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Abstract—Cooperative communication in which multiple base-
stations (BSs) jointly transmit to mobile users is a major advan-
tage of the cloud radio-access network (C-RAN) architecture.
This paper considers the use of wireless multicast for sharing
user messages at multiple BSs in the C-RAN backhaul for
cooperation purpose. To combat fading and path-loss in the
wireless channels to the different BSs, this paper proposes the
optimal provisioning of secondary backhaul to smooth out the
channel disparity. The paper analyzes the problem structure and
proposes an efficient algorithm for the optimization of secondary
backhaul rate provisioning.

I. INTRODUCTION

Cloud radio-access network (C-RAN) [1] is an emerging
network architecture for wireless cellular networks in which
the base-stations (BSs) are connected to and coordinated
from a centralized cloud data centre, and are capable of
jointly transmitting user messages in a synchronized fashion
from across multiple BSs in the downlink, thereby benefiting
the overall transmission by mitigating inter-cell interference.
Crucial to the deployment of C-RAN is the provisioning of
the high-speed links between the BSs and the cloud. These
data links are referred to as fronthaul, if the BSs reduce
their roles to analog front-end processing only and the cloud
performs all the digital functionality, or as backhaul, if the
user data messages are directly sent to the multiple BSs
for joint encoding/decoding. This latter scenario, where the
links between the cloud and the BSs carry the data messages
directly, is the focus of this paper. The fronthaul/backhaul
links of C-RAN are likely to require at least several times
more capacity than that of traditional cellular networks. In
fact, fronthaul/backhaul provisioning can often be a bottleneck
in the overall network planning, especially for small-cell
deployments in which reliable and high-speed connections
may not always be available to every small-cell BSs.

This paper considers the use of wireless backhaul for C-
RAN, not only because it is much easier to deploy when
fixed wireline infrastructure is not available, but also because
of the crucial wireless multicast advantage that allows the
efficient delivery of user messages to multiple BSs at the
same time. Wireless multicast is ideally suited for enabling the
cooperative transmission benefit of C-RAN; but it also brings
in the challenge of pathloss, fading, and shadowing effect of
the wireless medium. In particular, because of the different

locations of the BSs, there may be considerable disparity in
the quality of their respective channels.

To deal with this issue of channel disparity in wireless
multicast, this paper proposes the use of secondary backhaul
to smooth out the difference in channel quality across the
BSs. A secondary backhaul can be a capacity constrained
digital subscribe line (DSL) connection that can be used to
augment the wireless backhaul. (As an alternative, user content
may also be pre-fetched in capacity-limited local storage to
aid the BSs with weak channels.) The main contribution of
this paper is to show that the optimization of the capacity
allocation of the secondary backhaul can be done efficiently
by taking advantage of the problem structure. Although the
use of network coding with multicast [2] and the use of
cache for cooperation [3] have been considered in the C-
RAN literature, the possibility to smooth out channel disparity
for multicast operation is a novel concept that has not been
explored previously.

II. PROBLEM FORMULATION

Consider a C-RAN consisting of K BSs connected to
the central cloud processing center in a wireless backhaul
as illustrated in Fig. 1. The transmit signal of the central
processor is denoted as X; the received signals at the BSs are
denoted as Y1, Y2, . . . , YK . We assume a block fading model
with channel state information at both the transmitter and the
receivers, for which the achievable multicast rate for sending
a common user message to all the BSs in each fading block
(assuming a fixed input distribution) can be characterized as:

min
k∈K

I(X;Yk), (1)

where K := {1, . . . ,K}. The transmission of common mes-
sage subsequently allows the BSs to cooperate in relaying the
message to the users. Due to the path-loss, shadowing and
channel fading, there is considerable disparity in I(X;Yk)’s.
The common message rate is constrained by the weakest
channel in each block.

This paper considers the use of secondary backhaul links
(or caching storage) at the BSs to boost the above common
message rate. We model the secondary backhaul as having
capacities Ck for k ∈ K, so that the achievable common
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Fig. 1. Wireless multicast for C-RAN with secondary backhaul

information transmission rate in each fading block is improved
to

R0 < min
k∈K
{I(X;Yk) + Ck} . (2)

(The effect of caching for providing side information can
potentially be equivalently modeled in the same way.) The
achievability of the above rate from a channel coding per-
spective can be understood as follows. To encode a common
message, a random codeword with the above rate is generated
and transmitted through the channels. The secondary backhaul
links can be used to transmit additional parity bits of the com-
mon message codeword. Information theoretical consideration
reveals that based on the received signal Yk and the parity bits
of rate Ck, successful decoding can be guaranteed at the rate
R0 in (2).

This paper aims to solve the following problem. Suppose
that we have a fixed total secondary backhaul rate (or total
cache storage size) C, how should it be allocated across the
K BSs so as to maximize the overall common information
transmission rate R0? Secondary backhaul (or cache allo-
cation) needs to take place at large time scale, so it can
only be adapted to the statistics of the channels but not the
instantaneous channel realization in each fading block. Let

Rk = I(X;Yk) (3)

be a random variable that depends on the channel realization
H in each fading block. Define

r(C1, . . . , CK) = EH

[
min
k∈K
{Rk + Ck}

]
. (4)

The secondary backhaul rate allocation problem is

maximize r(C1, . . . , CK)

subject to
∑
k∈K

Ck ≤ C,

Ck ≥ 0, ∀k ∈ K.

(5)

The optimization of Ck’s accounts for the statistics of Rk.
We assume that the probability density function (PDF) and
the cumulative distribution function (CDF) of Rk, which can
be derived from the channel distribution, are known, and
are denoted by {fk(x)}k∈K and {Fk(x)}k∈K , respectively.

Without loss of generality, we assume that all {fk(x)}k∈K
are continuous in this paper. It is simple to verify that the
PDF of the random variable mink∈K {Rk + Ck} is

K∑
k=1

fk(x− Ck)
∏
j 6=k

(1− Fj(x− Cj)) .

The objective function of (5) can then be explicitly written as

r(C1, . . . , CK) =

∫
· · ·
∫ +∞

−∞
min {x1 + C1, . . . , xK + CK}

f1(x1) · · · fK(xK)dx1 · · · dxK (6)

=

K∑
k=1

∫ +∞

−∞
xfk(x− Ck)

∏
j 6=k

(1− Fj(x− Cj)) dx

=

K∑
k=1

∫ +∞

−∞
(x+ Ck) fk(x)

∏
j 6=k

(1− Fj(x+ Ck − Cj)) dx.

(7)

For any given {Ck}k∈K , calculating the value of
r(C1, . . . , CK) (and also its gradient and Hessian) involves
numerical integration. Throughout the paper, we use
Simpson’s rule [4, Section 5.1] to compute numerical
integrals. The rest of the paper is devoted to solving the
optimization problem (5).

III. PROPOSED APPROACH

A. Intuition
The idea is to aid the BS with the worst channel so as to

maximize the minimal Rk + Ck as in (4). In each particular
fading state, the extra Ck is useful to BS k only if the BS k
happens to hit the minimum. Consider the following question:
Given an existing rate allocation (C1, . . . , CK), suppose that
we have some small additional ∆C that can be allocated,
which BS should the ∆C be given to? A moment of thought
reveals that ∆C should be given to the BS with the largest
probability of hitting the minimum. If there are more than one
BSs with the same largest probability of hitting the minimum,
then ∆C should be equally allocated among these BSs. This
guiding principle can be made rigorous in the following
analysis, and it leads to an efficient algorithm for allocating
the Ck’s.

B. Gradient Structure
We begin by computing the gradient of the objec-

tive function in (5). The k-th component of the gradient
∇r(C1, C2, . . . , CK) can be obtained from (7) as:

∇kr(C1, C2, . . . , CK)

=

∫ +∞

−∞
fk(x)

∏
j 6=k

(1− Fj(x+ Ck − Cj)) dx

=

∫ +∞

−∞
fk(x− Ck)

∏
j 6=k

(1− Fj(x− Cj)) dx. (8)

Theorem 1. For any {Ck ≥ 0}, ∇kr(C1, C2, . . . , CK) is the
probability that Rk + Ck is the minimum over all k ∈ K.



While the proof of the above theorem can be obtained
from a close examination of the expression (8), we can also
understand why the gradient ∇kr(C1, C2, . . . , CK) is exactly
the said probability by the following reasoning. Suppose a
small additional ∆C is to be allocated to Ck. The improve-
ment to the minimum (4) should be exactly ∆C times the
probability that BS k hits the minimum. Since by definition
∇kr(C1, C2, . . . , CK) is the proportional improvement of the
objective function over small change of Ck + ∆C, we must
have that ∇kr(C1, C2, . . . , CK) is the said probability. For
convenience, the rest of the paper denotes the probability that
the value of Rk +Ck achieves the minimum of all K BSs, at
given {Ck}Kk=1, as

pk(C1, C2, . . . , CK) = ∇kr(C1, C2, . . . , CK), ∀k ∈ K. (9)

C. Optimality Condition

We are now ready to state the following optimality condition
for the optimization problem (5).

Theorem 2. The function r(C1, C2, . . . , CK) is concave in
{Ck}k∈K . The optimal {C∗k}k∈K of (5) should be such that
if S = {k | C∗k > 0} is the set of BSs for which C∗k is
strictly greater than zero, i.e., C∗k′ = 0 for all k′ /∈ S , then
the probability that Rk + C∗k achieves the minimum must be
the same for all k ∈ S; further, it must be greater than the
probability that Rk′ achieves the minimum for all k′ /∈ S.

Proof. The concavity of r(C1, C2, . . . , CK) can be seen di-
rectly from (6). It is an integral of the concave function
min {x1 + C1, . . . , xK + CK} thus is also concave. The op-
timality condition of the convex optimization problem (5) is
that there exists a nonnegative λ∗ such that

∇kr(C
∗
1 , C

∗
2 , . . . , C

∗
K) = λ∗, ∀k ∈ S, (10)

∇k′r(C∗1 , C
∗
2 , . . . , C

∗
K) < λ∗, ∀k′ /∈ S. (11)

By (9), we obtain the optimality condition as stated in the
theorem.

As an interesting example, consider the two-BS case and
further assume that the distributions of R1 and R2 are both
symmetric. Then, it is easy to see that if as long as R1 + C1

and R2 + C2 have the same mean, we always have

Pr(R1+C1 ≥ R2+C2) = Pr(R1+C1 ≤ R2+C2) =
1

2
. (12)

Thus, the optimal rate allocation strategy must be to allocate
rate to the two BSs so as to equalize the mean of Rk + Ck.
This may appear surprising at a first glance, as the optimal
rate allocation strategy in this two-BS symmetric case does
not depend at all on the exact distributions, except through
the means. For example, the respective variances of Rk do
not influence the rate allocation, (although they do influence
the achievable multicast rate). We emphasize that this is a
feature of the particular two-BS symmetric example. When
the distributions are not symmetric or when there are more
than two BSs, the optimal rate allocation does depend on the
exact distributions.

D. Proposed Algorithm
It is now clear, based on the optimality condition, that an

optimization strategy should begin by allocating rate to the
BS with the largest probability that its Rk + Ck achieves
the minimum, until two or more BSs have the same such
probability. Then, the rates should be further allocated to all
such BSs to keep their probabilities of hitting the minimum
the same, until all the rates are exhausted. Since the allocation
of rates to different BSs affects their probabilities differently
(depending on the probability distribution of Rk) and in some
nonlinear fashion, a numerical algorithm is needed to perform
each step of the rate allocation. This section proposes an
efficient way to do so.

First, we give the following two lemmas that are used later
in the algorithm design. For ease of presentation, we use Sc
to denote the complement of the set S with respect to K.

Lemma 1. The following results hold true:
(i) For any S ⊂ K,

p`
(
{Ck + ck}k∈S , {Ck′}k′∈Sc

)
, ` ∈ Sc

is a nondecreasing function with respect to all ck ≥ 0.
(ii) For any c > 0,

p`
(
{Ck + c}k∈K

)
= p`

(
{Ck}k∈K

)
, ` ∈ K.

Proof. Recall that p` is the probability that the rate of the `-th
BS achieves the minimum. Therefore, allocating {ck ≥ 0}k∈S
to the BSs in set S does not decrease the probability that the
rate of the BSs not in the set hits the minimum. Moreover,
allocating the same c ≥ 0 rate to all BSs does not change the
probability that the rate of all BSs hits the minimum.

Lemma 2. Suppose that all PDFs fk(x) of rate Rk are
positive for all x, then the following results hold true:
(i) Any partial Hessian of r(C1, . . . , CK), the objective

function of (5), is negative definite (thus invertible).
(ii) The full Hessian of r(C1, . . . , CK) is negative semidefi-

nite and has only one zero eigenvalue.

Proof. Let us compute the Hessian of r(C1, C2, . . . , CK) in
(5). The (k, `)-th off-diagonal entry is

∇2
k`r(C1, C2, . . . , CK)

=

∫ +∞

−∞
fk(x− Ck)f`(x− C`)

∏
j 6=k, j 6=`

(1− Fj(x− Cj)) dx

and the k-th diagonal entry of the Hessian is

∇2
kkr(C1, C2, . . . , CK) = −

∑
` 6=k

∇2
k`r(C1, C2, . . . , CK),

∀k ∈ K. (13)

If all PDFs fk(x) of rate Rk are positive for all x, it follows
that

∇2
k`r(C1, C2, . . . , CK) > 0, ∀` 6= k. (14)

Combining (13) and (14) shows that (i) any partial Hessian
of r(C1, C2, . . . , CK) is strictly diagonally dominant and thus



negative definite (and invertible) [5, Theorem 6.1.10] and (ii)
the full Hessian of r(C1, C2, . . . , CK) is negative semidefinite.
Moreover, it can be checked that the all-one vector is the eigen-
vector of the full Hessian of r(C1, C2, . . . , CK) corresponding
to the zero eigenvalue. By this and the fact that any partial
Hessian of r(C1, C2, . . . , CK) is negative definite, we obtain
that the full Hessian has only one zero eigenvalue.

The proposed algorithm for solving problem (5) iteratively
allocates rates to the BSs as follows. Fix ε > 0 to be some
solution tolerance. Let {Ct

k}k∈K be the rate allocation at the t-
th iteration that satisfies the optimality condition of Theorem 2
within tolerance ε so that a subset of St ⊂ K BSs will be
allocated some positive rates, where St is the ε-maximum set
among all

{
p`
(
{Ct

k}k∈K
)}

`∈K , i.e.,

St =

{
`

∣∣∣∣ p` ({Ct
k

}
k∈K

)
≥ max

`∈K

{
p`

({
Ct

k

}
k∈K

)}
− ε
}
.

At the (t + 1)-th iteration, we allocate some additional rates
while keeping the optimality condition of Theorem 2 satisfied
(within tolerance ε) by finding an appropriate level λ > 0
together with rate allocation {ck ≥ 0}k∈St such that there
exists some nonempty S ′ ⊆ (St)c, we have, for all ` ∈ St,∣∣∣p` ({Ct

k + ck
}
k∈St ,

{
Ct

k′

}
k′∈(St)c

)
− λ
∣∣∣ ≤ ε/2; (15)

for all ` ∈ S ′,∣∣∣p` ({Ct
k + ck

}
k∈St ,

{
Ct

k′

}
k′∈(St)c

)
− λ
∣∣∣ ≤ ε/2; (16)

and further for all ` ∈ (St
⋃
S ′)c,

p`

({
Ct

k + ck
}
k∈St ,

{
Ct

k′

}
k′∈(St)c

)
< λ− ε/2. (17)

Next, we argue that the level λ and the rate allocation
{ck ≥ 0}k∈St which jointly satisfy (15), (16), and (17) can
be efficiently found by exploiting the special structure of the
problem.

Let us first argue that {ck}k∈S satisfying (15) (with given
λ and S) can be found efficiently by applying Newton’s
algorithm to solve the set of nonlinear equations

p`

({
Ct

k + ck
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)
= λ, ` ∈ S. (18)

Let ci+1 be the vector of ck’s at the i-th iteration of Newton’s
algorithm. More specifically, let c1 = 0, then, for all i ≥ 1,
do

ci+1 = ci +
[
∇2pS

({
Ct

k + cik
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)]−1
[
λe− pS

({
Ct

k + cik
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)]
(19)

until (15) is satisfied, where e is the all-one vector of dimen-
sion |S| and pS

({
Ct

k + cik
}
k∈S , {C

t
k′}k′∈Sc

)
is a collection

of
{
p`
(
{Ct

k + ck}k∈S , {C
t
k′}k′∈Sc

)}
`∈S . According to (i)

of Lemma 2, if the cardinality of the set S is less than K,
the above Newton iteration (i.e., the inverse) is well defined;
otherwise the remaining rate should be equally allocated to all

BSs by (ii) of Lemma 2. We remark that the above problem
(18) can be solved without the need to enforce the positivity
constraints on cik for all k ∈ S . However, to guarantee
convergence, appropriate step size needs to be chosen for
Newton’s algorithm.

Algorithm 1 Iterative Rate Allocation for Solving (5)
1: Input: Parameters of the optimization problem (5), i.e.,
C > 0, {Fk, fk}k∈K, and tolerance ε > 0.

2: Initialization: Set t = 0 and Ct
k = 0, k ∈ K.

3: Compute {pk}k∈K based on {Fk, fk, C
t
k}k∈K and obtain

the ε-maximum set St based on {pk}k∈K .
4: if |St| = K then
5: Set Ct

k = C/K, k ∈ K, return {Ct
k}k∈K , and

terminate.
6: end if
7: loop
8: Use binary search and Newton’s algorithm to compute

{ck > 0}k∈St such that (15), (16), and (17) are satisfied
for some S ′.

9: if
∑

k∈K C
t
k +

∑
k∈St ck ≤ C then

10: Set Ct+1
k = Ct

k + ck, k ∈ St.
11: end if
12: if

∑
k∈K C

t
k +

∑
k∈St ck > C then

13: Solve (18) with some level such that
∑

k∈St ck =
C −

∑
k∈K C

t
k.

14: Set Ct+1
k = Ct

k + ck, k ∈ St.
15: Return

{
Ct+1

k

}
k∈K and terminate.

16: end if
17: Obtain the ε-maximum set St+1 = St ∪ S ′.
18: if |St+1| = K then

19: Return

{
Ct+1

k +
C −

∑
k∈K C

t+1
k

K

}
and terminate.

20: end if
21: Set t = t+ 1.
22: end loop

Next we argue that the level λ > 0 that satisfies (15), (16),
and (17) can be efficiently found by binary search. Suppose
that at the t-th iteration, the lower and upper bounds of the
desired level are λl and λu, respectively. For fixed

λmid =
λl + λu

2
,

we first use Newton’s algorithm to solve problem (18) (with S
there being replaced with St) and find {ck ≥ 0}k∈S satisfying
(15); we then compute

p`

({
Ct

k + ck
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)
, ` ∈ Sc.

If both (16) and (17) are satisfied for some S ′, then the desired
λ is found; if there exists ` ∈ Sc such that

p`

({
Ct

k + ck
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)
> λ+ ε/2,



then set λl = λmid; if for all k ∈ Sc,

p`

({
Ct

k + ck
}
k∈S ,

{
Ct

k′

}
k′∈Sc

)
< λ− ε/2,

then set λu = λmid. The above update rule of the upper and
lower bounds of the level λ is due to the monotonicity of
p`
(
{Ct

k + ck}k∈S , {C
t
k}k∈Sc

)
, ` ∈ Sc, as shown in (i) of

Lemma 1. The initial λl and λu at the t-th iteration can be set
as

λl = min
`∈Sc

{
p`

({
Ct

k

}
k∈K

)}
, λu = max

`∈S

{
p`

({
Ct

k

}
k∈K

)}
.

Clearly, we have 0 ≤ λl ≤ λu ≤ 1.

E. Theoretical Properties

In this subsection, we list some interesting theoretical prop-
erties of the proposed Algorithm 1.

Finite termination. The proposed algorithm terminates
after at most K (outer) iterations. Clearly, the algorithm
terminates either when the remaining rate is not sufficient (see
line 12) or when |St| = K for some t (see lines 4 and 18).
If the first case happens, the algorithm terminates within K
iterations, as the cardinality of the set St strictly increases as t
increases. If the second case happens, the algorithm allocates
the remaining rate equally to all BSs and again terminates
within K iterations.

Low complexity per iteration. The most computationally
expensive step (see line 8) at each (outer) iteration is to find
the level λ and rate allocation {ck ≥ 0}k∈St such that (15),
(16), and (17) are jointly satisfied. The step further involves
a double-loop computation. The outer loop aims to find the
appropriate level λ via bisection search and the worst-case
complexity is dlog2 (1/ε)e . The inner loop solves the nonlin-
ear equation (18) and finds {ck}k∈S satisfying (15) (with given
λ and S). This can be done very efficiently by using Newton’s
algorithm and the computational cost is negligible due to
the quadratic convergence rate of Newton’s algorithm. In
summary, the worst-case complexity of our proposed iterative
rate allocation Algorithm 1 is K dlog2 (1/ε)e .

Global optimality at each iteration. The rate allocation
of our proposed algorithm (with ε = 0) is globally optimal at
each iteration. More specially, for any t ≥ 0,

{
Ct+1

k

}
is the

optimal solution to problem (5) with C =
∑

k∈K C
t+1
k .

IV. SIMULATION RESULTS

To illustrate the numerical performance of the proposed
algorithm, this section considers a C-RAN topology with
K = 9 BSs at distances 50m to 200m from the central-
ized cloud. We assume a single-antenna setup with Rayleigh
fading. The transmit power is -27dBm/Hz from the wireless
multicast backhaul transmitter; the background noise level
is set to be -120dBm/Hz (to account for interference). We
assume a distance dependent pathloss model according to
128.1 + 37.6 log10(d) in dB, where d is expressed in km.

The capacity of the block-fading channel model follows
certain distribution, which over multiple fading blocks can
be approximated as a Gaussian distribution in aggregate [6].
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Fig. 2. Achievable multicast rate versus total secondary backhaul rate

Although on a block-by-block basis the channel distributions
are not Gaussian, for the convenience and for the purpose of
numerical illustration, we approximate them as Gaussian in
our simulation. In particular, we approximate the distributions
of the capacities of the channels to the 9 BSs as N (µk, σ

2
k),

k = 1, . . . , 9, where [µk] = [8.5, 7, 5.2, 4, 3, 2, 2, 1, 1], and
[σk] = [1.8, 1.6, 1.6, 1.5, 1.3, 1.2, 0.5, 0.5, 0.1] in bps/Hz.

We compare the proposed optimal algorithm with the fol-
lowing two suboptimal benchmarks. The first one is a mean
equalization strategy, which allocates larger Ck to the BSs
with smaller mean rates to make E[Rk] + Ck equal to each
other (if possible); the second one is the uniform allocation
strategy, which allocates the same C/K to all BSs.

Fig. 2 plots the multicast rates R0 achieved by the three
algorithms versus the total secondary backhaul C. It can be
observed from Fig. 2 that the proposed algorithm outperforms
the two benchmarks, although the margin over the mean
equalization strategy is small, indicating that allocating rates to
equalize the means is near optimal in this example. Moreover,
the slope of the optimal achievable rate, which is λ∗ and is
also the largest probability of hitting the minimum among all
BSs, gradually decreases as the total secondary backhaul rate
increases. The slope eventually becomes 1/K if C is larger
than a threshold, which is 36.5 in this example.
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