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Abstract—This paper studies a single-cell uplink massive device
communication scenario in which a large number of single-
antenna devices are connected to the base station (BS), but
user traffic is sporadic so that at a given coherence interval,
only a subset of users are active. For such a system, active
user detection and channel estimation are key issues. To ac-
commodate many simultaneously active users, this paper studies
an asymptotic regime where the BS is equipped with a large
number of antennas. A grant-free two-phase access scheme is
adopted where user activity detection and channel estimation
are performed in the first phase, and data is transmitted in
the second phase. Our main contributions are as follows. First,
this paper shows that despite the non-orthogonality of pilot
sequences (which is necessary for accommodating a large number
of potential devices), in the asymptotic massive multiple-input
multiple-output (MIMO) regime, both the missed detection and
false alarm probabilities can be made to go to zero by utilizing
compressed sensing techniques that exploit sparsity in user
activities. Further, this paper shows that despite the guaranteed
success in user activity detection, the non-orthogonalityof pilot
sequences nevertheless can cause significantly larger channel
estimation error as compared to the conventional massive MIMO
system, thus lowering the overall achievable transmissionrate.
This paper quantifies the cost due to device detection and channel
estimation and illustrates its effect on the optimal pilot length
for massive device connectivity.

I. I NTRODUCTION

Massive connectivity is a central requirement for future
wireless cellular networks in which a large number of devices
may be connected to the base station (BS). A key characteris-
tics for device traffic is that device activities are sporadic, so
that within any given time only a subset of devices are active.
Thus, reliable detection of active devices along with channel
estimation are important for system design. This paper studies
a two-phase grant-free multiple-access scheme for device
communication in which the BS simultaneously identifies the
active devices and estimates their channels based on their pilot
sequences in the first phase, and data transmissions take place
in the second phase. Because of the large number of potentially
active devices in the system and limited coherence time, the
devices cannot be all assigned orthogonal pilot sequences.
The main goal of this paper is to characterize the device
activity detection, channel estimation, and data transmission
performance of such a multiple-access scenario.

In order to accommodate a large number of simultaneously
active devices, this paper further assumes that the BS is
equipped with a large number of antennas. Our main contri-
butions are analytic results establishing that in certain massive
multiple-input multiple-output (MIMO) regime, where the
number of BS antennas, the number of potential devices, and

the number of active devices all go to infinity, accurate user
activity detection can always be guaranteed in terms of both
missed detection and false alarm probabilities; yet the non-
orthogonality of pilot sequences nevertheless incurs significant
channel estimation error, thereby lowering the overall achiev-
able rate. The analytic results further allow the optimization of
the pilot sequence length and show that the pilots need to be
longer in the massive device connectivity setting as compared
to the conventional massive MIMO system.

The main technique used in this paper is approximate
message passing (AMP) [1]–[4] for compressed sensing, in
recognition of the fact that device transmissions are sporadic,
so one can take advantage of sparse optimization techniques
for activity detection. Sparse optimization has been used in the
past for the mass connectivity problem, for example, in [5]–
[7] which study joint user activity detection and channel esti-
mation in various settings, and in [8], [9] where information
theoretic analysis is carried out. The approach in this paper is
based on [6], which analytically characterizes the probabilities
of false alarm and missed detection by exploiting the state
evolution of the AMP algorithm in the single-antenna case.
This paper generalizes [6] to the massive MIMO setting in
providing asymptotic activity detection performance analysis.

This paper further characterizes the achievable device trans-
mission rates. We show that the state evolution of AMP allows
the mean square error (MSE) for channel estimation to be
analytically derived, thereby providing a characterization of
user achievable rates for massive device connectivity in the
asymptotic massive MIMO regime.

II. SYSTEM MODEL

Consider the uplink of a single-cell cellular network con-
sisting ofN users, denoted by the setN = {1, · · · , N}. The
BS is equipped withM antennas; each user is equipped with
one antenna. The complex uplink channel vector from user
n to the BS is denoted byhn ∈ CM×1, n = 1, · · · , N .
This paper adopts a block-fading model, in which the channel
coefficients follow independent quasi-static flat fading. Within
each coherence block,hn’s remain constant, but they vary
independently from block to block. The channel vectorhn is
modeled ashn =

√
βngn, ∀n, wheregn ∼ CN (0, I) denotes

the Rayleigh fading component, andβn denotes the path-loss
and shadowing component, so thathn ∼ CN (0, βnIn), ∀n.
The path-loss and shadowing components depend on the user
locations and are assumed to be known at the BS.

To model the sporadic nature of user traffic, we assume that
the users are synchronized and in each coherence block each



user accesses the channel with probabilityǫ in an i.i.d. manner.
We define the activity indicator for usern in each block as:

αn =

{

1, if user n is active,
0, otherwise,

∀n, (1)

so thatPr(αn = 1) = ǫ, Pr(αn = 0) = 1 − ǫ, ∀n. Further,
we define the set of active users within a coherence block as

K = {n : αn = 1, n = 1, · · · , N}. (2)

The number of active users is denoted asK = |K|.
This paper adopts a grant-free multiple-access scheme, in

which each coherence block of lengthT symbols is divided
into two phases. In the first phase, the active users send their
pilot sequences of lengthL symbols to the BS synchronously,
and the BS jointly detects the user activities, i.e.,αn’s, as
well as the active users’ channels, i.e.,hn’s, ∀n ∈ K. In
the second phase, the active users send their data to the BS
using the remainingT − L symbols, and the BS decodes
these messages based on the knowledge of user activities and
channels obtained in the first phase.

For the massive connectivity scenario with a large number
of potential devices, the length of pilot sequence is typically
smaller than the total number of devices, i.e.,L < N . In this
case, it is not possible to assign mutually orthogonal sequences
to all the users. This paper assumes that each usern is assigned
a unique pilot sequencean = [an,1, · · · , an,L]T ∈ C

L×1,
whose entries are generated randomly according to an i.i.d.
complex Gaussian distribution with zero mean and variance
1/L, i.e. an,l ∼ CN (0, 1/L), so that each pilot sequence has
unit norm, i.e.,‖an‖2 = 1, asL → ∞. It is further assumed
that the pilot sequences of all the users are known at the BS.

The goal of this paper is to analyze the performance of joint
user detection and channel estimation using the above non-
orthogonal pilots in Phase I, and subsequently to characterize
the user achievable rate in Phase II. To facilitate analysis,
we consider certain asymptotic regime whereN → ∞, so
thatK → ǫN , and the empirical distribution ofβ1, · · · , βN
converges to a fixed distribution denoted bypβ. Moreover,
to supportK active users, the pilot lengthL for channel
estimation and the number of BS antennasM both need to
be in the order ofK. The goal is to utilize analytic results in
the asymptotic regime whereN , K, M , L all go to infinity
in certain ways to derive analytic insight for practical systems
with large but finite system parameters.

III. U SERACTIVITY DETECTION AND CHANNEL

ESTIMATION VIA AMP

Consider the first phase of massive device transmission
in which each user sends its pilot sequence synchronously
through the channel. Defineρpilot as the identical transmit
power of the active users in the first transmission phase. The
transmit signal of usern can be expressed asαn

√
ξan, where

ξ = Lρpilot denotes the total transmit energy of each active
user in the first phase. The received signal at the BS is then

Y =
√

ξ
∑

n∈N

αnanh
T
n +Z, (3)

whereY ∈ C
L×M is the matrix of received signals across

M antennas overL symbols, andZ = [z1, · · · , zM ] with
zm ∼ CN (0, σ2I), ∀m, is the additive white Gaussian noise
(AWGN) at the BS. Now defineA = [a1, · · · ,aN ]. Further,
let xn = αnhn and defineX = [x1, · · · ,xN ]T . Then,
the training phase can be modeled as the following matrix
equation

Y =
√

ξAX +Z, (4)

where the rows of the matrixX follow a Bernoulli Gaussian
distribution:

pxn
= (1− ǫ)δ0 + ǫphn

, ∀n. (5)

Here, δ0 denotes the point mass measure at zero, andphn

denotes the distribution of usern’s channelhn ∼ CN (0, βnI).
The goal of the BS in Phase I is to detect the user activities

and to estimate the user channels by recoveringX based on
the noisy observationY . As X is row sparse, i.e., many
xn’s are zero, such a reconstruction problem is a compressed
sensing problem. Further, as the sparsity pattern is sensedat
multiple antennas, this is known as a multiple measurement
value (MMV) compressed sensing problem.

Among many powerful compressed sensing techniques, this
paper adopts a low-complexity AMP algorithm to recover the
row-sparse matrixX. In the rest of this section, we first
briefly review the vector version of the AMP algorithm, then
evaluate its asymptotic performance for user activity detection
and channel estimation, respectively.

A. Vector AMP Algorithm with MMSE Denoiser

The general form of the vector AMP algorithm proceeds at
each iteration as follows [3], [4], [10]. Starting withR0 = Y ,

xt+1
n = ηt,n((R

t)Han + xt
n), (6)

Rt+1 = Y −AXt+1 +
N

L
Rt

N
∑

n=1

η′t,n((R
t)Han + xt

n)

N
,

(7)

wheret is the index of the iteration,Xt = [xt
1, · · · ,xt

N ]T is
the estimate ofX at iterationt, andRt = [rt1, · · · , rtL]T ∈
CL×M denotes the corresponding residual. The algorithm per-
forms in (6) a matching filtering of the residual for each user
n using its pilot sequence, followed by a denoising step using
an appropriately designed denoiserηt,n(·) : CM×1 → CM×1.
The residual is then updated in (7), but corrected with a so-
called Onsager term involvingη′t,n(·), the first-order derivative
of ηt,n(·).

A remarkable property of the AMP algorithm is that when
applied to the compressed sensing problem with the entries of
the sensing matrixA generated from i.i.d. Gaussian distribu-
tion, its detection performance in certain asymptotic regime
can be accurately predicted by the so-calledstate evolution.
The asymptotic regime is whenL,K,N → ∞, while their
ratios converge to some fixed positive valuesN/L → ω and
K/N → ǫ with ω, ǫ ∈ (0,∞), while keeping the total transmit
power fixed atξ. Note that we fix the total transmit power
rather than allowing it to scale withL here in this hypothetical



asymptotic system in order to carry out the state evolution
analysis. (This implies that the per-symbol power goes down
to zero.) The analysis is then used to predict the system
performance at finite (but large)L,K,N and ξ = Lρpilot.
As shown in [10], this approach is found to corroborate very
well with simulation results.

Specifically, letβ ∼ pβ ; define a random vectorXβ ∈
CM×1 with a distribution (1 − ǫ)δ0 + ǫphβ

, where phβ

denotes the distributionhβ ∼ CN (0, βI). Let V ∈ CM×1 ∼
CN (0, I) be independent ofXβ. Define random vectors

X̂t,β = Xβ +Σ
1
2

t V . (8)

The state evolution is the following recursion [2]–[4], [10]:

Σ0 =
σ2

ξ
I + ωE[XβX

H
β ], (9)

and

Σt+1 =
σ2

ξ
I + ωE

[

(ηt,β(X̂t,β)−Xβ)

(ηt,β(X̂t,β)−Xβ)
H

]

, (10)

whereΣt is referred to as the state, and the expectation is
over β, Xβ andV . Note thatηt,n(·) is replaced byηt,β(·)
for convenience.

The state evolution analysis [2]–[4] says that in the vector
AMP algorithm, applying the denoiser to(aH

n Rt)H + xt
n as

in (6) is statistically equivalent to applying the denoiserto

x̂t,n = xn +Σ
1
2

t vn = αnhn +Σ
1
2

t vn, ∀n. (11)

The key advantage of this equivalent signal model is the
decoupling of the estimation between different users, which
allows us to design the denoiserηt,n(·) based on the above
decoupled signal model.

This paper adopts an MMSE denoiser for minimizing the
MSE for user detection and channel training. Specifically, in
the tth iteration of the AMP algorithm, the MMSE denoiser
ηt,n(·) is set to be the conditional expectationE[Xn|X̂t,n].
This denoiser has been derived in [10], and is shown below
in a slightly different form in order to highlight its structural
dependence inM :

ηt,n(x̂t,n) = E[Xn|X̂t,n] = φt,nβn(βnI +Σt)
−1x̂t,n,

(12)

where

φt,n =
1

1 + 1−ǫ
ǫ
exp

(

−M
2 (πt,n − ψt,n)

) , (13)

πt,n =
x̂
H
t,n(Σ

−1
t − (Σt + βnI)

−1)x̂t,n

M
, (14)

ψt,n =
log det(I + βnΣ

−1
t )

M
. (15)

It is worth noting that if all the users are active, i.e.,ǫ = 1,
it then follows thatφt,n = 1, ∀n, in which case the denoiser
reduces to the widely used linear MMSE channel estimator:

ηt,n(x̂t,n) = βn(βnI + Σt)
−1x̂t,n. With unknown user

activity, however, the above MMSE denoiser is non-linear.
Next, we observe that when the MMSE denoiser as given

in (12) is used,Σt as defined in (10) is always a diagonal
matrix with identical diagonal entries, i.e.,

Σt = τ2t I, ∀t ≥ 0. (16)

Intuitively, this is because the channels across the BS antennas
are assumed to be uncorrelated. As a result, the MMSE
denoiser given in (12) is reduced to

ηt,n(x̂t,n) = φt,n
βn

βn + τ2t
x̂t,n (17)

whereφt,n is as given in (13), and

πt,n =

(

1

τ2t
− 1

τ2t + βn

)

x̂
H
t,nx̂t,n

M
, (18)

ψt,n = log

(

1 +
βn
τ2t

)

. (19)

B. User Activity Detection in the Massive MIMO Regime

The structure of the MMSE denoiser (17), (13), (18) and
(19) suggests the following user activity detector. Observe that
whenM → ∞, φt,n in (13) reduces to a threshold function:

φt,n =







1, if πt,n > ψt,n,
0, if πt,n < ψt,n,
ǫ, otherwise.

(20)

Thus, after thetth iteration of the AMP, the detector can
declare a user as active ifπt,n is larger than the threshold
ψt,n, and as inactive ifπt,n is smaller than the thresholdψt,n.
For such a detector, we can define the missed detection and
false alarm probabilities for usern after t iterations as

PMD
t,n (M) = Pr(πt,n ≤ ψt,n|αn 6= 0), (21)

and
PFA
t,n (M) = Pr(πt,n ≥ ψt,n|αn = 0), (22)

respectively, as functions ofM , the number of BS antennas.
The following establishes the optimality of this vector AMP
based user activity detector in the massive MIMO regime.

Theorem 1: Consider the user activity detector (20) based
on vector AMP with MMSE denoiser. In the asymptotic
regime where the number of usersN , the number of active
usersK, and the length of the pilot sequencesL all go to
infinity, while their ratios converge to some fixed positive
values, i.e.,N/L → ω andK/N → ǫ with ω, ǫ ∈ (0,∞),
under fixed total transmit powerξ, assuming state evolution
equation (9)-(10), for any usern, we have that both the
probabilities of false alarm and missed detection go to zero
as the number of antennas at the BS goes to infinity, i.e.,
lim

M→∞
PFA
t,n (M) → 0 and lim

M→∞
PMD
t,n (M) → 0, ∀t, n.

The intuition behind the proof of Theorem 1 is as follows.
As M → ∞, applying the strong law of large numbers to
(18), we have

πt,n →
{

βn/τ
2
t , if αn = 1

βn/(βn + τ2t ), if αn = 0
(23)



almost surely. Based on the fact thata > log(1 + a) > a
1+a

for anya > 0, and thatβn/τ2t is lower bounded by a constant
strictly greater than zero, we can conclude that the detector
based on the comparison betweenπt,n as in (23) andψt,n as
in (19) is asymptotically always correct.

C. Asymptotic Analysis of Channel Estimation Error

The AMP algorithm directly gives a characterization of
channel estimation error. It can be shown that the MSE term
in (10) reduces to the following in the massive MIMO regime:

E

[

(ηt,β(X̂t,β)−Xβ)(ηt,β(X̂t,β)−Xβ)
H
]

= ǫE

[

βτ2t
β + τ2t

I

]

+ E

[

φt,β(1 − φt,β)
β2

(β + τ2t )
2
x̂t,βx̂

H
t,β

]

→ ǫE

[

βτ2t
β + τ2t

I

]

, as M → ∞, (24)

where we note thatφt,β is asymptotically either0 or 1 as
M → ∞. Intuitively, the above MSE can be interpreted as
the product of the user activity probabilityǫ and the MSE of
channel estimation if the user activity is known,βτ

2
t

β+τ2
t

I.
Putting (24) into (10), the state evolution reduces to the

following scalar equation:

τ2t+1 =
σ2

ξ
+ ωǫEβ

[

βτ2t
β + τ2t

]

. (25)

We note the following properties of the above recursion. First,
there is an interesting phase transition phenomenon in AMP
[11]: the MSE achieved in (24) for the case whenωǫ < 1
is significantly smaller than that achieved for the case when
ωǫ > 1. Thus, to control channel estimation error, we need
to haveωǫ < 1, i.e., L > K. Second, the limit ofτ2t as
t → ∞ is of particular interest. Assumingωǫ < 1, we can
show that there exists a unique fixed-point solution to (25).
This unique fixed-point, denoted asτ2∞, is the limit of τ2t
after AMP converges.

The fixed-point solution gives us an analytical expression
for channel estimation error under AMP. Leth̃n denote the
estimated channel for usern after convergence of the AMP
algorithm (6)-(7); let∆hn = hn− h̃n denote the correspond-
ing channel estimation error. The state evolution analysisof
AMP implies that if usern is active in one coherence block,
h̃n must have the same second-order statistics asη∞,n(x̂∞,n),
whereη∞,n(·) is the converged MMSE denoiser applied on
the signal model (11) withαn = 1. WhenM goes to infinity,
the covariance matrices for the estimated channel and the
corresponding channel estimation error, after the convergence
of AMP, become respectively

cov(h̃n, h̃n) →
β2
n

βn + τ2∞
I, (26)

cov(∆hn,∆hn) →
βnτ

2
∞

βn + τ2∞
I. (27)

Although τ2∞ does not have a closed-form expression, we
can characterize its asymptotic value in the high signal-to-
noise ratio (SNR) regime. Specifically, suppose that the path-
loss variableβ is bounded byβ ∈ [βmin, βmax], and further

that ξβmin

σ2 → ∞. Then, in the regimeωǫ < 1, it can be shown
that the unique fixed-point solution to (25) approaches

τ2∞ → σ2

ξ(1 − ωǫ)
. (28)

As the path loss exponentβ for each user depends on its
distance to the BS, the above condition onξβmin

σ2 implies that
the SNR of the farthest user in the cell must be high.

IV. A CHIEVABLE RATE OF MAXIMAL RATIO COMBINING

We can now characterize the achievable rate for information
transmission of Phase II, assuming the user activity detection
and channel estimation analysis of Phase I in the previous
section. The equivalent baseband signal received of Phase II
is

ydata =
∑

n∈K

hn

√

ρdatasn + zdata, (29)

where sn ∼ CN (0, 1) denotes the transmit symbol of user
n ∈ K, ρdata denotes the identical transmit power of all the
users in the data transmission phase, andzdata ∼ CN (0, σ2I)
denotes the AWGN at the BS.

Assuming that the BS views the estimated channel as the
true channel and applies a linear maximal ratio combining
(MRC) beamformerwk = h̃k to the received signalydata

for user message decoding, following standard bounding tech-
nique based on the worst case uncorrelated noise [12], the
uplink achievable rate of active userk can be written as

Rk =
T − L

T
E[log2(1 + γk)], ∀k ∈ K, (30)

where the signal-to-interference-plus-noise ratio (SINR) of
userk given a channel realization is

γk =
‖h̃k‖4

∑

n∈K,n6=k

|h̃H

k h̃n|2 + ‖h̃k‖2
∑

n∈K

βnτ2
∞

βn+τ2
∞

+ σ2

ρdata ‖h̃k‖2
.

(31)

To derive analytical results, we further consider an asymptotic
massive MIMO regime where bothM andK go to infinity,
while keeping their ratio fixed, and utilize the channel estima-
tion error characterization of Phase I. This is in fact a different
asymptotic regime as in Phase I, but we nevertheless combine
the analyses as ultimately both analyses are used to provide
performance projection at finite (but large)N,L,K,M .

Theorem 2: Consider an uplink massive MIMO system
with M BS antennas servingK users. Suppose that the
estimated channels̃hk and channel estimation errors∆hk are
Gaussian distributed with the covariance matrices (26) and
(27). In the asymptotic regime where bothK andM go to
infinity but K/M → µ with µ ∈ (0,∞), the achievable rate
for each user, assuming MRC at the BS, is given by (30),
where

γMRC
k → β2

k

µE[β](βk + τ2∞)
, ∀k. (32)



0 5 10 15 20 25 30 35 40

Number of Antennas at the BS:  M

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
U

se
r 

A
ct

iv
ity

 D
et

ec
tio

n 
E

rr
or

 P
ro

ba
bi

lit
y

PFA(M): L=90

PMD(M): L=90

PFA(M): L=100

PMD(M): L=100

PFA(M): L=110

PMD(M): L=110

Fig. 1. Probabilities of missed detection and false alarm versus the number
of antennas at the BS whenK = 100 out of N = 2000 users are active.

If we further assume a high SNR regime withτ∞ as
characterized in (28) and also assume finite but largeL,K,M ,
the user SINR can now be written as

γk ≈ Mβ2
k

KE[β]
(

βk +
σ2

ρpilot(L−K)

) , ∀k. (33)

By contrasting with the massive MIMO system with known
user activity so that orthogonal pilots can be assigned to the
K active users for channel training, for which [13]

γk ≈ Mβ2
k

KE[β]
(

βk +
σ2

ρpilotL

) , ∀k, (34)

it is clear that the cost of user activity detection lies in the
increase in the effective channel estimation error, due to the
non-orthogonality of the pilot sequences.

V. NUMERICAL EXAMPLE

Fig. 1 shows the missed detection and false alarm probabil-
ities versus the number of antennas at the BS, for a numerical
example withN = 2000 users, among whichK = 100 users
are active in each coherence block ofT = 1000 and the pilot
length isL = 90, 100, 110, where the users are distributed
randomly in distance between 500m and 1km from the BS.
The path loss model is given asβn = −128.1−36.7 log10(dn)
in dB, with ρpilot = ρdata = 23dBm and AWGN at
−169dBm/Hz over 1MHz. It is observed that bothPMD(M)
and PFA(M) decrease significantly whenL increases from
90 to 110. Moreover, asM increases, both decrease towards
zero, which verifies Theorem 1.

Fig. 2 shows the user sum rate versus pilot length withM =
128 antennas at the BS. It is observed that the theoretical rate
characterization of Theorem 2, whereτ2∞ is predicted by either
the fixed-point solution to (25) or high SINR approximation
(28), matches the numerical result well, especially whenL ≥
110. Moreover, we observe that the optimal pilot length needs
to be longer when user activities are not known in advance.
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VI. CONCLUSION

This paper quantifies the cost of user activity detection
and channel estimation for massive connectivity. Our main
results show that while massive MIMO at the BS essentially
guarantees perfect user activity detection, there is neverthe-
less a marked cost due to the extra interference introduced
by imperfect channel estimation when non-orthogonal pilot
sequences are used. Such cost can be analytically quantified
leveraging results in vector AMP state evolution.
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