∈ CM×N is the channel from user k to RRH l, and zul

l ∈ CM×1 ∼
CN (0, σ2

ulI) is the additive Gaussian noise. Fig. 1.2 illustrates the uplink system
model.

In traditional RAN, after receiving the radio signals, each BS independently
decodes the messages of its scheduled users, treating the combined signal from all
other users as interference. In the C-RAN architecture, however, the RRHs have
the flexibility to relay some information about its observed signals to the CP,
which can then jointly process the information from all the RRHs for decoding.
Joint processing has the advantage that the effect of inter-user interference can
be mitigated. There are various different possible relaying strategies, depending
on the information the RRHs relay to the CP and the eventual decoding strategy.
These strategies are discussed in detail Section 1.2.

Downlink C-RAN
Let xdl

l ∈ CM×1 be the transmitted signal from RRH l. Assuming additive
Gaussian noise, the received signal at user k, ydl

k ∈ CN×1, is represented as:

ydl
k =

∑
l

Hdl
k,lxdl

l + zdl
k , (1.2)
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Figure 1.3 Information-theoretic downlink C-RAN model.

where Hdl
k,l ∈ CN×M is the channel from RRH l to user k, and zdl

k ∈ CN×1 ∼
CN (0, σ2

dlI) is the additive Gaussian noise. Fig. 1.3 illustrates the downlink sys-
tem model.

In traditional RAN, the user messages from the core network are sent directly
to the BSs, which independently encode the messages for users within the cells.
As consequence, the transmit signals from the neighboring BSs interfere with
each other. In contrast, in C-RAN architecture, the fact that the CP has access
to the messages of all the users enables joint encoding across the cooperating
cluster, thereby allowing inter-cell interference to be mitigated. Depending on
the specific ways that the CP utilizes the capacity-limited fronthaul to enable
joint encoding, different downlink strategies are possible. These strategies are
discussed in more detail in Section 1.3.

1.1.3 Achievable Rate Region

The different transmission, relaying, and decoding strategies for both uplink and
downlink result in different achievable rate-tuples for the users. As multiple users
share radio resources, an increase in user rate for one user usually comes at the
cost of rates of other users. The concept of rate region captures this tradeoff. The
rate region is the set of all the achievable user rates, R = {R1, . . . , RK}, for a
particular channel model. Given a transmission and relaying strategy in C-RAN,
the rate region R is a function of the underlying channels Hul

l,k, the fronthaul
capacities Cl, and the power constraints P ul

k in the uplink, and similarly in the
downlink. In allocating these resources to different users, a desirable operating
point is to be chosen depending on the overall system objective. With that in
mind, the overall goal of this chapter is to provide an optimization framework
to maximize certain system objective under rate regions for different strategies,
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and subsequently to point out the overall design insight obtained from such
resource allocation perspective. Towards this end, we describe below the widely
used system objective based on network utility considered in this chapter.

1.1.4 Network Utility Maximization

Network utility maximization is an optimization framework that takes into ac-
count the physical layer tradeoffs in terms of the rate region as well as the
application layer tradeoffs in terms of varying usefulness of rates for different
users (e.g., the value of additional rate increase for video application might be
very different from file transfer). In the network utility maximization framework,
each user has an utility Uk(R̄k) as a function of its average user rate R̄k that
captures the value of having such a rate for user k. Most common utility func-
tions are concave increasing functions. The overall network utility maximization
is the problem of maximizing the sum utility over all the users in the system
over operating parameters such as scheduling, beamforming, and quantization.

More specifically, the network utility maximization problem considered in this
chapter aims to solve the following problem in every time slot:

maximize
K∑

k=1
Uk(R̄k) (1.3a)

subject to (R1, . . . , RK) ∈ R, (1.3b)

where the objective function above depends on the average user rates R̄k, while
the optimization parameters affect the instantaneous rate Rk. The average rate is
usually computed in a windowed fashion. For example, with exponential weight-
ing the average rate is obtained as

R̄updated
k = (1− α)R̄prior

k + αRk, (1.4)

where R̄prior
k is the average rate prior to the present time slot, and Rk is the

instantaneous rate of the current time slot. The above optimization problem
is repeatedly solved for each time slot under the rate-region constraint on the
instantaneous rates, until the average user rates eventually converge.

A common user utility function Uk is the logarithm function, i.e., Uk(R̄k) =
log(R̄k). Under the log utility and exponentially weighted rate averaging, and
assuming that the new contribution of the instantaneous rate αRk is small, the
optimization of the network utility objective function can be solved approxi-
mately by a maximization of the instantaneous weighted sum rate, where the
weights are inverses of average rates, as follows:

maximize
K∑

k=1
wkRk (1.5a)

subject to (R1, . . . , RK) ∈ R, (1.5b)

where wk = 1
R̄prior

k

. The above weighted sum-rate maximization problem is solved
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for each time slot over the transmission strategies with weights updated after
each iteration. This transmit optimization problem under the logarithmic utility
is known as the proportionally fair resource allocation problem. The rest of this
chapter focuses on this weighted rate-sum maximization problem for C-RAN.

We remark that the log-utility is not the only possible choice of utility function.
For delay sensitive applications, it is often desirable to maximize the minimum
rate, or to guarantee a minimum rate while maximizing the sum rate. Different
choices of utility functions would lead to different optimization formulations.

1.1.5 Resource Allocation Problem

The resource allocation problem for C-RAN consists of solving the above op-
timization problem over the operating parameters and under the system con-
straints. The operating parameters to be optimized can include not only cellular
transmission parameters such as scheduling (i.e., which users to assign non-zero
rate), beamforming, bandwidth and power allocation, but also relay strategies
such as quantization levels in the context of C-RAN. The system constraints are
the fronthaul link capacities, and the transmit power spectral density constraints
at the users for the uplink and at the RRHs for the downlink.

1.1.6 Disjoint versus User-Centric Clustering

While defining the system model for C-RAN, we have implicitly assumed that
RRHs are clustered into disjoint clusters, and RRHs within each cluster cooper-
atively serve the users in the cluster. Such model has explicit cluster boundaries,
and the users near the cluster boundaries still suffer from inter-cluster interfer-
ence. One way to further reduce inter-cluster interference is to let each user form
a user-centric cluster of RRHs. Different clusters for different users may over-
lap in this case, and there are no explicit cluster boundaries. Such user-centric
clustering typically improves the fairness in the system.

1.1.7 Frequency-Selective Channels

The chapter mainly considers frequency-flat channel model. But wireless chan-
nels are often frequency selective. In this case, one can employ orthogonal fre-
quency division multiplex (OFDM) to divide the total bandwidth into a number
of flat subchannels. Then each subchannel can independently employ the relay
strategies for the frequency-flat channel model considered in this chapter.

The OFDMA-based C-RAN presents an additional dimension for resource al-
location, namely among the frequency subchannels. This includes the assignment
of the subchannels to the different users, and the allocation of fronthaul capaci-
ties as well as transmit power among the different subchannels. Some initial work
on resource allocation for C-RAN employing OFDM has been carried out in [16]
under certain simplifying modeling assumptions.
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1.2 Uplink C-RAN

The ability to manage interference is one of the main benefits of C-RAN. In
the uplink, different users in the cluster communicate their messages to the CP
through RRHs. The RRHs, instead of decoding the messages locally, can relay
information about their observations to the CP for centralized processing. This
enables the interference mitigation capability for the uplink C-RAN.

In the ideal case where the fronthaul links have infinite capacities, the RRHs
can convey its exact observations to the CP. The resulting channel model reduces
to a MIMO multiple-access channel. Practical systems, however, have capacity-
constrained fronthaul links. This limits the amount of information that the RRHs
can relay. A key question is then to decide what information about the observed
signals is the most useful at the CP so as to enable as much interference cancel-
lation as possible.

This section discusses different strategies for relaying and centralized process-
ing in the uplink C-RAN, then formulates their respective resource optimization
problems, and indicates methods to solve these problems. We provide key insights
obtained from such optimization throughout the chapter.

1.2.1 Compress, Decode, vs. Compute-Forward

From the perspective of maximizing the overall capacity of the network, the
aim of the RRH should be to preserve as much information as possible in re-
laying its observation to the CP under the finite fronthaul capacity constraint.
A natural strategy is for the RRHs to describe the observed signals by com-
pressing the received analog signals, and relaying their digital representations
to the CP [21, 25, 29]. The resolution of compression determines the amount of
fronthaul capacity needed. Higher fronthaul capacity leads to lower quantization
noise, which in turn leads to higher achievable user rates. At the CP, the user
messages can be jointly decoded based on the compression indices received from
all the RRHs in the cluster. Such joint processing at the CP enables effective
interference cancellation. This relaying strategy is known as compress-forward in
the literature. Note that the compress-forward strategy also inevitably forwards
some part of the receiver noise at the RRHs to the CP.

There are different ways of performing compression and decompression, de-
pending on whether some side information is utilized in the compression pro-
cess, leading to either independent or Wyner-Ziv compression strategies. There
are also different ways of performing decoding at the CP, depending on how the
user messages and the compression codewords are decoded successively. These
possibilities are discussed in detail in the next section. We mention here that
in theory, there is also the possibility of performing decompression and message
decoding at the CP jointly [6]. Doing so is in fact information theoretically more
justified, but it also has very high complexity and is impractical to implement.
For this reason, this chapter restricts to successive decoding type of strategies.
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As an alternative to compress-forward, some of the RRHs can attempt to
decode messages of users closest to them, and relay the messages themselves
(rather than the compressed version of their observations) to the CP. The users
being decoded at the RRHs cannot benefit from the joint processing capabilities
of C-RAN, but these decoded messages can help the decoding of other users at
the CP. This type of relaying strategy can be broadly referred to as a version of
decode-forward.

Finally, the RRHs may opt to decode some linear combination of user mes-
sages, or more generally some function of user messages, and forward it to the CP.
This is called the compute-forward strategy [17]. In compute-forward, the users
choose the transmit codewords from a structured lattice codebook. The bene-
fit of using structured codebook is that linear integer combinations of different
codewords are still codewords. After receiving the signals, the RRHs compute
functions of the user codewords from the received signal. Typically, functions
that closely mimic the channel output at the RRHs are the ones that give the
best computation rate. The indices corresponding to the function values are sent
over the fronthaul links. After receiving all such function values, the CP inverts
the functions to recover the original user messages.

The main advantage of decode-forward and compute-forward is that they elim-
inate noises at the RRHs. But in practice, there are only limited number of sce-
narios in which they outperform compress-forward. Further, compute-forward is
quite sensitive to channel estimation error [18]. With this in mind, this chapter
mostly focuses on the compress-forward strategy. We refer the reader to [9] for
details regarding the achievable rate region and network optimization for the
compute-forward strategy in the context of uplink C-RAN.

The use of compress-forward for C-RAN can also be justified from information
theoretic consideration. For a Gaussian multi-message multicast network, it can
be shown that compress-forward (and its variations called quantize-map-forward
[1] and noisy network coding [15]) can achieve the information theoretic capacity
of the network to within a constant gap, which only depends on the network
topology, but is independent of other channel parameters.

The rest of this section focuses on compress-forward as the main relaying strat-
egy for uplink C-RAN, and discusses different variants and their corresponding
achievable rates and resource optimization.

1.2.2 Compress-Forward Strategy

In the compress-forward strategy, the received signals yul
l are compressed at the

RRHs, and the compression indices are sent to the CP. The CP then decodes
the original user signals xul

k from these indices.
There are different ways of performing compression at the RRHs and different

ways of decoding the user messages at the CP, leading to different variations
of the compress-forward strategy. The two main compression methods are inde-
pendent compression and Wyner-Ziv compression. In independent compression,
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the observations at the RRHs are compressed and decompressed independently.
In Wyner-Ziv compression, it is possible to take advantage of the fact that the
observed signals at the RRHs are correlated in order to reduce the amount of
fronthaul capacity needed.

The processing at the CP can also take different forms. For example, after
decoding the compression codewords, the CP may perform linear beamforming
across the RRH signals for independent decoding of user messages, or the CP
may perform successive interference cancellation (SIC). Alternatively, the CP
may even interleave the decoding of user messages and compression codewords,
using the decoded user messages as side information in subsequent processing.

To characterize the achievable rates and the required fronthaul capacities for
the different compress-forward strategies, we model the user transmission and the
compression process below. These models are based on information theoretical
considerations; they provide accurate, yet simplified rate expressions for different
variants of the compress-forward strategy.

We assume that the input signals xul
k at the users are chosen according to a

Gaussian codebook. While the choice of Gaussian-like input is not necessarily
optimal for the compress-forward strategy [25], it makes the evaluation of rate
region tractable. Let Uk ∈ CN×dk denote the transmit beamformer that user k
utilizes to transmit the message signal sul

k ∈ Cdk×1 ∼ CN (0, I) to the CP. Here
dk denotes the number of data streams per user k. The transmit signal at user
k is then given by xul

k = Uksul
k with covariance matrix E[xul

k (xul
k )H ] = UkUH

k .
The total transmission power consumed at user k is expressed as Tr(UkUH

k ).
With the linear Gaussian channel model as described earlier in the chapter, the
received signal at RRH l in the uplink can thus be expressed as

yul
l =

∑
k

Hul
l,kUksul

k + zul
l . (1.6)

For the compression process, we again assume a Gaussian codebook. Let ŷul
l

denote the compressed signal for RRH l. Then, the quantization process at RRH
l is modeled as the addition of independent Gaussian quantization noises as
follows:

ŷul
l = yul

l + qul
l , (1.7)

where qul
l ∈ CM×1 ∼ CN (0,Qul

l ) and Qul
l is the covariance matrix of the quan-

tization noise in the compressed signal corresponding to the RRH l. We point
out that, even though it may seem that a more general linear additive model
for compression is to first process the received signal yul

l using a transformation
matrix Al and then compress the resulting transformed output Alyul

l (perhaps
even of lower dimension than yul

l ), with appropriate choice of Qul
l , the model

in (1.7) can be shown to be equivalent to such a linear model and is therefore
without loss of generality.
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1.2.3 Compression Strategies

Full benefit of the joint processing, in terms of its interference cancellation capa-
bility, would be achieved if each RRH is able to convey the exact yul

l to the CP.
In practice, the more accurately the compressed signal ŷul

l resembles the actual
received signals yul

l at the RRHs, higher the achievable rate would be for the
overall network. There is, however, a cost for transmitting high fidelity version
of yul

l through the digital fronthaul link. This cost can be modeled using the
information theoretical rate-distortion theory.

The rate-distortion tradeoff can be most easily understood in terms of the
quantization noise qul

l introduced in the compression process. On one hand, the
quantization noise level directly provides an indication of the accuracy of ŷul

l ;
it enters the achievable rate expression as additional noise introduced by the
quantization process. On the other hand, the level of the quantization noise indi-
cates the amount of fronthaul capacity needed for compression. Higher fronthaul
capacity leads to better compression resolution and smaller quantization noises.
The precise relationship between the fronthaul capacity and the quantization
noise can be understood via rate-distortion theory as follows. Consider a single
RRH l. In order to keep the statistical variance of the quantization noise to a
certain level Qul

l , the amount of fronthaul capacity needed must satisfy:

C indep,ul
l ≥ I

(
yul

l ; ŷul
l

)
(1.8)

= log

∣∣∣∑K
k=1 Hul

l,kUkUH
k (Hul

l,k)H + σ2
ulI + Qul

l

∣∣∣∣∣Qul
l

∣∣ . (1.9)

As expected, the above is a decreasing function of Qul
l . The superscript ‘indep’

refers to the fact that the quantization process is done independently for each
RRH without utilizing any potential side information at the CP.

The above fronthaul rate can be improved using a more sophisticated com-
pression technique that utilizes the fact that signals received at different RRHs
are often highly correlated as they come from the same set of user messages.
Thus, once some of the quantization codewords are decoded, they can serve as
side information in subsequent decoding of other quantization codewords. As
result, the fronthaul capacity needed for compression can be reduced. This com-
pression technique is referred to as Wyner-Ziv compression. Assuming that the
compressed signals from RRHs are recovered in the order of 1 to L, the fronthaul
capacity required for Wyner-Ziv compression for compressing received signal at
RRH l is given as follows:

CWZ,ul
l ≥ I

(
yul

l ; ŷul
l |ŷul

1 , . . . , ŷul
l−1
)

(1.10)

= log

∣∣∣∑K
k=1 Hul

1:l,kUkUH
k (Hul

1:l,k)H + σ2
ulI1:l + Qul

1:l

∣∣∣∣∣∣∑K
k=1 Hul

1:l−1,kUkUH
k (Hul

1:l−1,k)H + σ2
ulI1:l−1 + Qul

1:l−1

∣∣∣ − log |Qul
l |.

(1.11)
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Figure 1.4 Illustration of compress-forward strategies for uplink C-RAN.

Here and throughout the rest of this section, the notation Hul
S,T donates the

channel matrix from the users in the set T to the RRHs in the set S, Qul
S denotes

the the block diagonal matrix formed with the quantization covariance matrices
of the RRHs belonging to the set S, and 1 : l denotes the set {1, . . . , l}. In the
mutual information expression above, because the signals already recovered at
the CP ŷul

1 , . . . , ŷul
l−1 can serve as side information, they can be included in the

conditioning in order to reduce the fronthaul rate for the compression at RRH l.
We remark that the above compression rates are the information theoretical limit
for compression with side information. Practical implementation of Wyner-Ziv
compression is not trivial.

We further remark that, in the case where some of the user messages are
decoded before the compressed signals for some other subset of RHH signals are
recovered, we can include the decoded user messages as side information in the
decompression process as well in order to further lower the fronthaul capacity
requirements for these RRHs.

1.2.4 Decoding Strategies

The goal of the CP in compress-forward in the uplink C-RAN is to decode the
user messages based on the compression indices sent from RRHs. The CP has
various options for decoding user messages. The CP can choose to first recover
all the compressed signals at the RRHs, then subsequently decode the user mes-
sages based on the compressed versions of the received signals. Alternatively, the
CP can arbitrarily interleave the decoding of the message messages and the com-
pression codewords. Doing so can benefit the users decoded later in the process
at the expense of earlier users. The achievable rates of these various options are
discussed in detail in this section.

The CP can first recover the compressed signals ŷul
l from all the RRHs, then

use these compressed signals to decode the user messages, which are encoded in



Cooperative Beamforming and Resource Optimization in C-RAN 13

xul
k . Such a successive decoding strategy essentially converts the uplink C-RAN

setup into a virtual multiple-access model with the CP receiving (ŷul
1 , . . . , ŷul

L )
for decoding the user messages. The achievable rate region of this successive
decoding strategy thus resembles the rate region of a multiple access channel
with additional quantization noises.

For example, with all the compression codewords ŷul
l already decoded, the

decoding of x̂ul
k can be done independently for each user, resulting in the following

achievable rate region:

Rlinear,ul
k ≤ I

(
xul

k ; ŷul
1 , . . . , ŷul

L

)
(1.12)

= log

∣∣∣∑K
j=1 Hul

1:L,jUjUH
j (Hul

1:L,j)H + σ2
ulI + Qul

1:L

∣∣∣∣∣∣∑j 6=k Hul
1:L,jUjUH

j (Hul
1:L,j)H + σ2

ulI + Qul
1:L

∣∣∣ (1.13)

In writing down the above achievable rate region, we have implicitly assumed that
a linear minimum-mean-squared-error (MMSE) network-wide beamforming is
performed across the signals received from RRHs. The above rate region therefore
already includes the capability of inter-RRH interference cancellation to certain
extend.

The above rate region can be improved if SIC is implemented across the users.
In particular, assuming that user messages are decoded in the order 1 to K, the
SIC achievable rate for user k can be written as:

RSIC,ul
k ≤ I

(
xul

k ; ŷul
1 , . . . , ŷul

L |xul
1 , . . . ,xul

k−1
)

(1.14)

= log

∣∣∣∑K
j=k Hul

1:L,jUjUH
j (Hul

1:L,j)H + σ2
ulI + Qul

1:L

∣∣∣∣∣∣∑j>k Hul
1:L,jUjUH

j (Hul
1:L,j)H + σ2

ulI + Qul
1:L

∣∣∣ (1.15)

Note that the achievable rate above reduces to the successive decoding rate region
of a multiple-access channel, if the quantization noises are ignored.

Alternatively, instead of recovering all the compressed signals before decoding
any user messages, the decoding can also be done on a per-RRH basis [28]. More
specifically, once the compressed signals from RRH l, ŷul

l , are recovered, the
messages of the users associated with that RRH can be decoded immediately.
Such decoding resembles the traditional per-BS decoding, except that since the
decoding of all users is done centrally at the CP, previously decoded user mes-
sages can serve as side information in subsequent decoding, so their interference
can be subtracted. Assuming K = L and that user k is associated with RRH k,
the achievable rate for user k in this case can be written as:

RperRRH,ul
k ≤ I

(
xul

k ; ŷul
k |xul

1 , . . . ,xul
k−1
)

(1.16)

= log

∣∣∣∑K
j=k Hul

k,jUjUH
j (Hul

k,j)H + σ2
ulI + Qul

k

∣∣∣∣∣∣∑j>k Hul
k,jUjUH

j (Hul
k,j)H + σ2

ulI + Qul
k

∣∣∣ (1.17)

Note that the above rate expression for per-RRH decoding can be further im-
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proved by including the compressed signals of the RRHs recovered before the
RRH k in the conditioning in the mutual information expression. Moreover, the
Wyner-Ziv compression rate (1.11) can also benefit from the conditioning of the
already decoded users signals before user k in per-RRH decoding.

We remark that the main benefit of C-RAN, namely inter-RRH interference
mitigation, is achieved in the uplink via two mechanism: either through beam-
forming, i.e., the decoding of user message based on the received signals across
multiple RRHs, or through SIC, i.e., the previously decoded user messages serve
as side information for subsequent decoding, or both. In general, the benefit of
network-wide beamforming is more important than successive decoding alone
as in per-RRH SIC. This is because per-RRH SIC necessarily requires some of
the users to be decoded first; these users therefore cannot benefit from central-
ized processing. The largest achievable rates are obtained if both beamforming
and SIC are implemented. With this in mind, the rest of this section focuses on
the achievable rates involving network-wide beamforming, i.e., either Rlinear,ul

k in
(1.13) or RSIC,ul

k in (1.15).

1.2.5 Optimization Framework for Compress-Forward

Within the framework of network utility maximization, the optimization of the
compress-forward strategy for uplink C-RAN is essentially a problem of solving
a weighted sum rate maximization problem (1.5a) over the transmission and
relaying strategies. The underlying optimization variables are the user schedul-
ing, user transmit power and beamformers, and the quantization codebook —
constrained by the input power and fronthaul capacity constraints.

User scheduling is usually determined by network layer protocols as function
of user priorities, traffic delay constraints, and also physical layer channel con-
ditions. While in theory user scheduling should be included in the weighted sum
rate maximization, doing so rigorously is often difficult, especially when there are
a large number of potential users in the system. In practice, it is often desirable
to use heuristics that combine user traffic demand with channel strength con-
siderations to schedule users. For example, users with longer queues of data to
transmit should be scheduled first; users with stronger channels should be given
priority; grouping users with near orthogonal channels to the cluster of RRHs is
a sensible strategy.

When successive decoding of the user signals and the compressed signals (in the
case of SIC and Wyner-Ziv compression, respectively) are implemented, decoding
orders are additional variables to be optimized. Exhaustive searches for a C-
RAN cluster of K users and L RRHs would involve K! user orderings and L!
RRH orderings, respectively, and are clearly impractical, but sensible heuristic
strategies often exist. For example, for SIC, users with strong channels should
usually be decoded first in order to help the weak users and to improve fairness.
For maximizing weighted sum rate, the SIC user decoding order normally should
be chosen to be in the ascending order of the user priority weights. Likewise, good
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heuristic ordering for Wyner-Ziv compression is also possible. For example, [30]
proposes to decompress first the signals from those RRHs with either the higher
value of the fronthaul capacity or the lower value of the average received signal
power. The rationale here is that the already decompressed signals can serve as
side information for subsequent decompression, so this ordering helps balance
the effective quantization noise levels across the RRHs.

To simplify the problem, we now fix the set of users to be scheduled, and fix
the orders in which decoding is performed. Without loss of generality, assume
that the user signals are decoded in an order from 1 to K. Similarly, in the case
of Wyner-Ziv compression, assume that the signals from RRHs are decompressed
in an order from 1 to L. In this case, the joint transmitter and quantization noise
covariance optimization problem can be formulated as follows:

maximize
Uk,Qul

l

K∑
k=1

wkR
ul
k (1.18a)

subject to Rul
k = (1.13) or Rul

k = (1.15), ∀k, (1.18b)
(1.9) or (1.11) ≤ Cl, ∀l, (1.18c)
Tr
(
UkUH

k

)
≤ P ul

k , ∀k, (1.18d)
Qul

l � 0, ∀l, (1.18e)

where wk’s are the priority weights in the weighted sum-rate maximization frame-
work. The optimization has two sets of design variables, the transmit beamformer
for user k, Uk, which is constrained by the power budget, and the quantization
covariance matrix for RRH l, Qul

l , which is constrained by the fronthaul capacity.
This optimization problem is nonconvex; it is in general challenging to find its
global optimum solution.

In formulating the above optimization problem, we have implicitly assumed
that both the transmit strategy at the user side and the compression process at
RRHs can be done adaptively, in the sense that the users can adaptively choose
their transmit power level, beamformers, and rate, and the RRHs can adaptively
choose different quantization codebooks, according to the network condition.
While transmit optimization is invariably included in modern cellular network,
adaptive quantization may not be. The analysis below discusses the issue of
adaptive quantization noise optimization first, followed by transmit beamforming
and power optimization.

1.2.6 Optimization of Quantization at RRHs

In this section, we analyze the quantization noise optimization component of
(1.18). To illustrate the key ideas, we first consider one instance of the opti-
mization problem (1.18) with independent compression and successive decoding
of user messages ordered according to the user priority weights (i.e., we assume
w1 ≤ · · · ≤ wK). Similar analysis can be obtained under Wyner-Ziv coding and
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with linear MMSE beamforming. Denote Σk = UkUH
k as the transmit signal

covariance matrix for user k. The weighted sum rate maximization problem thus
becomes:

maximize
Σk,Qul

l

K∑
k=1

wk log

∣∣∣∑K
k=1 Hul

1:L,kΣk(Hul
1:L,k)H + σ2

ulI + Qul
1:L

∣∣∣∣∣∣∑j>k Hul
1:L,jΣj(Hul

1:L,j)H + σ2
ulI + Qul

1:L

∣∣∣ (1.19a)

subject to log

∣∣∣∑K
k=1 Hul

l,kΣk(Hul
l,k)H + σ2

ulI + Qul
l

∣∣∣∣∣Qul
l

∣∣ ≤ Cl, ∀l, (1.19b)

Tr (Σk) ≤ P ul
k , ∀k, (1.19c)

Qul
l � 0, ∀l. (1.19d)

First focus on the optimization over Qul
l with fixed Σk. The main difficulty in

solving the above optimization problem stems from the fact that the objective
function is not a concave function and the fronthaul capacity constraints are not
convex functions of Qul

l . A method based on successive convex approximation
(SCA) is proposed in [30] to solve this problem. The basic idea behind SCA is to
first approximate the original problem into a convex program by linearizing the
nonconvex parts in the objective function and the constraints at a suitable start-
ing point. Then after solving the convex program, a new convex approximation
is made around the updated solution from the previous iteration. This procedure
is iterated until convergence and can be shown to reach the local optimum of the
original optimization problem.

The optimal solution Qul
l obtained from the procedure above is a set of positive

semi-definite matrices. These optimized quantization noise covariance matrices
can be implemented using an architecture where the received vector signal at
the RRH is first beamformed, followed by compression across the components of
the resulting signal. Assuming the eigenvalue decomposition of Qul

l = AH
l ΛlAl,

where Al is a unitary matrix and Λl is a diagonal matrix, the quantization pro-
cess with Qul

l is equivalent to first beamforming yul
l with Al, then performing

compression across each element of the newly beamformed vector Alyul
l . The

diagonal entries in Λl represent the quantization noise levels in each of the re-
sulting components. If some of these noise levels in the optimal Λl are nearly
infinite, this implies that those corresponding components are not useful for de-
coding at the CP, in which case the effective beamforming matrix essentially
projects the received signal at the RRH into a lower dimensional space.

We remark that the optimized beamformers Al and the quantization noise
levels Λl depend on the channels Hul

l,k and the transmit beamformers Uk, which
often change as the user scheduling, user locations, etc., change. To implement
jointly optimized transmission and quantization therefore requires an adaptive
compression architecture at RRHs that dynamically adapts to the changing
transmission and channel parameters. There is, however, a special case where
such adaptive design is not necessary. Under a high signal-to-quantization-noise-
ratio condition and assuming that as many users as total number of RRH an-
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tennas are scheduled, uniform quantization noise levels across the antennas, i.e.,
setting Qul

l = γlI, can be shown to be a reasonable strategy for maximizing the
sum rate [30], where the proportionality constant γl is chosen to satisfy the fron-
thaul capacity constraint at RRH l. Thus, under this special condition, adaptive
quantization at RRHs is not needed; independent quantization on a per-antenna
basis is already an approximately optimal design.

1.2.7 Fronthaul-Aware Transmit Beamforming

We now address the optimization of transmit beamforming in fronthaul capacity-
limited uplink C-RAN. Consider again the optimization problem (1.19), but over
the transmit covariance matrices Σk. If we assume that the quantization noise
covariance matrices Qul

l are fixed, then the maximization of the weighted sum-
rate subject to the input power constraints resembles a conventional MIMO
multiple-access channel input optimization problem, but with additional quan-
tization noise Qul

l .
The optimization problem (1.19) assumes that SIC is implemented. The objec-

tive function in this case is concave in the transmit covariance matrices Σk, and
the problem can be solved using efficient convex optimization methods. When
linear MMSE receive beamforming is implemented, the optimization problem is
nonconvex, but a class of algorithms known as weighted minimum mean-square
error (WMMSE) algorithms [27] are well suited for this scenario. The WMMSE
algorithm is capable of reaching a locally optimal transmit beamforming solution
for the problem.

The above discussion assumes that the quantization noise covariance matrices
Qul

l are fixed. In the general case, where the transmit covariance matrices Σk and
the quantization noise covariance matrices Qul

l are optimized jointly, a method
called WMMSE-SCA, which incorporates SCA into the WMMSE algorithm, can
be used to arrive at a stationary point of the weighted sum rate maximization
problem [30].

We conclude this section by pointing out the importance of being fronthaul
aware when designing transmit beamformers, particularly for the heterogeneous
C-RAN architecture, where the fronthaul capacities of different RRHs can be
quite different. Transmit beamforming serves to steer the radio transmission in
certain spatial directions. Intuitively, if certain RRHs have more limited fronthaul
capacities than others, the beamformers should steer away from them and instead
point toward RRHs with higher fronthaul capacities.

In fact, as the joint optimization framework of the transmit covariance and
quantization noise covariance matrices for the uplink C-RAN model shows, for
optimized performance, the transmit beamformers should adapt to the quantiza-
tion noise levels, and conversely the quantization noise levels should also adapt
to the transmit beamforming.
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1.3 Downlink C-RAN

In the downlink C-RAN, messages intended for different users in the cluster
originate from the CP. Since the CP has access to all the user data, it can
send useful information about the user messages to multiple RRHs in order to
facilitate cooperation among different RRHs so as to minimize the unwanted
interference seen by the users.

In the ideal case with infinite fronthaul capacities, the data of all the users
in the entire cluster can be provided to all the RRHs. This reduces the down-
link model to a MIMO broadcast channel with distributed antennas. However,
the practical case with finite fronthaul capacities allows for limited information
transfer. As in the uplink, a key question is to decide the most useful informa-
tion about the user messages to be sent to the RRHs in order to enable as much
interference pre-subtraction as possible.

This section discusses various relaying strategies that utilize the limited fron-
thaul capacities in different manners for the downlink C-RAN, along with their
corresponding optimization frameworks and methods for finding the solutions.
We conclude by providing design insights learned from such optimization.

1.3.1 Data-Sharing, Compression, vs. Reverse Compute-Forward

In the downlink, the benefit of the C-RAN architecture arises from the ability
to cooperatively transmit signals from RRHs to minimize the effect of unwanted
interference at users. Cooperative transmission from multiple RRHs takes the
form of network-wide beamforming. A straightforward way for the CP to enable
cooperation is to simply share each user message with multiple RRHs, which
can then form cooperative cluster to serve the users. Ideally, to enable full co-
operation, message of each user needs to be shared with all the RRHs in the
entire network. However, such full cooperation may not be feasible due to the
corresponding fronthaul capacity constraints. One way to reduce the fronthaul
consumption is to share each user’s message with only a subset of RRHs which
then locally form beamformed signals to serve the users. This strategy is termed
the data-sharing strategy.

Another way to achieve cooperation is to centrally compute the beamformed
signals to be transmitted by the RRHs at the CP. These signals are then com-
pressed and sent to the individual RRH for transmission to the users. Since
the CP has the messages of all the users, the signals computed at the CP can
mimic full cooperation. However, since these signals are analog, they need to
be compressed before they can be sent to the RRHs. This introduces quanti-
zation noises that limit the system performance. Such a strategy is termed the
compression-based strategy in this chapter.

Instead of sharing direct user messages or sharing the beamformed signals,
there is also a possibility of sharing some function of user messages to the RRHs.
In reverse compute-forward strategy [8], linear functions of user signals, cho-
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Figure 1.5 Illustration of data-sharing strategy for downlink C-RAN.

sen from a structured lattice codebook, are sent to the RRHs. These functions
are computed in a way that after passing through the channels, each user can
effectively retrieve its own message.

In the data-sharing strategy, the finite fronthaul capacity limits the size of co-
operation cluster; while in the compression-based strategy, the limited fronthaul
capacity adds additional quantization noises. Further, as with compute-forward
in the uplink, the performance of reverse compute-forward strategy in the down-
link is quite sensitive to the channel gains. With this in mind, in this chapter,
we focus on data-sharing and compression-based strategies. Readers are referred
to [9] for details about optimization in reverse compute-forward strategy.

From an information theoretic perspective, the downlink C-RAN is an instance
of the broadcast-relay channel. While it reduces to a broadcast channel if the
fronthaul links have infinite capacities, the capacity characterization for the prac-
tical case with finite fronthaul capacities is very challenging. Approximate capac-
ity and approximately optimal relaying strategies for the general broadcast-relay
network have been studied in [11,14], but the exact characterization of capacity
for the downlink C-RAN remains an open problem.

1.3.2 Data-Sharing Strategy

In traditional RAN, each BS receives raw data for users in its cell, and computes
the transmit signal based on that data independently of other BSs. From a
user’s perspective, it receives useful signal from its serving BS and overhears
interference from other nearby BSs. In C-RAN, the fronthaul connections from
the CP to RRHs open up the possibility of signal level cooperative transmission.
Since the CP has access to the data of all the users in its cluster, a straightforward
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way to enable such cooperative transmission is to share data of each user to all
the RRHs. This essentially coverts the overall C-RAN downlink setup into a large
antenna array with the antennas distributed over the network, or equivalently as
a broadcast channel. However, sharing data of each user to all the RRHs requires
very high fronthaul capacity. In the more practical case where the fronthaul links
have limited capacities, each RRH can only receive data for a subset of users,
or equivalently each user gets served by only a subset of RRHs as illustrated in
Fig. 1.5. The effect of such limited cooperation is characterized below.

To illustrate the key ideas, we assume Gaussian signaling and use linear beam-
forming. Let Vk,l ∈ CM×dk denote the matrix of transmit beamformers that
convey dk data streams from RRH l to user k. The transmit signal from RRH l

is given by xdl
l =

∑
k Vk,lsdl

k , where sdl
k ∈ Cdk×1 ∼ CN (0, I) is the message signal

for user k. The covariance matrix of the signal transmitted by RRH l is given
by E

[
xdl

l (xdl
l )H

]
=
∑

k Vk,lVH
k,l with total transmit power

∑
k Tr

(
Vk,lVH

k,l

)
.

Note that if user k’s message sk is not available at RRH l, then the correspond-
ing beamformer Vk,l is zero. Finally, with the linear Gaussian channel model
described earlier in the chapter, the received signal at user k can be written as

ydl
k =

∑
l

Hdl
k,lVk,lsdl

k +
∑

l

∑
j 6=k

Hdl
k,lVj,lsdl

j + zdl
k . (1.20)

Given (1.20), the achievable rate for user k under data-sharing strategy, treating
inference as noise, can be expressed as

Rdata,dl
k = I(sdl

k ,ydl
k ) (1.21)

= log

∣∣∣∑j Hdl
k VjVH

j

(
Hdl

k

)H + σ2
dlI
∣∣∣∣∣∣∑j 6=k Hdl

k VjVH
j

(
Hdl

k

)H + σ2
dlI
∣∣∣ (1.22)

where Hdl
k ∈ CN×LM =

[
Hdl

k,1, . . . ,Hdl
k,L

]
and Vk ∈ CLM×dk =

[
VT

k,1, . . . ,VT
k,L

]T

are the combined channel gains and transmit beamformers from all the RRHs
to user k.

To support these user rates, the fronthaul capacity must support the aggre-
gate data of users that each RRH participates in beamforming to. The fronthaul
capacity required to send data to RRH l is thus simply the sum of rates of users
that are served by RRH l. To write this mathematically, we make use of the fact
that the transmit beamformer from RRH l to user k is zero, i.e. Vk,l = 0, if RRH
does not serve user k, or equivalently Tr

(
Vk,lVH

k,l

)
= 0. Writing it in this way is

useful for the optimization of the data-sharing strategy later on. The total fron-
thaul required for RRH l can now be written as

∑
k 1

{
Tr
(
Vk,lVH

k,l

)}
Rdata,dl

k ,

where 1
{

Tr
(
Vk,lVH

k,l

)}
is the indicating function defined as

1
{

Tr
(
Vk,lVH

k,l

)}
=
{

0, if Tr
(
Vk,lVH

k,l

)
= 0

1, otherwise.
(1.23)
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It determines whether or not user k’s message is revealed to RRH l.
Note that to participate in beamforming to user k, there is also the overhead of

transmitting the beamformer coefficients of the user to all the RRHs involved in
order for them to combine with the user data. In practice, sending the beamform-
ing coefficients usually requires much less fronthaul capacity than sending user
messages, especially in a slow varying environment as beamforming coefficients
typically only need to be updated as the user channels vary.

We further remark that the fronthaul consumption model (1.3.2) assumes that
all the data streams of user k are either completely available or not at all at RRH l

and ignores the possibility that only part of the data stream is revealed to a RRH.
If such possibility is considered, then a user may receive different data streams
from different serving RRHs and the fronthaul consumption model (1.3.2) needs
to be adjusted by using the indicator function and the rate expression for each
individual data stream instead.

Finally, we point out that, instead of linear beamforming, a non-linear pre-
coding technique (e.g. dirty paper coding) can also be utilized to improve the
achievable user rates. The optimization framework developed in the next section
can be easily extended to such case.

1.3.3 Optimization Framework for Data-Sharing

Given (1.22) and (1.3.2), the weighted sum-rate maximization problem for data-
sharing strategy can be formulated as

maximize
Vk,l

∑
k

wkR
data,dl
k (1.24a)

subject to
∑

k

1
{

Tr
(
Vk,lVH

k,l

)}
Rdata,dl

k ≤ Cl, ∀l, (1.24b)∑
k

Tr
(
Vk,lVH

k,l

)
≤ P dl

l , ∀l, (1.24c)

where wk in (1.24a) is the priority weight associated with user k.
The above optimization problem is nonconvex, so finding its globally optimal

solution is challenging. One source of nonconvexity arises from the indicator
function in (1.24b). One way to tackle this issue is to recast the indicator function
into an expression involving an `0-norm, which can be further approximated as a
convex weighted `1-norm using the compressive sensing idea [2]. Another source
of nonconvexity is the rate Rdata,dl

k expressed in (1.22). To resolve this difficulty,
Rdata,dl

k in (1.24b) can be fixed as a constant, then updated iteratively. This turns
the fronthaul constraint into a convex constraint for a given iteration. Then, the
WMMSE algorithm [3, 27] can be applied to reach a stationary point solution
of the beamforming problem. The details of such an approach can be found
in [4]. Although this algorithm does not have theoretical convergence proof, it is
numerically observed to converge, and performs as well as other algorithms with
theoretical convergence guarantees [5].
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Figure 1.6 Illustration of compression-based strategy for downlink C-RAN.

In the problem formulation (1.24), it is assumed that the RRH cluster for
each user can be updated dynamically in each time slot. In the case where the
RRH clustering is static and is only updated when the user locations change, the
compressive sensing idea can still be applied to address the fronthaul constraints
[4]. But in this case, the optimal static RRH clustering design problem needs to
be formulated based on loading considerations and is not trivial to solve.

One way to form such static RRH clusters is simply to partition the entire
set of RRHs geographically into different groups. RRHs within the same group
form a cooperative array of antennas and jointly serve the users that fall in that
geographic area [10]. In such a user-RRH association, however, users near the
boundary of the partitions still suffer from considerable interference.

In an alternate way, each individual user can decide on a static and fixed set
of serving RRHs. The criteria to select the best RRHs need to be based on both
the channel strengths as well as the loading at the RRHs. We refer to [4,5,13,19]
for details on possible ways to form such static user-centric RRH associations.

1.3.4 Compression-Based Strategy

In the data-sharing strategy, the limited fronthaul capacities restrict the coop-
eration size of the RRH cluster in serving a user. However, since the all the user
data are available at the CP, the CP can centrally compute the beamformed
signals that the RRHs should transmit. Such signals computed at the CP can in
principle mimic the effect of full cooperation. The downside to such an approach
is that the beamformed signals are no longer discrete (unlike the raw data in
the data-sharing strategy), but instead are analog in nature. So these signals
need to be compressed before they can be sent over the digital fronthaul links of
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finite capacities. The process of compression introduces compression noise. The
amount of such noise is determined by the available fronthaul capacities. Higher
fronthaul capacity leads to finer compression and less quantization noise. Fig. 1.6
illustrates the compression-based strategy. In the following, we characterize the
effect of such quantization noises on the performance of the downlink C-RAN
system.

We make similar transmission assumptions as in the case of the data-sharing
strategy. With Vk,l as the matrix of beamforming vectors for user k from RRH
l, we can write the precoded signal computed at the CP and intended for trans-
mission by RRH l as

x̂dl
l =

∑
k

Vk,lsdl
k . (1.25)

These signals are then compressed and sent to the RRHs. As with the compress-
forward strategy in the uplink, we model the compression process mathematically
as an additive process

xdl
l = x̂dl

l + edl
l , (1.26)

where xdl
l is the reconstructed signal that RRH l actually transmits to the users,

and the additional noise edl
l ∈ CM×1 (assumed to be independent of the signals

to be compressed) captures the effect of quantization. We assume a Gaussian
quantization model with edl

l ∼ CN (0,Qdl
l,l). We remark that, similar to the up-

link, the additive model for the compression process above is without loss of
generality and includes the possibility of processing x̂dl

l with a beamformer Bl

(possibly to reduce the rank) prior to quantization. Note that the transmit power
at RRH l can be represented as

∑
k Tr

(
Vk,lVH

k,l

)
+ Tr

(
Qdl

l,l

)
; it accounts for

the contribution due to the quantization noises. It is also worth noting that the
quantization noises of different RRHs are not necessarily independent of each
other as the signals for all the RRHs are compressed jointly at the CP.

Let Qdl ∈ CLM×LM denote the covariance matrix of the jointly Gaussian
quantization noises of all the RRH signals with Qdl

l,l being the lth diagonal block
submatrix in Qdl. The received signal at user k under the compression strategy
can be expressed as

ydl
k =

∑
l

Hdl
k,lVk,lsdl

k +
∑

l

∑
j 6=k

Hdl
k,lVj,lsdl

j + Hdl
k edl + zdl

k , (1.27)

where edl =
[
edl

1 , . . . , edl
L

]
. As can be seen from (1.27), the received signal in the

compression strategy has an additional noise term due to the quantization noises
in the signals transmitted to the RRHs.

Given (1.27), the achievable rate for user k under the compression strategy,
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again treating interference as noise, can be expressed as

Rcomp,dl
k = I(sdl

k ; ydl
k ) (1.28)

= log

∣∣∣∑j Hdl
k VjVH

j

(
Hdl

k

)H + Hdl
k Qdl (Hdl

k

)H + σ2
dlI
∣∣∣∣∣∣∑j 6=k Hdl

k VjVH
j

(
Hdl

k

)H + Hdl
k Qdl

(
Hdl

k

)H + σ2
dlI
∣∣∣ . (1.29)

As compared to the rate in the data-sharing strategy (1.22), the rate (1.29) in the
compression-based strategy has an additional term that represents the combined
quantization noise after it passes through the channel. This quantization noise
lowers the achievable rate.

On the plus side, since the beamformers are computed at the CP, there are no
specific constraints on Vk,l that limit the participation of RRHs in serving the
users. So long as the CSI from the serving RRHs to the users is available at the
CP, the CP can pre-compute all the beamformers and describe the beamformed
signals to the RRHs in an efficient way.

We now look at the relationship between the quantization noise levels and
the fronthaul capacities. The precise relationship depends on the compression
technique used at the CP. We start with the case where the signals of different
RRHs are compressed independently. In such a scenario, the quantization noises
at different RRHs are uncorrelated, and the quantization noise covariance matrix
Qdl is a block-diagonal matrix with Qdl

l,l on the diagonal blocks. Using results
from rate-distortion theory, similar to the case of independent compression in
the uplink, the fronthaul capacity required for independent compression at RRH
l is given by

C indep,ul
l ≥ I(xdl

l ; x̂dl
l ) (1.30)

= log

∣∣∣∣∣∑
k

Vk,lVH
k,l + Qdl

l,l

∣∣∣∣∣− log
∣∣Qdl

l,l

∣∣ . (1.31)

Note that when independent compression is performed across signals of dif-
ferent RRHs, i.e., with block-diagonal Qdl, the aggregated effect of the quan-
tization noises at the users, Hdl

k Qdl (Hdl
k

)H , is just the sum of contributions
Hdl

k,lQdl
l,l(Hdl

k,l)H from each RRH. However, it is possible to improve the achiev-
able rates by considering a more general compression scheme that allows for
arbitrary correlation among quantization noises in the signals of different RRHs.
Such correlation allows the possibility of nonzero off-diagonal block matrices in
Qdl that can potentially lead to terms that eventually cancel each other at the
user side. This type of compression is termed multivariate compression, as first
proposed in [20], and is discussed below.

Assuming a compression order from RRH 1 to L, the fronthaul required to
compress the signals for RRH l for multivariate compression can be expressed



Cooperative Beamforming and Resource Optimization in C-RAN 25

as:

Cmult,dl
l ≥ I(xdl

l ; x̂dl
l ) + I(edl

l ; edl
1 , . . . , edl

l−1) (1.32)

= log

∣∣∣∣∣∑
k

Vk,lVH
k,l + Qdl

l,l

∣∣∣∣∣
− log

∣∣∣Qdl
l,l −Qdl

l,1:l−1
(
Qdl

1:l−1,1:l−1
)−1 (Qdl

l,1:l−1)H
∣∣∣ . (1.33)

Here, Qdl
A,B denotes the covariance submatrix of Qdl indexed by the RRHs in

the sets A, and B and 1 : l denotes the set {1, . . . , l}. As can be seen from
the expression above, introducing correlation between the quantization noises of
different RRHs actually costs more fronthaul capacity as compared with indepen-
dent compression. The benefit of such correlation is that since these quantization
noises pass through the channel and add up at the end users, we can potentially
design the noise correlations in such a way as to aligning them appropriately in
order to make the noises cancel each other at the user side, thereby improving
the overall system performance.

As with the Wyner-Ziv compression in the uplink, different ordering of the
RRHs results in different fronthaul requirements and quantization noise covari-
ance matrices. For a fixed order, a practical implementation of the multivariate
compression has been proposed in [20].

1.3.5 Optimization Framework for Compression

Under the different compression strategies described above, the weighted sum
rate maximization problem for compression-based strategy in the downlink C-
RAN can be formulated differently as follows:

maximize
Vk,l,Q

∑
k

wkR
comp,dl
k (1.34a)

subject to (1.31) or (1.33) ≤ Cl, ∀l, (1.34b)∑
k

Tr
(
Vk,lVH

k,l

)
+ Tr

(
Qdl

l,l

)
≤ P dl

l , ∀l, (1.34c)

where Rcomp,dl
k in (1.34a) is defined in (1.29). Note that additional constraints

on the format of the covariance matrix Qdl are to be imposed depending on the
compression strategy. For example, in (1.31), Qdl needs to be a block-diagonal
matrix with the diagonal matrices Qdl

l,l being positive semi-definite, i.e. Qdl
l,l �

0,∀l; in (1.33), Qdl needs to be a positive semi-definite matrix, i.e. Qdl � 0.
Unfortunately, none of the above optimization problems is a convex optimiza-

tion program. In [20], the optimization problems (1.34) under (1.31) and (1.33)
are solved through the majorize-minimization (MM) method. The main obser-
vation that allows such a method is that both the nonconvex objective and the
fronthaul relation can be represented as a difference of convex functions. To
implement the MM-based method proposed in [20], first the transmit beam-
forming variables are converted into transmit covariance matrices and the rank
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constraints on the covariance matrices are relaxed in subsequent optimization.
Then a sequence of convex programs are solved over the covariance matrices by
repeatedly linearizing the convex parts in the objective function and the concave
parts in the fronthaul constraints until some convergence criterion is met. Such
a method can be shown to reach a local optimum of the rank-relaxed problem.
In the end, to get back the appropriate beamformers, the eigenvectors corre-
sponding to the largest eigenvalues of the final transmit covariance matrices are
selected.

1.3.6 Hybrid Strategy

The data-sharing and compression-based strategies utilize the fronthaul capac-
ity in two distinct ways. In data-sharing, the fronthaul links carry raw user
messages for RRHs to compute the beamformed signals, while in compression-
based strategy, the fronthaul links carry compressed bits of the already computed
beamformed signals. The advantage of data-sharing approach is that the RRHs
receive clean messages to be used for joint transmission. However, the fronthaul
capacity constraint limits the cooperation cluster size. The main advantage of
the compression-based approach is that the fronthaul capacity is more efficiently
utilized when beamformed signals of multiple user messages are transmitted
through the fronthaul. However, it pays a price in the extra quantization noise
term in the resulting rate expression.

Based on the above comparison, a hybrid compression and data-sharing strat-
egy is proposed in [23] to obtain the benefit of both strategies. In the hybrid
strategy, a part of the fronthaul capacity is used to carry direct messages for
some users and the remaining is used to carry the compressed beamformed sig-
nal of the rest of the users.

The rationale behind such an approach is the following. The desired precoded
signal typically consists of both strong and weak signals and both high-rate and
low-rate data streams. It would be beneficial to directly carry clean messages
for the relatively strong signal with relatively low rate, because in this case
it is typically more efficient to send the information bits themselves than to
do compression on such signals. With these strong signals separated out, the
amplitude of the rest of the signal is now lower. It would therefore require fewer
bits to compress.

From the RRH’s perspective, each RRH receives the direct messages for the
strong users and the compressed precoded signals for the rest of the weak users
in the network. It can compute a beamformed signal based on the direct mes-
sages and the decompressed signal, and transmit the result on its antennas. An
optimization framework to design such a hybrid strategy is discussed in [23].
The key design parameters in such a hybrid approach are the selection of users
that are suitable for direct data-sharing, in addition to the beamforming and
quantization noise variables.
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1.3.7 Data-Sharing versus Compression

Two fundamentally distinct strategies of data-sharing and compression are pre-
sented in this chapter for the downlink C-RAN. A natural question to ask is
which one performs better in a realistic wireless network? The answer to this
question depends on the amount of fronthaul capacity available.

In theory, to achieve full cooperation across the cluster managed by the CP,
the amount of fronthaul capacity required for data-sharing strategy at each RRH
is simply the sum of the achievable rates of all the users across the cluster, which
is finite. However, for the compression-based strategy to achieve full cooperation,
infinite fronthaul capacity would be needed in order to bring the the quantization
noises to zero. Thus at extremely high fronthaul capacities, data-sharing has an
advantage as compared to compression.

At extremely low fronthaul capacities, data-sharing also has an advantage.
This is because this case reduces to traditional single-cell processing, where each
user’s data is sent to one RRH only. Since the user data is discrete, it is more
efficient to send messages rather than the compressed version of the analog signal.

However, for most realistic network settings, where the fronthaul capacity is
moderately high, the compression-based strategy almost always outperforms the
data-sharing strategy. This is because the effect of quantization noises is usually
quite small. Further, compression is a more efficient utilization of the fronthaul
capacity than data-sharing, because the latter essentially replicates the same user
message across multiple fronthaul links, which is inefficient. Numerical compar-
ison of the two strategies has been investigated in [24] under a realistic network
topology under different fronthaul capacities. When the fronthaul capacity is
moderate and the two strategies are comparable, the hybrid of the two can bring
additional gains [23].

In the downlink C-RAN, the gains due to cooperation depends crucially on
the ability of the CP to obtain CSI of the users in its cluster. The discussion
so far assumes that CSI of all users in the cluster is available at the CP. But
in practice, CSI acquisition and sharing consume significant fronthaul capacity,
and are expected to be major factors in limiting the size of cooperation clus-
ter in the C-RAN architecture. Note that at the same cluster size data-sharing
strategy achieves higher rate than the compression strategy due to the additional
quantization noise in compression. So, to achieve the same rate, the compression
strategy requires larger cluster size, hence more CSI. In a typical deployment,
the cooperation cluster size under the compression strategy is mostly limited
by CSI availability, while for data-sharing it is mostly limited by the fronthaul
capacity.

As a concluding remark, we note that the implementations of the data-sharing
and compression strategies have key differences in that the RRHs need to have
knowledge of the modulation and coding format for implementing data-sharing,
but such codebook knowledge is not needed for compression. Thus, the RRHs
for implementing the compression strategy can be made much simpler.
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1.4 Summary

This chapter illustrates cooperative beamforming and relaying strategies and
the associated resource allocation for both uplink and downlink C-RAN. In the
uplink, we show compress-forward as the fundamental strategy and provide an
optimization framework for transmit beamforming at the users and quantization
at the RRHs. In the downlink, we demonstrate data-sharing and compression
as two competing and fundamentally different strategies. The data-sharing op-
timization framework for RRH clustering and transmit beamforming and the
compression optimization framework for cooperative beamforming and quanti-
zation at the CP are discussed. In all cases, the finite fronthaul capacity has
major impact on the analysis and design of different transmission and relaying
strategies in the C-RAN architecture.

The achievable user rate and the fronthaul rate expressions used throughout
the chapter are based on information theoretic analysis and assume the use of
capacity-achieving and rate-distortion achieving codes. The codes used in prac-
tice usually operate below the information theoretical limit. However, to a good
approximation, the performance due to such practical codes can be captured
by incorporating gap factors in the respective user rate and fronthaul rate ex-
pressions. The optimization algorithms developed in this chapter can be easily
extended with such factors taken into account.
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