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Abstract—This paper provides an analytical performance char-
acterization of user-centric cooperation for network multiple-
input multiple-output (MIMO) systems, where base-stations (BSs)
form finite-sized clusters to jointly transmit information to and
receive information from multiple mobile users. In the user-
centric model, the cooperation BS cluster for each user is formed
individually and may overlap with each other. The size of clusters
determines the amount of backhaul and channel state information
needed for implementation. The BSs are equipped with multiple
antennas; multiple single-antenna users are served simultane-
ously; the cooperating BSs perform zero-forcing beamforming
across the cluster. By using a stochastic geometry model where
the BSs and the users form Poisson point processes over the
two-dimensional plane and by further approximating both the
signal and interference powers using Gamma distributions of
appropriate parameters, this paper shows that, network MIMO
provides sum-rate gain for both uplink (UL) and downlink (DL)
transmission as compared to single-cell processing. The sum-rate
gain is about 30%-60% for a cluster size of 10 and is larger in DL
than UL in a typical deployment due to the larger DL transmit
power. More significantly, network MIMO can provide 300%
gain or more for cluster-edge users, but only for the DL and
only with user-centric clustering. This highlights the conclusion
that performance evaluation for network MIMO should focus on
DL cluster-edge users and on the user-centric clustering strategy.

I. INTRODUCTION

Intercell interference is the main limiting factor in the
physical-layer of modern wireless cellular networks with
densely deployed base-stations (BSs). Network multiple-input
multiple-output (MIMO) is a promising technique for interfer-
ence mitigation in which BSs jointly transmit information to
and receive information from the multiple users via coherent
beamforming across multiple BSs [1], [2]. This paper aims to
provide analytic modeling and performance characterization
of network MIMO systems with finite cluster size.

This paper focuses on the user-centric clustering strategies
for network MIMO, where a BS cooperation cluster is formed
for each user individually, and clusters for different users can
partially overlap. Such a clustering strategy allows the user
to be always placed at the center of its cluster, so that signal
strength is improved and inter-cluster interference reduced.

The main goal of this paper is to quantify the performance of
user-centric network MIMO architecture in both uplink (UL)
and downlink (DL) as function of cooperation cluster size,
which is an indication of the amount of backhaul and channel
state information (CSI) needed in implementation. Toward this
end, we assume the use of zero-forcing beamforming (ZFBF)
strategy across the cluster with equal power allocation across
the beams, and adopt a stochastic geometry model of the BS

and user locations and a Gamma distribution approximation of
the direct and interfering channel strength in order to facilitate
an analytic characterization of the average user rate. Perfect
and instantaneous CSI is assumed to be available to the BSs
within the cluster and also to the users.

A. Related Work

Existing performance evaluation of network MIMO systems
has been mostly carried out either using simplified Wyner
model or by simulation; and most earlier works have focused
on the optimization of transmit strategies for network MIMO
systems. For example, [3] numerically studies the throughput
performance of network MIMO systems with disjoint clus-
tering, while for user-centric clustering, first proposed in [4],
most existing works are based on numerical investigation and
optimization strategies that select the best serving cluster of
BSs for each user [5], [6], [7].

The performance analysis of network MIMO systems is
a challenging task, because cooperating BSs in a network
MIMO system typically have different path-loss to the user,
so traditional analytic tools for MIMO system, such as the
random matrix theory, are not ideally suited to analyze the
network MIMO system performance, unless certain symmetry
and simplifying assumptions are adopted [8].

To account for the distance dependent path-loss in wireless
communication networks, stochastic geometry has recently
emerged as a powerful tool for analyzing wireless networks
with random deployment of BSs and users that are assumed
to form Poisson point processes [9], [10]. The application of
stochastic geometry to multicell network is however challeng-
ing, because of the need to model the effect of beamforming.
Toward this end, [11], [12] propose a series of techniques that
allow an approximate characterization of the effect of zero-
forcing beamforming for multicell networks. This enables a
subsequent stochastic analysis of network MIMO systems to
be carried out [13]. In particular, instead of a typical coverage
probability analysis, [13] provides derivation of a more useful
ergodic sum rate expression for a DL network MIMO system
with disjoint clustering.

This paper extends the analysis of network MIMO system
in [13] to the user-centric clustering case and to both UL and
DL. The user-centric case is more complicated, because the
beamforming vectors overlap with each other. The analytic
performance characterizations of this paper help illustrate
the benefit of user-centric clustering as compared to disjoint
clustering for both UL and DL scenarios.



B. Main Contributions

The main contributions of this paper are as follows:
1) This paper provides computationally efficient methods

for evaluating user rates in both UL and DL network
MIMO systems under either disjoint clustering or user-
centric clustering under a stochastic model.

2) This paper quantifies the gain of BS cooperation as
a function of cooperation cluster size. We see that in
term of the average per-cell sum-rate gain, at average
cooperation cluster size of 10 (requiring 10 times the
backhaul as compared to single-cell processing), the
network MIMO system provides about 30% gain for UL
under disjoint clustering, 50% gain for UL under user-
centric clustering, and 60% gain for DL under either
clustering strategies. The gain in DL is larger because
of the typical larger DL transmission power at the
BSs. User-centric clustering provides benefit, because it
places every user at the cluster center, resulting in strong
signal power and potentially less interference.

3) The most significant benefit of network MIMO is in
term of the cluster-edge performance, but only for the
DL and only with user-centric clustering. At average
cooperation cluster size of 10, DL network MIMO with
user-centric clustering improves 10th-percentile user rate
of the system by factor of three, even when compared
to disjoint clustering. This is due to the significant
capability of user-centric strategy for reducing inter-
cluster interference.

II. SYSTEM MODEL

Consider a wireless cellular network in which each BS is
equipped with M antennas and each user is equipped with
a single antenna. A user is associated with the BS with the
strongest average channel. We assume that user density is
much larger than BS density, so that each BS is associated with
many users. Among all its associated users, each BS schedules
K < M users in each time slot. We assume round-robin
scheduling for simplicity. We assume flat-fading channels with
full frequency reuse, i.e., transmissions from neighboring cells
cause mutual interference to each other.

This paper aims to analyze the performance of network
MIMO systems in which each user is jointly served by a
cooperative cluster of BSs. In the disjoint clustering scheme,
the set of BSs are partitioned into disjoint clusters; each user
is served by the cluster of BSs to which its associated BS
belongs. In user-centric clustering, each scheduled user forms
an individually chosen cluster of serving BSs based on average
channel strength; the clusters for different users can partially
overlap. Fig. 1 illustrates disjoint vs. user-centric clustering.

Let Θi denote the cooperative cluster of serving BSs for
user i. Let Bi be the cluster size, i.e., Bi = |Θi|. Recall that
each BS in Θi schedules K of its associated users. We denote
the set of all users scheduled by the BSs in user i’s serving
cluster as Ωi, so that |Ωi| = KBi. In the rest of the paper,
user i is called the typical user. The other KBi − 1 users in
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Fig. 1. Disjoint vs. user-centric clustering: The BSs are denoted by triangles,
the users by stars. Under disjoint clustering, the serving BSs form non-
overlapping cooperative clusters, shown in this example by the hexagonal
region. Under user-centric clustering, the serving BSs are formed for each
user individually, shown in this example by the dotted circles.

Ωi are called intra-cluster users of user i. All the rest of the
users in the network are termed inter-cluster users.

This paper assumes the use of ZFBF in both UL and DL, in
which a beamformer for the typical user i is designed across
its serving BSs in Θi to null interference from/to all intra-
cluster users. Below we describe the ZFBF design in UL in
detail. The DL model is similar.

In uplink ZFBF, the message from the typical user i is
jointly decoded across the BSs in Θi, while interference from
all intra-cluster users in Ωi is nulled. Let yi ∈ CMBi be the
received signal across all the serving BSs of user i:

yi =
∑
j

hijxj + z (1)

= hiixi︸ ︷︷ ︸
signal

+
∑

m6=i,m∈Ωi

himxm︸ ︷︷ ︸
intra − cluster

interference

+
∑
j /∈Ωi

hijxj︸ ︷︷ ︸
inter − cluster
interference

+z

where hHij = [· · · gHbj · · · ]b∈Θi
denotes the collective vector

channel between user j and the set of serving BSs of user
i, and gbj ∈ CM denotes the channel between user j and
BS b. Here, xj is the transmit signal of user j with power
normalized to 1, i.e., E[x2

j ] = 1. Finally, z ∼ CN (0, σ2
uIMBi

)
is the background noise at the BSs including thermal noise and
other possible sources of interference and scaled to account for
transmit power normalization.

The ZF receive beamformer for user i is designed to
be orthogonal to the transmission from the KBi − 1 intra-
cluster users, so that the interference from these users is
completely eliminated. In particular, the normalized ZF receive
beamformer for user i is chosen to be the following:

wi =
(IMBi

−H−iH
†
−i)hii

‖(IMBi
−H−iH

†
−i)hii‖2

, (2)

where H−i = [· · ·hij · · · ]j 6=i,j∈Ωi
denotes the channel matrix

between the serving BSs of user i and its KBi−1 intra-cluster
users. It is easy to see that the column space of the matrix



(IMBi
−H−iH†−i) is the null space of H−i. By projecting the

direct channel hii onto the null space of H−i, the signal power
is maximized while the required orthogonality is guaranteed.

The signal-to-interference-and-noise ratio (SINR) of user i
can now be stated as follows:

γi =
|wH

i hii|2∑
j /∈Ωi

|wH
i hij |2 + σ2

u

. (3)

Observe that in user-centric clustering, each user is always
at the center of its serving BSs. Since the channel strength is
a function of the distance, the signal power in the user-centric
case is equivalent to that of a cluster-center user in disjoint
clustering, and much larger than that of a cluster-edge user.
Thus on average, user-centric clustering has an advantage in
term of signal power as compared to disjoint clustering. This
holds for both UL and DL.

However in term of interference power, user-centric cluster-
ing brings much more benefit in DL than UL. This is because
in UL, the interference seen at the serving BSs is about the
same regardless of the clustering strategy, while in the DL,
the cluster-edge users tend to see significantly less interference
due to user-centric clustering.

III. STOCHASTIC GEOMETRY ANALYSIS

In order to provide an analytic performance characterization
of network MIMO systems, this paper proposes a statistical
model of cellular networks accounting for both the random
geographic locations of the BSs and the users, as well as the
channel fading.

The channel from BS b to user i is modeled as gbi =√
βbifbi ∈ CM×1. The distance-dependent pathloss compo-

nent is modeled as βbi = (1 + rbi/d0)−α, where rbi is the
distance between the BS b and user i, d0 is a reference
distance, and α is the pathloss exponent. The Rayleigh fading
component is modeled as fbi ∼ CN (0, IM ).

We use stochastic geometry to account for the pathloss and
use a Gamma distribution approximation to analyze the overall
performance. In particular, the BSs are randomly placed over a
two-dimensional plane as a homogenous Poisson Point Process
(PPP) with a fixed intensity λb, denoted as Φb. The users are
also randomly placed as a PPP. The users are associated with
the strongest BS; each BS schedules K active users from the
set of associated users. Technically the active users no longer
form a PPP. But to enable the averaging over user locations,
we further approximate that the active users form a PPP, Φu,
with intensity λu = Kλb.

We model user-centric clustering as follows: each user
chooses its BS cooperation cluster based on distance. In partic-
ular, the user i’s BS cooperation cluster is Θi = Φb∩Bxu(R),
where Bxu

(R) denotes a circle of radius R centered at user i
whose location is denoted as xu.

We now carry out a stochastic analysis of uplink user-
centric network MIMO system. Note that we do not perform
power control. In the uplink, all users transmit at a fixed
power. (Similarly in the downlink analysis, each downlink
beam transmits at a fixed power.)

1) Signal Strength in UL: The channel strength of the
intended signal for the typical user is:

‖h11‖2 =
∑
b∈Θ1

gHb1gb1

=
∑
b∈Θ1

βb1f
H
b1fb1 ∼

∑
b∈Θ1

Γ (M,βb1) .
(4)

Since the entries of the MIMO channels are Gaussian dis-
tributed, the overall magnitude of the channel between the
typical user and its set of cooperating BSs is a sum of Gamma
random variables with different scale parameters depending
on the distances between the user and the BSs. We proceed
to approximate the above distribution into a form amendable
to stochastic geometry analysis. The series of approximations
below are developed in part in [11], [12], [13].

The analysis first uses a technique pioneered in [11] for
approximating the sum of Gamma distributions as a single
Gamma distribution with shape and scale parameters de-
termined by matching the first and second order moments.
For the channel ‖h11‖2 in (4), this approximation leads to
‖h11‖2 ∼ Γ(k1, θ1) with

k1 = M

(∑
b∈Θ1

βb1
)2∑

b∈Θ1
β2
b1

, θ1 =

∑
b∈Θ1

β2
b1∑

b∈Θ1
βb1

. (5)

To obtain signal power, we need to further project the
channel vector onto the beamforming vector. The exact signal
power distribution resulting from such a projection is not easy
to characterize. Instead, we adopt a second approximation by
drawing a parallel with the following fact on the projection
of an isotropic channel vector to a lower dimensional space
(although our actual channel is not isotropic).

If a channel vector h ∈ CN were isotropic in the N -
dimensional space such that ‖h‖2 ∼ Γ(N, θ), then the projec-
tion of h onto a P -dimensional subspace results in a Gamma
distribution Γ(P, θ). In other words, the shape parameter is
scaled by P/N , while the scale parameter is kept the same.

Now, to obtain an approximate signal power distribution
after the projection to ZF beamformer, we apply the same
scaling of the shape parameter even when the channel is non-
isotropic. This same approximation technique is also used in
[12], [13]. Specifically in our case, ‖h11‖2 ∼ Γ(k1, θ1). To
project the channel vector onto the ZF beamforming vector,
we note that the receive beam of the user lies in the null space
of the subspace spanned by the KB1 − 1 interfering channel
vectors. Therefore, the shape parameter for the signal power
after projection must be scaled by MB1−KB1+1

MB1
. The signal

power distribution can therefore be approximated as:

ζ
(UL)
1 = |wH

1 h11|2 ∼ Γ

(
MB1 −KB1 + 1

MB1
k1, θ1

)
. (6)

Recall that the number of BSs in the cluster B1 is a Poisson
random variable with mean B̄ = λ2

bπR
2. To make the

analysis tractable, we replace B1 by its mean B̄ as a further
approximation.



Finally, the distribution above has parameters that depend
on the BS location. To facilitate a stochastic geometry anal-
ysis, we decompose the above signal distribution as a linear
combination of independent Gamma distributions. Using again
the technique of matching the first and second moments, the
signal power can now be approximated as follows [13]:

ζ
(UL)
1 = |wH

1 h11|2 ≈
∑
b∈Θ1

βb1G
($)
b1 (7)

where G($)
bj are i.i.d. random variables distributed as Γ($, 1),

where $ = MB̄−KB̄+1
MB̄

. Here, we also use the fact that if
X ∼ Γ (k, θ), then cX ∼ Γ (k, cθ) for any positive c.

2) Interference Strength in UL: As intra-cluster interference
is eliminated with ZF receiver, the residual interference only
comes from inter-cluster users. In deriving the distribution
of aggregate interference, we first investigate the interference
from a single user j, then sum up the interference over all
inter-cluster users.

Similar to the analysis of (5), the interfering channel
strength can also be approximated as a Gamma random
variable using the moment matching technique as follows:

‖h1j‖2 =
∑
b∈Θ1

gHbjgbj ∼
∑
b∈Θ1

Γ (M,βbj) ≈ Γ (k1j , θ1j) ,

(8)
where

k1j = M

(∑
b∈Θ1

βbj
)2∑

b∈Θ1
β2
bj

, θ1j =

∑
b∈Θ1

β2
bj∑

b∈Θ1
βbj

. (9)

To project the interference signal onto the receive beamformer
w1, (which is a one-dimensional subspace independent of the
interfering channel vector h1j of dimension MB1), we again
approximate the channel vector as isotropic. The projection
then results in the scaling of the shape parameter of the
interference as k1j

MB1
. Finally, we replace B1 by its mean

B̄, then decompose the interference into linear combination
of independent Gamma distributions again using the moment
matching technique as:

ν
(UL)
1j = |wH

1 h1j |2 ≈
∑
b∈Θ1

βbjG
( 1
B̄

)

bj , (10)

where G
( 1
B̄

)

bj are i.i.d. Γ
(

1
B̄
, 1
)

distributed.
The aggregate residual interference is the sum of interfer-

ence from all inter-cluster users. We approximate these users
as outside of Bo(R). The aggregate interference is now

ν
(UL)
1 =

∑
j /∈Ω1

ν1j ≈
∑
j /∈Ω1

∑
b∈Θ1

βbjG
( 1
B̄

)

bj . (11)

3) Ergodic Rate in UL: The ergodic rate of the typical
user in the UL user-centric network MIMO system can now
be derived using tools from stochastic geometry by using the
signal and interference power distributions (7) and (11) with
Θ1 = Φb∩Bo (R) and Ω1 = Φu∩Bo (R). The achievable rate
of the user is computed as log(1 + SINR). By utilizing the

following expression of the log function in term of integral
[14, Lemma 1]

ln(1 + x) =

∫ ∞
0

e−z

z
(1− e−xz)dz, (12)

the ergodic rate averaged over the distributions of Φb and Φu,
can be obtained as follows [14]:

C̄U =

∫ ∞
0

e−sσ
2

s
L
ν

(UL)
1

(s)
(

1− L
ζ

(UL)
1

(s)
)

ds, (13)

where L
ζ

(UL)
1

(s), L
ν

(UL)
1

(s) are respectively the Laplace
transforms of signal and interference power distributions,
which can be explicitly computed using stochastic geometry.

The above analysis is for the UL. A similar DL analysis
can also be carried out, and likewise for disjoint clustering
for both UL and DL as well. We refer the readers to the full
version of the paper [15] for details.

IV. USER-CENTRIC VS. DISJOINT CLUSTERING

This section provides numerical results for a stochastic
deployment of BSs in a cellular network, where each BS
is equipped with 4 antennas and schedules 2 single-antenna
users, i.e., M = 4,K = 2. The power of the transmit beam
for each user in the DL is set to be 40 dBm over 20MHz
bandwidth. The transmit power of each user in UL is 23dBm
over 20MHz. Power spectrum density of the background
noise is set to -174dBm/Hz; a noise figure of 9dB and an
SINR gap of 3dB are included. We use a pathloss model of
128.1 + 37.6 log(d) in dB, where d is expressed in km.

Figs. 2 and 3 show the UL and DL ergodic user rate
evaluated from the analytical expressions as well as obtained
from system-level simulation for both user-centric and disjoint
clustering cases. For numerical comparison, we include both
the simulation results with Poisson number of BSs as well as
the case with fixed number of exactly B̄ BSs in the cluster.

We observe that the analytical results match with the sim-
ulation within an accuracy of about 5%, which is remarkable
given the number of approximations involved in the analysis.
As expected, the ergodic rate increases as the cluster size
grows, but larger cluster benefits in DL more than UL. This is
because DL transmit power is larger, so it is more interference
limited than UL. Consequently, interference mitigation brings
more improvement to the DL.

Moreover, user-centric clustering achieves higher ergodic
rate than disjoint clustering for both UL and DL. The benefit
of user-centric cluster in UL is about 15-20%, and in DL only
about 5%. User-centric clustering enhances signal power for
both UL and DL. But in term of interference, user-centric
clustering may actually increase interference for some cluster-
center users in the DL, while reducing interference for DL
cluster-edge users.

We should note that at average cooperation cluster size of
10, i.e., at the cost of sharing 10 times as much data in the
backhaul, the network MIMO system provides only modest
gain: about 30% for UL under disjoint clustering, 50% for
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Fig. 2. Ergodic user rate for UL network MIMO systems.
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Fig. 3. Ergodic user rate for DL network MIMO systems.

UL under user-centric clustering, and 60% gain for DL under
either clustering strategies.

For cluster-edge users, the benefit of network MIMO is
much more significant. As shown in the cumulative distribu-
tion function (CDF) plot in Fig. 4, the 10th-percentile user
rate performance for DL user-centric clustering can improve as
compared to disjoint clustering by a factor of three at B̄ = 10.
This provides strong justification for DL user-centric network
MIMO. We note that such benefit does not occur in UL.

V. CONCLUSION

This paper analyzes the system performance of user-centric
network MIMO system with zero-forcing beamforming across
multiple BSs. By using stochastic geometry and by approx-
imating the channel and interference power distributions, we
derive tractable analytical expressions of ergodic rates. The
main insight of this paper is that considering the significant
cost of backhaul provisioning, the design of future cooperative
wireless cellular communication networks should focus on
cluster-edge users and with user-centric clustering in the DL.
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