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Abstract—This paper studies a single-cell uplink massive device the number of active devices all go to infinity, accurate user
communication scenario in which a large number of single- activity detection can always be guaranteed in terms of both
antenna devices are connected to the base station (BS), butyigseq detection and false alarm probabilities; yet the- non
user traffic is sporadic so that at a given coherence interval h litv of pilot thel . dant
only a subset of users are active. For such a system, active©r Ogonalyo PIO sequences never _e ess Incursfm_:gn
user detection and channel estimation are key issues. To ac-Channel estimation error, thereby lowering the overaliech
commodate many simultaneously active users, this paper dlies able rate. The analytic results further allow the optimaabf
an asymptotic regime where the BS is equipped with a large the pilot sequence length and show that the pilots need to be

number of antennas. A grant-free two-phase access scheme iy ; ; . i .
i X e onger in the massive device connectivity setting as coetpar
adopted where user activity detection and channel estimatin 9 . . ty 9
to the conventional massive MIMO system.

are performed in the first phase, and data is transmitted in " . ; - . .
the second phase. Our main contributions are as follows. Fit, The main technique used in this paper is approximate
this paper shows that despite the non-orthogonality of pilo message passing (AMP) [1]-[4] for compressed sensing, in

sequences (which is necessary for accommodating a large nbet  recognition of the fact that device transmissions are spiora
of potential devices), in the asymptotic massive multipléaput g4 one can take advantage of sparse optimization techniques

multiple-output (MIMO) regime, both the missed detection and - . e .
false alarm probabilities can be made to go to zero by utilizig for activity detection. Sparse optimization has been usdhe

compressed sensing techniques that exploit sparsity in use Ppast for the mass connectivity problem, for example, in [5]-
activities. Further, this paper shows that despite the guaanteed [7] which study joint user activity detection and channdl-es

success in user activity detection, the non-orthogonalitpf pilot  mation in various settings, and in [8], [9] where informatio
sequences nevertheless can cause significantly larger chah theoretic analysis is carried out. The approach in this pipe

estimation error as compared to the conventional massive MO . . . L
system, thus lowering the overall achievable transmissiomate. based on [6], which analytically characterizes the prolias

This paper quantifies the cost due to device detection and chael  Of false alarm and missed detection by exploiting the state
estimation and illustrates its effect on the optimal pilot Ength evolution of the AMP algorithm in the single-antenna case.

for massive device connectivity. This paper generalizes [6] to the massive MIMO setting in
providing asymptotic activity detection performance gsil.

This paper further characterizes the achievable deviostra

Massive connectivity is a central requirement for futureission rates. We show that the state evolution of AMP allows
wireless cellular networks in which a large number of devicehe mean square error (MSE) for channel estimation to be
may be connected to the base station (BS). A key characteesalytically derived, thereby providing a characterizatiof
tics for device traffic is that device activities are spocadio user achievable rates for massive device connectivity én th
that within any given time only a subset of devices are activasymptotic massive MIMO regime.
Thus, reliable detection of active devices along with clghnn
estimation are important for system design. This papefiesud Il. SYSTEM MODEL
a two-phase grant-free multiple-access scheme for deviceConsider the uplink of a single-cell cellular network con-
communication in which the BS simultaneously identifies theisting of N users, denoted by the s&f = {1,--- , N}. The
active devices and estimates their channels based on tlmir BS is equipped with\/ antennas; each user is equipped with
sequences in the first phase, and data transmissions tale ptame antenna. The complex uplink channel vector from user
in the second phase. Because of the large number of potential to the BS is denoted by, € CM*!, n = 1,... N.
active devices in the system and limited coherence time, tiibis paper adopts a block-fading model, in which the channel
devices cannot be all assigned orthogonal pilot sequenaesefficients follow independent quasi-static flat fadingthiv
The main goal of this paper is to characterize the devieach coherence blocly,,’s remain constant, but they vary
activity detection, channel estimation, and data transioiis independently from block to block. The channel vedir is
performance of such a multiple-access scenario. modeled as,, = \/B.g,,, Vn, whereg,, ~ CN(0, I) denotes

In order to accommodate a large number of simultaneoushe Rayleigh fading component, agg denotes the path-loss
active devices, this paper further assumes that the BSaisd shadowing component, so that ~ CN(0, 3, 1,), Vn.
equipped with a large number of antennas. Our main contfihe path-loss and shadowing components depend on the user
butions are analytic results establishing that in certa@issive locations and are assumed to be known at the BS.
multiple-input multiple-output (MIMO) regime, where the To model the sporadic nature of user traffic, we assume that
number of BS antennas, the number of potential devices, ahé users are synchronized and in each coherence block each
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user accesses the channel with probability an i.i.d. manner. whereY € CL*M is the matrix of received signals across

We define the activity indicator for userin each block as: M antennas ovel. symbols, andZ = [z, -, zp] with
1 i user n is active Zm ~ CN(0,0%I), Vm, is the_ additive white Gaussian noise

oy = { 07 otherwise o Vn, (1) (AWGN) at the BS. Now defined = [a4,--- ,axn]. Further,

’ ' let z, = a,h, and defineX = [z, ---,zx]7. Then,

so thatPr(a,, = 1) = ¢, Pr(a, = 0) = 1 — ¢, Vn. Further, the training phase can be modeled as the following matrix
we define the set of active users within a coherence block eguation

K={n:a,=1n=1,---,N}L @) Y = \E(AX + Z, (4)

The number of active users is denoted/és= |K|. \(/jvizterirguttrifnrows of the matriX follow a Bernoulli Gaussian
This paper adopts a grant-free multiple-access scheme, in '

which each coherence block of lengthsymbols is divided px, = (1 —€)do +epp, ,  Vn. (5)

into two phases. In the first phase, the active users send thei

pilot sequences of length symbols to the BS synchronously,Here’ 0o denqtes_, th? point mass measure at zero,mg
and the BS jointly detects the user activities, i®,’s, as denotes the d|str|but|o_n of ussls c_hannelhn N CN(O’ﬁ”I).' "
well as the active users’ channels, i.&,'s, ¥n € K. In The goal of the BS in Phase | is to detect the user activities

the second phase, the active users send their data to thed8d t0 estimate the user channels by recoveAngased on
using the remaining” — L symbols, and the BS decodedN® Noisy observatiory’. As X' is row sparse, i.e., many
these messages based on the knowledge of user activities Gnd &€ 2€ro, such a reconstruction problem is a compressed
channels obtained in the first phase. sensing problem. Further, as the sparsity pattern is seatsed
For the massive connectivity scenario with a large numb&!tiple antennas, this is known as a multiple measurement

of potential devices, the length of pilot sequence is tylpica Value (MMV) compressed sensing problem. _ _
smaller than the total number of devices, iB.< N. Inthis  Among many powerful compressed sensing techniques, this

case, it is not possible to assign mutually orthogonal seceee P2Per adopts a low-complexity AMP algorithm to recover the
to all the users. This paper assumes that eachuisaassigned 'OW-SParse matrixX. In the rest of this section, we first
a unique pilot sequence, = [an1,- - an ]’ € CLX! briefly review the vector version of the AMP algorithm, then
whose entries are generated randomly according to an i.fyaluate its asymptotic performance for user activity clete
complex Gaussian distribution with zero mean and varian@8d channel estimation, respectively.

1/L,i.e.a,; ~CN(0,1/L), so that each pilot sequence hag, \ector AMP Algorithm with MMSE Denoiser

unit norm, i.e.,||a,||? = 1, asL — oo. It is further assumed Th It f th tor AMP algorith ds at
that the pilot sequences of all the users are known at the BS. € general form ot the vector aigorithm proceeds a

The goal of this paper is to analyze the performance ofjoiﬁf"Ch iteration as follows [3], [4], [10]. Starting wilR™ =Y,

user detectiqn and channel estimation using the abqve nongitt — g, (R a, + 2!, (6)
orthogonal pilots in Phase I, and subsequently to chaiaeter N N ;
the user achievable rate in Phase Il. To facilitate analysispt+1 —y _ g4 xt+1 4 %Rt Z T (B an +27,)

we consider certain asymptotic regime whéve — oo, SO —_ N ’

that K — eN, and the empirical distribution of,--- , By (7
converges to a fixed distribution denoted py. Moreover, ) . ) . . . P
to supportK active users, the pilot lengti, for channel Wheret is the index of the iterationX” = [z}, ] s
estimation and the number of BS antenrdsboth need to the estimate ofX' at iterationt, and R" = [rf,--- ,ri]" €

be in the order of. The goal is to utilize analytic results inC~*"" denotes the corresponding residual. The algorithm per-
the asymptotic regime wher®, K, M, L all go to infinity forms in (6) a matching filtering of the residual for each user
in certain ways to derive analytic insight for practicalteyss 7 USing its pilot sequence, followed by a denoising step using

with large but finite system parameters. an appropriately designed denoisgr, () : C*** — C*>1.
The residual is then updated in (7), but corrected with a so-
[Il. USERACTIVITY DETECTION AND CHANNEL called Onsager term involving ,, (-), the first-order derivative
ESTIMATION VIA AMP of 7t n(-).

Consider the first phase of massive device transmission remarkable property of the AMP algorithm is that when
in which each user sends its pilot sequence synchronougBplied to the compressed sensing problem with the entfies o
through the channel. Defing’!°t as the identical transmit the sensing matrixd generated from i.i.d. Gaussian distribu-
power of the active users in the first transmission phase. THn, its detection performance in certain asymptotic mei
transmit Signa| of usen can be expressed asl\/gan’ where can be aCCUrat6|y prEdiCted by the so-calsste evolution.
¢ = LpP°t denotes the total transmit energy of each activEhe asymptotic regime is wheh, K, N — oo, while their

user in the first phase. The received signal at the BS is théatios converge to some fixed positive valuggL — w and
K/N — ewith w, e € (0, 00), while keeping the total transmit

Y =/¢ Z anash), + 7, (3) power fixed até. Note that we fix the total transmit power
neN rather than allowing it to scale with here in this hypothetical



asymptotic system in order to carry out the state evolution,,(#:,) = Bn(Bnl + i) 12 ,. With unknown user
analysis. (This implies that the per-symbol power goes dovactivity, however, the above MMSE denoiser is non-linear.

to zero.) The analysis is then used to predict the systemNext, we observe that when the MMSE denoiser as given
performance at finite (but largd), K, N and ¢ = LpP°t. in (12) is used,X; as defined in (10) is always a diagonal
As shown in [10], this approach is found to corroborate vempatrix with identical diagonal entries, i.e.,

well with simulation results.

Specifically, letg ~ pg; define a random vectoX s € e=nl Vi20. (16)
CM>! with a distribution (1 — €)do + epp,,, where py,  Intuitively, this is because the channels across the BSaate
denotes the distributiohs ~ CN(0,8I). Let V € cMx1 . are assumed to be uncorrelated. As a result, the MMSE
CN (0, I) be independent o . Define random vectors denoiser given in (12) is reduced to

Xip=Xs+32V. (8) Nen (Zi,n) = d’”ﬂ [iw Ein (17)
n t
The state evolution is the following recursion [2]-[4], |10 whereg, ,, is as given in (13), and
2
o = %I—i—w]E[XBXg], (9) I W S 18)
’ U\ 2 4B.) M
and B ﬂn
djt,n = 1Og 1+ —= (19)
t

2
g ~
i1 =—IT+wE Xip)—X . . )
T B | (s (Kep) ) B. User Activity Detection in the Massive MIMO Regime

% _ H The structure of the MMSE denoiser (17), (13), (18) and
(me,6(X1.5) = X )7 | (10) (19) suggests the following user activity detector. Obsenat

where 3, is referred to as the state, and the expectation \ﬁ@enM — 00, ¢u,n in (13) reduces to a threshold function:

over 5, X3 and V. Note thatn, ,(-) is replaced byy: s(-) 1, if men > Yin,
for convenience. brn =1 0, if Tep < Vtn, (20)
The state evolution analysis [2]-[4] says that in the vector €, otherwise.

AMP algorithm, applying the denoiser @ R")” + x! as

in (6) is statistically equivalent to applying the denoiter Thus, after thetth iteration of the AMP, the detector can

declare a user as active if; , is larger than the threshold
Tip =Xy + Et%'vn = anh, + Ef Un, Vn. (11) Y¥tn, and as inactive ifr; ,, is smaller than the thresholg} .
’ For such a detector, we can define the missed detection and

The key advantage of this equivalent signal model is thgise alarm probabilities for user after ¢ iterations as
decoupling of the estimation between different users, Wwhic

allows us to design the denoiser,,(-) based on the above P (M) = Pr(mp < 1o #0), (21)
decoupled signal model. and
This paper adopts an MMSE denoiser for minimizing the PtFA(M) = Pr(mn > Yrn|om = 0), (22)

MSE for user detection and channel training. Specificatly, i _ _

the tth iteration of the AMP algorithm, the MMSE denoisefespectively, as functions af/, the number of BS antennas.
n.n(-) is set to be the conditional expectati@X,|X,,]. The following establishes the optimality of this vector AMP
This denoiser has been derived in [10], and is shown beld¥@sed user activity detector in the massive MIMO regime.

in a slightly different form in order to highlight its strusal ~ Theorem 1: Consider the user activity detector (20) based
dependence id/: on vector AMP with MMSE denoiser. In the asymptotic

. regime where the number of usehs, the number of active
Nt (Zn) = B[ X 0| Xt.n] = 060 Bn(Bud + 1) &t usersk, and the length of the pilot sequencésall go to
(12) infinity, while their ratios converge to some fixed positive
where values, i.e.,N/L — w and K/N — e with w,e € (0,00),
1 under fixed total transmit powef, assuming state evolution
1 . (13) equation (9)-(10), for any usen, we have that both the
1+ 1fexp (= (Ten — i) probabilities of false alarm and missed detection go to zero
mtn(E ' (B + B ) N, as the number of antennas at the BS goes to infinity, i.e.,
M ’ (14) hm PEA(M) — 0 and N}lm PMP(M) — 0, Vt,n.

logdet(I + 3,3, ") The intuition behind theﬁproof of Theorem 1 is as follows.
Ut = M ' (15) As - oo, applying the strong law of large numbers to

It is worth noting that if all the users are active, i.e.= 1, (18), we have
it then follows that¢, ,, = 1, Vn, in which case the denoiser B/ T2, ifa, =1
reduces to the widely used linear MMSE channel estimator: Ttin Bu/(Bn+17),  ifan=0

(bt,n =

7Tt,n -

(23)



almost surely. Based on the fact that> log(1 + a) > %+ that% — 00. Then, in the regimeve < 1, it can be shown
for anya > 0, and that3, /77 is lower bounded by a constantthat the unique fixed-point solution to (25) approaches

strictly greater than zero, we can conclude that the datecto 9

based on the comparison between, as in (23) and); ,, as A — (28)

in (19) is asymptotically always correct. §(1 — we)

C. Asymptotic Analysis of Channel Estimation Error As the path loss exponertt for each user depends on its

The AMP algorithm directly gives a characterization ofﬁztasnﬁ; t(())fir;qee ?asrtr:reftigz\ﬁnc?hnedlggl?n%:i_nt gzpr:e?\ that
channel estimation error. It can be shown that the MSE term g
in (10) reduces to the following in the massive MIMO regime:|\; A cHiEvABLE RATE OF MAXIMAL RATIO COMBINING

E [(nt,B(Xt,,B) — X5)(ne,5(X18) — XB)H} We can now characterize the achievable rate for information
Br2 2 transmission of Phase Il, assuming the user activity detect

=¢E [ﬁ+t 21] +E [gét,g(l —t.8) 5 R 5 L1, 3T tﬂ] and channel estimation analysis of Phase | in the previous

Zt ( section. The equivalent baseband signal received of Phase |
— ¢E [%I} . as M — oo, (24) s

T

ddtd _ ddtd ddtd
where we note thaty s is asymptotically eithe or 1 as Z hn/ ™50 + 2 (29)

M — oo. Intuitively, the above MSE can be interpreted as nek

the product of the user activity probabilityand the MSE of wheres,, ~ CAN(0,1) denotes the transmit symbol of user

channel estimation if the user activity is knovvﬁ%I n € K, p?* denotes the identical transmit power of all the
Putting (24) into (10), the state evolution reduces to tHésers in the data transmission phase, afid* ~ CA(0, 1)
following scalar equation: denotes the AWGN at the BS.
9 9 Assuming that the BS views the estimated channel as the
Tt2+1 -7 + wellg [—tz} (25) true channel and applies a linear maximal ratio combining
§ B+ (MRC) beamformernw; = hy to the received signajdata

We note the following properties of the above recursiorstfir for user message decoding, following standard boundirty tec
there is an interesting phase transition phenomenon in AMiRjue based on the worst case uncorrelated noise [12], the
[11]: the MSE achieved in (24) for the case when < 1 uplink achievable rate of active uskrcan be written as

is significantly smaller than that achieved for the case when T_1

we > 1. Thus, to control channel estimation error, we need Ry = ——FE[logy(1 +v)], VkeK, (30)

to havewe < 1, i.e., L > K. Second, the limit ofr? as T

t — oo is of particular interest. Assuminge < 1, we can where the signal-to-interference-plus-noise ratio (SINR
show that there exists a unique fixed-point solution to (25)serk given a channel realization is

This unique fixed-point, denoted ag , is the limit of 77

o4
after AMP converges. = [P
The fixed-point solution gives us an analytical expression > | |2 + IIthIQ Z ﬁ’;Tz + dml\hklP
for channel estimation error under AMP. LAt, denote the nek,n#k ex
estimated channel for user after convergence of the AMP (31)

algorithm (6)-(7); letAh,, = h,, — h,, denote the correspond-
ing channel estimation error. The state evolution analgsis
AMP implies that if usem is active in one coherence block
h,, must have the same second-order statistieg.as(Zoo.n )
wherene »(-) is the converged MMSE denoiser applied o
the signal model (11) witly,, = 1. When M goes to infinity,
the covariance matrices for the estimated channel and
corresponding channel estimation error, after the comrerg
of AMP, become respectively

~ o~ 52
COV(hn, hn) — ﬂnﬁ

To derive analytical results, we further consider an asytipt
massive MIMO regime where both/ and K go to infinity,
'while keeping their ratio fixed, and utilize the channelresti

tion error characterization of Phase I. This is in fact aatéht
résymptotic regime as in Phase |, but we nevertheless combine

e analyses as ultimately both analyses are used to provide

formance projection at finite (but largd), L, K, M.

Theorem 2: Consider an uplink massive MIMO system
with M BS antennas serving( users. Suppose that the
estimated channels;, and channel estimation errofsh;, are
Gaussian distributed with the covariance matrices (26) and

B2 (27). In the asymptotic regime where bafth and M go to
cov(Ah,,, Ah,) — i +°°2 I (27) infinity but K /M — u with ;2 € (0,00), the achievable rate

for each user, assuming MRC at the BS, is given by (30),
Although 72 does not have a closed-form expression, Wghere

can characterlze its asymptotic value in the high signal-to )
noise ratio (SNR) regime. Specifically, suppose that thé-pat AMRC _, Br . VE. (32)
loss variables is bounded by3 € [Bumin, Bmax), and further PE[B](Br + 72,)

I, (26)
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Fig. 1. Probabilities of missed detection and false alarmsuethe number Fig. 2. User sum-rate without and with prior activity infaation when

of antennas at the BS whdk = 100 out of N = 2000 users are active.

If we further assume a high SNR regime with, as
characterized in (28) and also assume finite but ldrgk, M,
the user SINR can now be written as

MpB3?
KE[B] (ﬂk + W;K)) 7

Vi A V. (33)

K =100 out of N = 2000 users are active and BS antenn@s= 128.

VI. CONCLUSION

This paper quantifies the cost of user activity detection
and channel estimation for massive connectivity. Qur main
results show that while massive MIMO at the BS essentially
guarantees perfect user activity detection, there is tieser
less a marked cost due to the extra interference introduced
by imperfect channel estimation when non-orthogonal pilot

By contrasting with the massive MIMO system with knowRsequences are used. Such cost can be analytically quantified
user activity so that orthogonal pilots can be assigned ¢o tféveraging results in vector AMP state evolution.

K active users for channel training, for which [13]
Mp}
KE[B] (Bk + pp(ijl’%L)

Ve = ) Vka (34)

it is clear that the cost of user activity detection lies ie th
increase in the effective channel estimation error, duehéo t

non-orthogonality of the pilot sequences.

V. NUMERICAL EXAMPLE
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