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Abstract—This paper proposes a joint design of the routing
strategy over the fronthaul network and the transmission strategy
over the wireless network in a downlink cloud radio access
network (C-RAN), in which the remote radio heads (RRHs) are
connected to the central processor (CP) via multi-hop routers.
The data-sharing strategy is adopted, where the CP multicasts
each user’s data to all the RRHs serving this user via the multi-
hop fronthaul network, which then cooperatively serve the users
through joint beamforming. Such a setting naturally provides
an opportunity for applying the technique of network coding to
efficiently reduce the multicast traffic in the fronthaul network.
A novel cross-layer optimization framework is then investigated,
where the RRH’s beamforming vectors as well as the user-
RRH association in the physical-layer, and the network coding
design in the network-layer are jointly optimized to maximize
the throughput of C-RAN subject to fronthaul link capacity
constraints. This paper proposes a two-stage algorithm to solve
this problem using the techniques of sparse optimization and
successive convex approximation. Simulation results are provided
to verify the effectiveness of the proposed cross-layer design in
the downlink multi-hop C-RAN.

I. I NTRODUCTION

Cloud radio access network (C-RAN), in which multiple
distributed access points known as remote radio heads (RRHs)
serve mobile users cooperatively under the coordination ofthe
central processor (CP), is envisioned as a promising candidate
for the 5G cellular network on the roadmap. In the literature, a
considerable amount of effort has been dedicated to reducing
the fronthaul capacity required in the downlink communication
in C-RAN (see e.g., [1] and the references therein). Among
them, the data-sharing scheme has attracted a great deal of
attention, where the CP multicasts each user’s data to all the
RRHs serving this user over the fronthaul network, which
then encode the user messages into wireless signals and
cooperatively transmit them to users [2]–[5].

Most previous works in this area, however, focus on the
beamforming design across the RRHs alone and ignore the
routing of user data in the fronthaul network. This paper points
out that the joint optimization of the transmission strategy
in the physical-layer together with the routing strategy in
the network-layer can significantly improve the throughput
of downlink C-RAN, especially when the fronthaul network
consists of edge routers and network processors over multiple
hops, as illustrated in Fig. 1. A key observation is that such
a cross-layer design provides an opportunity to leverage the
network coding technique [6] for multicasting user data to the
corresponding RRHs over the multi-hop fronthaul network.
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Fig. 1. System model of downlink multi-hop C-RAN.

This paper formulates a throughput maximization problem
for C-RAN subject to multiple fronthaul link capacity con-
straints and proposes to jointly optimize the RRH’s beamform-
ing vectors, user-RRH association, and network coding based
routing in an overall design. By applying the techniques of
sparse optimization and successive convex approximation,we
propose a two-stage algorithm to efficiently solve the stud-
ied problem: first, we approximate each user-RRH’s discrete
association indicator function by a continuous function and
obtain a user-RRH association solution; then we fix this user-
RRH association and find the corresponding beamforming
and network coding strategy. Numerical examples show that
the proposed scheme outperforms other data-sharing based
benchmark schemes in terms of the network throughput.

It is worth noting that the joint beamforming and user-
RRH association design in the downlink C-RAN has been
previously investigated in [3], but without considering the
optimization of the routing strategy. On the other hand, [7]
proposes to jointly design the transmission and routing strategy
in the downlink C-RAN, but in the model of [7] each user
is solely served by one RRH, and the CP unicasts the data
of each user to its associated RRH. Our paper differs from
[3], [7] in allowing cooperative beamforming among RRHs
and in the utilization of network coding technique over the
fronthaul network for information multicast. Finally, thecross-
layer design of the multi-hop C-RAN has been studied in the
uplink in [8], where the RRHs utilize a compress-and-forward
strategy. The downlink cross-layer design is different because
of the need to optimize both the user-RRH association as well
as the information multicast in the fronthaul network.



II. SYSTEM MODEL

Consider the downlink communication in C-RAN whereN
RRHs, denoted by the setN = {1, · · · , N}, cooperatively
serveK users, denoted by the setK = {1, · · · ,K}, under
the coordination of the CP. It is assumed that each RRH is
equipped withM ≥ 1 antennas, while each user is equipped
with one single antenna. Moreover, we assume that the CP and
RRHs communicate over a multi-hop fronthaul network con-
sisting ofJ routers, denoted by the setJ = {1, · · · , J}, and
L digital fronthaul links, denoted by the setL = {1, · · · , L},
as shown in Fig. 1. The capacity of each linkl ∈ L is denoted
by Cl bits per second (bps). A novel network coding based
data-sharing scheme is adopted in this paper, where the CP
multicasts each user’s message to all the RRHs serving it
via the multi-hop fronthaul network using network coding
technique [6], and each RRH then encodes the user messages
into wireless signals and sends them to the users. In the
following, we introduce the proposed cross-layer architecture
for the downlink multi-hop C-RAN in detail.

A. Beamforming over wireless network
For the wireless network, it is assumed that theN RRHs

communicate with theK users over quasi-static flat-fading
channels over a given bandwidth ofB Hz. The equivalent
baseband transmit signal of RRHn is

xn =

K
∑

k=1

wk,nsk, ∀n, (1)

wheresk ∼ CN (0, 1) denotes the message intended for userk,
which is modeled as a circularly symmetric complex Gaussian
(CSCG) random variable with zero-mean and unit-variance,
and wk,n ∈ CM×1 denotes RRHn’s beamforming vector
for user k. Suppose that RRHn has a transmit sum-power
constraintPn; from (1), we have

E [xnx
H
n ] =

K
∑

k=1

‖wk,n‖2 ≤ Pn, ∀n. (2)

The received signal of userk can be expressed as

yk =
N
∑

n=1

h
H
k,nxn + zk

=
N
∑

n=1

h
H
k,nwk,nsk +

N
∑

n=1

h
H
k,n

∑

i6=k

wi,nsi + zk, ∀k, (3)

wherehk,n ∈ CM×1 denotes the channel from RRHn to user
k, andzk ∼ CN (0, σ2) denotes the additive white Gaussian
noise (AWGN) at userk. In this paper, it is assumed that the
channels to all theK users are perfectly known at the CP.

The signal-to-interference-plus-noise ratio (SINR) for user
k is expressed as

γk=

∣
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|hH

k wk|2
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i6=k

|hH
k wi|2 + σ2

, ∀k, (4)

wherehk = [hT
k,1, · · · ,hT

k,N ]T denotes the effective channel
from all RRHs to userk, and wk = [wT

k,1, · · · ,wT
k,N ]T

denotes the effective beamforming vector for userk across
all RRHs. The achievable rate of userk in bps is given by

rk ≤ B log2(1 + γk), ∀k. (5)

B. Network coding over fronthaul network

Next, consider the data transmission from the CP to RRHs
over the digital multi-hop fronthaul network. It is worth noting
that if wk,n 6= 0, then userk is served by RRHn; otherwise,
userk is not served by RRHn. As a result, we can define
the user-RRH association indicator functionαk,n(wk,n) as
follows:

αk,n(wk,n) =

{

1, if ‖wk,n‖2 6= 0,
0, otherwise,

∀k, n. (6)

If user k is served by RRHn, i.e., αk,n(wk,n) = 1, the CP
needs to send the digital messagessk to RRHn over the multi-
hop fronthaul network at a rate ofrk bps; otherwise, the CP
does not need to sendsk to RRH n. To summarize, there
areK multicast sessions in the multi-hop fronthaul network,
i.e., s1, · · · , sK , and each sessionsk has a setDk = {n :
αk,n(wk,n) = 1, n = 1, · · · , N} of destinations.

The traditional approach for information multicast is to
make each router replicate and forward its received informa-
tion to the downstream routers. However, the optimization of
such multicast routing is equivalent to the Steiner tree packing
problem, which is NP-hard [9], [10]. Moreover, this replicate-
and-forward based routing strategy is suboptimal since the
coding operations at routers are necessary to achieve the
multicast capacity [6]. In this paper, we propose to apply
the network coding technique to multicast each session to its
destinations independently, but do not code between different
sessions for the following reasons. First, this strategy results
in an easy characterization of the routing region, therefore
makes the optimal multicast routing problem polynomial time
computable. Second, intersession coding provides marginal
throughput gains over this approach [9], [10].

Network coding enables flows for different destinations
of a multicast session to share network capacity without
competition: the actual physical flow rate on each link only
needs to be the maximum rate of the individual destination’s
flows. According to [9], [10], the routing constraints for the
multi-hop fronthaul network can be formulated as

αk,n(wk,n)rk ≤
∑

l∈I(Nn)

dk,nl , ∀k, n, (7)

∑

l∈O(Jj)

dk,nl =
∑

l∈I(Jj)

dk,nl , ∀k, n, j, (8)

dk,nl ≤ fk
l , ∀n, k, l, (9)

K
∑

k=1

fk
l ≤ Cl, ∀l, (10)

fk
l ≥ 0, dk,nl ≥ 0, ∀k, n, l, (11)

wheredk,nl denotes the conceptual flow rate on linkl ∈ L
for the kth multicast session to its potential destination RRH



n, fk
l denotes the actual flow rate on linkl for multicast

sessionk, Nn andJj denote RRHn and routerj, respectively,
I(Nn) denotes the set of links that are incoming to RRH
n, and I(Jj) and O(Jj) denote the set of links that are
incoming to and outgoing from routerj, respectively. The
first constraint guarantees that ifn ∈ Dk, then the kth
session must flow at raterk to its destination RRHn. The
second constraint represents the law of flow conservation for
conceptual flows. Note that the flow conservation constraintfor
the CP is not considered because it is automatically guaranteed
by constraints (7) and (8). The third constraint indicates that
the actual flow rate of thekth multicast session at each linkl
is the maximum rate of the conceptual flows of that link to all
the destinations, which is the benefit of network coding. The
fourth constraint guarantees that the overall informationflow
rate at each link does not exceed the link capacity. The last
constraint guarantees a positive flow rate for all the multicast
sessions on all the links.1

III. PROBLEM FORMULATION

In this paper, we aim to maximize the throughput of
downlink multi-hop C-RAN via a joint optimization of the
resources available in the physical-layer and network-layer.
Specifically, we design the beamforming vectors at all RRHs,
i.e.,wk,n’s, and network coding strategy, i.e.,dk,nl ’s andfk

l ’s,
to maximize the sum-rate of all the users subject to each
RRH’s transmit power constraint over the wireless network
as well as the network coding constraints in the multi-hop
fronthaul network, i.e.,

maximize
{wk,n,rk,d

k,n

l
,fk

l
}

K
∑

k=1

rk (12a)

subject to (2), (5), (7)− (11). (12b)

It is worth noting that without the network coding con-
straints given in (7) – (11), each user should be served by all
the RRHs, i.e.,αk,n(wk,n) = 1. However, with the newly
introduced network coding constraints given in (7) – (11),
in general each RRH cannot support all the users in the
downlink transmission, and as a result, from (6), for each RRH
n, only a subset of users are associated with it, for which
the corresponding user association functionαk,n(wk,n) and
beamforming vectorwk,n are non-zero. Moreover, the user
association functionsαk,n(wk,n)’s also affect the network
coding design since they determine the destinations of each
multicast session. Therefore, the RRH’s beamforming, user-
RRH association, and network coding are coupled together
and need to be jointly optimized in problem (12), which is a
challenging problem in general.

It is also worth noting that constraint (7) induces a sparse
beamforming solution to problem (12). In the literature, s-
parse optimization technique has been previously used for
the downlink beamforming design problem [5], [12]. Problem
(12) differs from prior work in two aspects. First, [5], [12]

1Given any flow rate solution satisfying constraints (7) – (11), the code
design which determines the content of each flow being transmitted across
the network can be found according to [11].

encourage a sparse beamforming solution by penalizing the
objective function with a sparsity term. However, problem (12)
considered in this paper imposes a set of sparsity constraints
which need to be strictly satisfied. Second, in [5], [12] the
sparsity penalty is independent of the beamforming solution,
but in constraint (7) of our studied problem they are coupled.
As a result, the existing sparse optimization techniques, e.g.,
least-absolute shrinkage and selection operator (LASSO),can-
not be applied in this paper.

IV. PROPOSEDTWO-STAGE ALGORITHM

In this section, we propose an efficient algorithm to solve
problem (12) based on the techniques of sparse optimizationas
well as successive convex approximation. One main challenge
for solving problem (12) is the discrete indicator function
αk,n(wk,n) defined in (6). By applying standard sparse op-
timization technique, in this paper we use the following
continuous function to approximateαk,n(wk,n):

gΦ(wk,n) = 1− e−Φ‖wk,n‖
2

, ∀k, n, (13)

whereΦ ≫ 1. It can be observed that when‖wk,n‖2 = 0, then
gΦ(wk,n) = αk,n(wk,n) = 0. Otherwise, if‖wk,n‖2 > 0, we
havegΦ(wk,n) → αk,n(wk,n) = 1 with Φ ≫ 1.

By using gΦ(wk,n) to approximateαk,n(wk,n), ∀k, n,
problem (12) becomes the following continuous problem.

maximize
{wk,n,rk,d

k,n

l
,fk

l
}

K
∑

k=1

rk (14a)

subject to gΦ(wk,n)rk ≤
∑

l∈I(Nn)

dk,nl , ∀k, n, (14b)

(2), (5), (8)− (11). (14c)

However, sincegΦ(wk,n) is strictly less than one when
‖wk,n‖2 > 0, the solution to problem (14), which satisfies
constraint (14b), may not satisfy constraint (7) in problem(12).
As a result, in this paper we propose to solve problem (12) in
two steps as follows. First, we solve problem (14) and obtain
the beamforming solution, denoted bŷwk,n’s. The user-RRH
association solution is then obtained as follows:

αk,n(ŵk,n) =

{

1, if gΦ(ŵk,n) ≥ ψ,
0, otherwise,

∀k, n, (15)

where0 ≤ ψ ≤ 1 is a threshold to control the user association
solution.2 Second, we fix this user association solution in
problem (12) and solve the following simplified problem to
refine the beamforming and network coding strategy:

maximize
{wk,n,rk,d

k,n

l
,fk

l
}

K
∑

k=1

rk (16a)

subject to αk,n(ŵk,n)rk ≤
∑

l∈I(Nn)

dk,nl , ∀k, n, (16b)

‖wk,n‖2 = 0, ∀ αk,n(ŵk,n) = 0, (16c)

(2), (5), (8)− (11). (16d)

In the following, we show how to solve problems (14) and
(16), respectively.

2In our simulation, we setΦ = 50 andψ = 0.5.



A. The First Stage: Solution to Problem (14)

Problem (14) is a non-convex problem due to constraints (5)
and (14b). As a result, the conventional convex optimization
technique cannot be directly applied to solve it. In this section,
we propose an efficient algorithm to solve problem (14)
suboptimally based on the technique of successive convex
approximation.

First, we consider constraint (5), which is equivalent to

|hH
k wk|2

∑

i6=k

|hH
k wi|2 + σ2

≥ 2
rk
B − 1, ∀k. (17)

By introducing a set of auxiliary variablesηk ≥ 0’s, k =
1, · · · ,K, it can be shown that constraint (17) is equivalent to
the following two constraints:

h
H
k wk ≥

√

(2
rk
B − 1)ηk, ∀k, (18)

√

∑

i6=k

|hH
k wi|2 + σ2 ≤ √

ηk, ∀k. (19)

As a result,ηk can be interpreted as the interference constraint
for userk. Constraint (19) can be further transformed into the
following convex second-order cone (SOC) constraint:

∥

∥

∥
[hH

k w1, · · · ,hH
k wk−1,h

H
k wk+1, · · · ,hH

k wK ]T
∥

∥

∥

≤
√

ηk − σ2, ∀k. (20)

For constraint (18),
√

(2rk/B − 1)ηk is not a convex function.
However, given anỹβk, the following convex function is an
upper bound for

√

(2rk/B − 1)ηk:

fβ̃k
(rk, ηk)=

β̃kηk
2

+
2

rk
B − 1

2β̃k
≥

√

(2
rk
B − 1)ηk, ∀k, (21)

where the equality holds if and only ifβ̃k =
√

(2rk/B − 1)/ηk. As a result, we use the following
convex constraint to approximate constraint (18):

h
H
k wk ≥ β̃kηk

2
+

2
rk
B − 1

2β̃k
, ∀k. (22)

After approximating the non-convex constraint (5) by the
convex ones (20) and (22), we come to constraint (14b). First,
we take the natural logarithm of the left-hand side (LHS) and
right-hand side (RHS) of inequality constraint (14b), which
results in

log(1− e−Φ‖wk,n‖
2

) + log(rk)

≤ log





∑

l∈I(Nn)

dk,nl



 , ∀k, n. (23)

It can be shown thatlog(
∑

l∈I(Nn)
dk,nl ) is a concave function

over dk,nl ’s. However, the LHS of constraint (23) is still
non-convex. Sincelog(1 − e−Φx) is a concave function over
x, its first-order approximation serves as its upper bound.

Specifically, given anyx̃, the first-order approximation of
log(1− e−Φx) can be expressed as

log(1− e−Φx) ≤ Φe−Φx̃(x− x̃)

1− e−Φx̃
+ log(1− e−Φx̃), (24)

where the equality holds if and only ifx = x̃. By substituting
x with ‖wk,n‖2, given anyw̃k,n, a convex upper bound for
log(1− e−Φ‖wk,n‖

2

) is expresses as

log(1− e−Φ‖wk,n‖
2

)

≤ Φe−Φ‖w̃k,n‖
2‖wk,n‖2

1− e−Φ‖w̃k,n‖2
+ φ(w̃k,n), ∀k, n, (25)

where

φ(w̃k,n) = −Φe−Φ‖w̃k,n‖
2‖w̃k,n‖2

1− e−Φ‖w̃k,n‖2
+ log(1− e−Φ‖w̃k,n‖

2

).

The equality holds if and only ifwk,n = w̃k,n.
Similarly, given any point̃rk, the concave functionlog(rk)

can be approximated by its first-order approximation as fol-
lows:

log(rk) ≤
rk − r̃k
r̃k

+ log(r̃k), ∀k, (26)

where the equality holds if and only ifrk = r̃k.
With (25) and (26), the non-convex constraint (23) can be

approximated by the following convex constraint:

Φe−Φ‖w̃k,n‖
2‖wk,n‖2

1− e−Φ‖w̃k,n‖2
+
rk − r̃k
r̃k

+ φ(w̃k,n) + log(r̃k)

≤ log





∑

l∈I(Nn)

dk,nl



 , ∀k, n. (27)

To summarize, giveñrk ’s, w̃k,n’s, andβ̃k ’s, the non-convex
constraints (5) and (14b) in problem (14) are approximated
by the convex constraints given in (20), (22), and (27). As a
result, with any giveñrk ’s, w̃k,n’s, andβ̃k ’s, problem (14) is
approximated by the following convex problem.

maximize
{wk,n,rk,ηk,d

k,n

l
,fk

l
}

K
∑

k=1

rk (28a)

subject to (2), (20), (22), (27), (8)− (11). (28b)

Since problem (28) is a convex problem, it can be globally
solved by CVX. The successive convex approximation method
based algorithm to problem (14) is summarized in Algorithm
1, which iteratively updates̃rk ’s, w̃k,n’s, and β̃k ’s based on
the solution to problem (28) as shown in Step b.2). The
convergence behaviour of Algorithm 1 is guaranteed in the
following proposition.

Proposition 1: Monotonic convergence of Algorithm 1 is
guaranteed, i.e.,

∑K
k=1 r

(t)
k ≥ ∑K

k=1 r
(t−1)
k . Moreover, the

converged solution satisfies all the constraints as well as the
Karush-Kuhn-Tucker (KKT) conditions of problem (14).

Proof: First, it can be shown that in thetth iteration of
Algorithm 1, the solution obtained in the(t − 1)th iteration
is also feasible to problem (28) giveñwk,n = w

(t−1)
k,n ,



Algorithm 1 Proposed Algorithm for Solving Problem (14)

Initialization : Set the initial values for̃wk,n’s, r̃k ’s, andβ̃k ’s
and sett = 1;
Repeat:

1) Find the optimal solution to problem (28) using CVX
as{w(t)

k,n, r
(t)
k , η

(t)
k , (dk,nl )(t), (fk

l )
(t)};

2) Update w̃k,n = w
(t)
k,n, r̃k = r

(t)
k , and β̃k =

√

(2r
(t)
k − 1)/η

(t)
k , ∀k, n;

3) t = t+ 1.
Until convergence

Algorithm 2 Proposed Algorithm for Solving Problem (16)

Initialization : Set the initial values for̃βk ’s and sett = 1;
Repeat:

1) Find the optimal solution to problem (29) using CVX
as{w(t)

k,n, r
(t)
k , η

(t)
k , (dk,nl )(t), (fk

l )
(t)};

2) Updateβ̃k =

√

η
(t)
k /(2r

(t)
k − 1), ∀k, n;

3) t = t+ 1.
Until convergence

r̃k = r
(t−1)
k , and β̃k =

√

(2r
(t−1)
k − 1)/η

(t−1)
k , ∀k, n. In

other words,
∑K

k=1 r
(t−1)
k is achievable to problem (28) in

the tth iteration. As a result, the optimal weighted sum-rate
to problem (28) in thetth iteration, i.e.,

∑K
k=1 r

(t)
k , is no

smaller than the optimal weighted sum-rate achieved in the
(t− 1)th iteration, i.e.,

∑K
k=1 r

(t−1)
k . Monotonic convergence

of Algorithm 1 is thus proved.
Next, since in Algorithm 1 we use upper-bound to approx-

imate the non-convex functions in problem (14), as shown
in (21), (24), and (26), any feasible solution to problem (28)
satisfies all the constraints of problem (14). As a result, the
solution from Algorithm 1 must be feasible to problem (14).

Last, according to [13, Theorem1], the solution obtained by
the successive convex approximation based Algorithm 1 must
satisfy the KKT conditions of problem (14).

B. The Second Stage: Solution to Problem (16)

Given the user association in problem (16), constraint (16b)
becomes convex. By using (20) and (22) to approximate the
non-convex constraint (5), given anỹβk ’s, problem (16) can
be approximated by the following convex problem.

maximize
{wk,n,rk,d

k,n

l
,fk

l
}

K
∑

k=1

rk (29a)

subject to ‖wk,n‖2 ≤ 0, ∀αk,n(ŵk,n) = 0, (29b)

(2), (20), (22), (16b), (8)− (11). (29c)

Since problem (29) is a convex problem, it can be efficiently
solved. The successive convex approximation based algorithm
to problem (16) is summarized in Algorithm 2. Similar to
Proposition 1, the convergence behaviour of Algorithm 2 is
guaranteed in the following proposition.

Algorithm 3 Overall Algorithm for Solving Problem (12)
1) Solve problem (14) based on Algorithm 1 and obtain

the user-RRH association according to (15);
2) Solve problem (16) based on Algorithm 2 and obtain

the beamforming and network coding solution.

Proposition 2: Monotonic convergence of Algorithm 2 is
guaranteed, i.e.,

∑K
k=1 r

(t)
k ≥ ∑K

k=1 r
(t−1)
k . Moreover, the

converged solution satisfies all the constraints as well as the
KKT conditions of problem (16).

The overall two-stage algorithm to problem (12) is summa-
rized in Algorithm 3.

Remark 1: It is worth noting that [3] studies a similar
problem of jointly optimizing the user-RRH association with
the beamforming vectors. To deal with the discrete user-RRH
association indicator functions (6), in [3] the reweightedℓ1-
norm technique is employed to approximate the fronthaul
constraint (7) by a set of weighted per-RRH power constraints.
Then, an alternating optimization based iterative algorithm is
proposed to find a beamforming and user-RRH association
solution. Although the algorithm in [3] works well in practice,
a rigorous convergence proof is not available. In contrast,
the algorithm proposed in this paper always converge, but
the performance depends on the tuning of the approximation
parametersΦ andψ.

V. NUMERICAL RESULTS

In this section, we provide one numerical example to verify
the effectiveness of our proposed network coding based data-
sharing strategy in the downlink multi-hop C-RAN. In this
example, there areN = 5 RRHs, each equipped withM = 2
antennas, andK = 10 users randomly distributed in a circle
area of radius1000m. The bandwidth of the wireless link
is B = 10MHz. The channel vectors are generated from
independent Rayleigh fading, while the path loss model of
the wireless channel is given as128.1+ 37.6 log10(D) in dB,
whereD (in kilometer) denotes the distance between the user
and the RRH. The transmit power constraint for each RRH is
Pn = 43dBm, ∀n. The power spectral density of the AWGN
at each user receiver is assumed to be−169dBm/Hz, and the
noise figure due to the receiver processing is7dB. Moreover,
the fronthaul network topology together with the capacities of
the fronthaul links (denoted by2C, C/2, or C/3) are shown
in Fig. 2.

Besides the proposed algorithm, we also consider the fol-
lowing two benchmark schemes for performance comparison.
For the first benchmark scheme, we consider a strategy where
each user is only served by one RRH, as proposed in [7].
Specifically, we first allocate each user to the RRH with the
strongest channel power, i.e.,

αk,n =

{

1, if n = arg max
1≤n≤N

‖hk,n‖2,
0, otherwise,

∀k, n. (30)

Given the above user-RRH association solution, the CP unicas-
ts each user’s data to its associated RRH via routing over the
fronthaul network. Note that in a unicast network, the network
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Fig. 2. The fronthaul network topology.

coding constraints given in (7) – (11) reduce to the unicasting
constraints. As a result, the sum-rate of all the users achieved
by this scheme can be obtained by solving problem (16) with
the user-RRH association solution given in (30).

For the second benchmark scheme, we allow each user to
be served by multiple RRHs, and consider a strategy where
each user’s data is treated as a commodity and unicast to each
of the RRHs that serve this user. With this scheme, the actual
flow rate on linkl to transmitsk is

fk
l =

N
∑

n=1

dk,nl , ∀k, l. (31)

By replacing (9) with (31), the routing constraints can be
modeled by (7), (8), (31), (10), and (11). Algorithm 3 can
thus be applied to jointly optimize the RRH’s beamforming,
user-RRH association, and unicast routing.

Fig. 3 shows the users’ sum-rate achieved by different
schemes versus different values ofC, which determines the
capacities of fronthaul links as shown in Fig. 2. It is observed
that the proposed data-sharing strategy achieves much higher
throughput than its counterpart without cooperation between
RRHs, especially when the value ofC is large. This is because
our proposed scheme provides a joint beamforming design
gain. It is also observed that the proposed network coding
based scheme provides up to25% throughput gain as com-
pared to the unicast scheme. This is because network coding
can significantly reduce the fronthaul traffic. Specifically, with
network coding, the actual flow rate to transmitsk at each
link l, i.e., fk

l , is the maximum rate ofdk,nl ’s, ∀n, as shown
in (9), while with unicast,fk

l is the summation ofdk,nl ’s over
n, as shown in (31). Finally, we remark that the user-RRH
association strategy in [3] could also been incorporated with
network coding to achieve a performance very close to the
two-stage method proposed in this paper.

VI. CONCLUSION

In this paper, we propose a novel network coding based
data-sharing scheme in the downlink multi-hop C-RAN, where
each user’s data is multicast to the corresponding RRHs
using network coding. To maximize the throughput of C-
RAN subject to the fronthaul network capacity constraints,we
design a cross-layer optimization framework where the RRH’s
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Fig. 3. Throughput versus fronthaul link capacity of network coding vs.
unicast.
beamforming as well as user-RRH association in the physical-
layer, and network coding design in the network-layer are
jointly optimized. Simulation results verify that the proposed
network coding based data-sharing strategy is a promising
solution to implement downlink communication in the future
C-RAN with a multi-hop fronthaul network.
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